Game Theory

Lecturer: Ji Liu

Thanks for Jerry Zhu's slides

Overview

- Matrix normal form
- Chance games
- Games with hidden information
- Non-zero sum games

Pure strategy

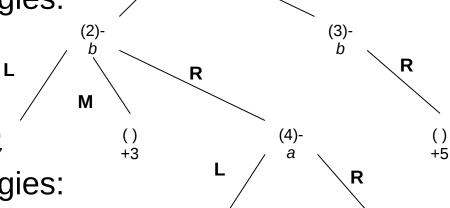
 A pure strategy for a player is the mapping between all possible states the player can see, to the move the player would make.

Player A has 4 pure strategies:

A's strategy I: $(1 \rightarrow L, 4 \rightarrow L)$ A's strategy II: $(1 \rightarrow L, 4 \rightarrow R)$

A's strategy III: $(1 \rightarrow R, 4 \rightarrow L)$

A's strategy IV: $(1 \rightarrow R, 4 \rightarrow R)$



Player B has 3 pure strategies:

B's strategy I: $(2\rightarrow L, 3\rightarrow R)$

B's strategy II: $(2\rightarrow M, 3\rightarrow R)$

B's strategy III: $(2 \rightarrow R, 3 \rightarrow R)$

 How many pure strategies if each player can see N states, and has b moves at each state?

Matrix Normal Form of games

A's strategy I: $(1 \rightarrow L, 4 \rightarrow L)$

A's strategy II: $(1 \rightarrow L, 4 \rightarrow R)$

A's strategy III: $(1 \rightarrow R, 4 \rightarrow L)$

A's strategy IV: $(1 \rightarrow R, 4 \rightarrow R)$

B's strategy I: $(2 \rightarrow L, 3 \rightarrow R)$

B's strategy II: $(2\rightarrow M, 3\rightarrow R)$

B's strategy III: $(2 \rightarrow R, 3 \rightarrow R)$

L (2)- R (3)- B R (1)- C (1)-

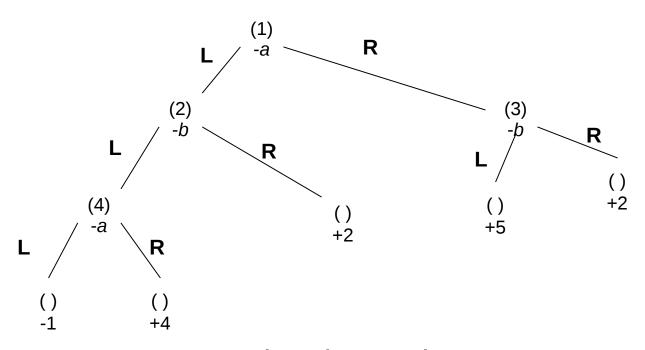
(1)-

 The matrix normal form is the game value matrix indexed by each player's strategies.

	B-I	B-II	B-III
A-I	7	3	-1
A-II	7	3	4
A-III	5	5	5
A-IV	5	5	5

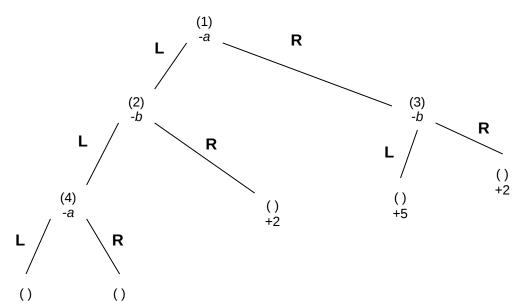
The matrix encodes every outcome of the game! The rules etc. are no longer needed.

Matrix normal form example



- How many pure strategies does A have?
- How many does B have?
- What is the matrix form of this game?

Matrix normal form example



	B-I	B-II	B-III	B-IV
A-I	-1	-1	2	2
A-II	4	4	2	2
A-III	5	2	5	2
A-IV	5	2	5	2

How many pure strategies does A have? 4

A-I $(1 \rightarrow L, 4 \rightarrow L)$ A-II $(1 \rightarrow L, 4 \rightarrow R)$ A-III $(1 \rightarrow R, 4 \rightarrow L)$ A-IV $(1 \rightarrow R, 4 \rightarrow R)$

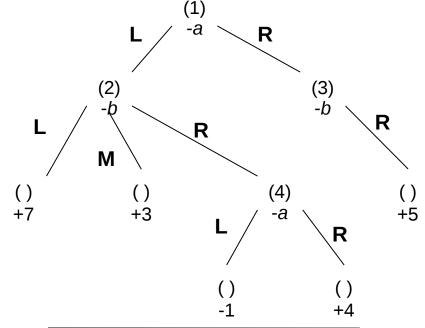
How many does B have? 4

B-I $(2 \rightarrow L, 3 \rightarrow L)$ B-II $(2 \rightarrow L, 3 \rightarrow R)$ B-III $(2 \rightarrow R, 3 \rightarrow L)$ B-IV $(2 \rightarrow R, 3 \rightarrow R)$

What is the matrix form of this game?

Minimax in Matrix Normal Form

- Player A: for each strategy, consider all B's counter strategies (a row in the matrix), find the minimum value in that row. Pick the row with the maximum minimum value.
- Here maximin=5



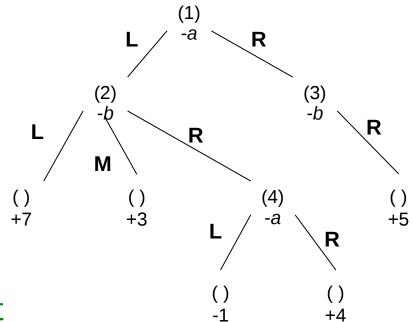
	B-I	B-II	B-III
A-I	7	3	-1
A-II	7	3	4
A-III	5	5	5
A-IV	5	5	5

Minimax in Matrix Normal Form

- Player B: find the maximum value in each column. Pick the column with the minimum maximum value.
- Here minimax = 5

Fundamental game theory result (proved by von Neumann):

In a 2-player, zero-sum game of perfect information,
Minimax==Maximin. And there always exists an optimal pure strategy for each player.



	B-I	B-II	B-III
A-I	7	3	-1
A-II	7	3	4
A-III	5	5	5
A-IV	5	5	5

Minimax in Matrix Normal Form

Interestingly, A can tell B in advance what strategy A will use (the maximin), and this information will not help B!
Similarly B can tell A what strategy B will use.

In fact A knows what B's strategy will be.

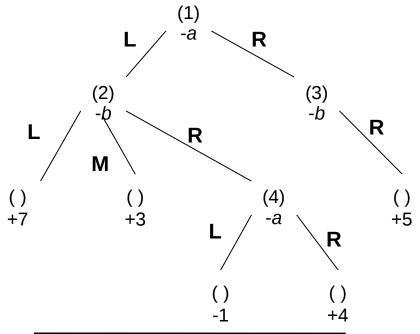
And B knows A's too.

And A knows that B knows

. . .

The game is at an equilibrium

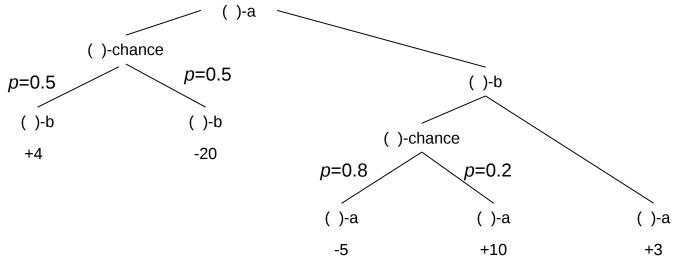
regy for each player.



	B-I	B-II	B-III
A-I	7	3	-1
A-II	7	3	4
A-III	5	5	5
A-IV	5	5	5

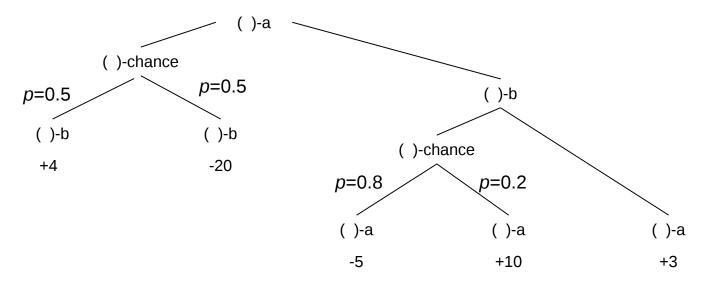
Matrix Normal Form for NONdeterministic games

 Recall the chance nodes (coin flip, die roll etc.): neither player moves, but a random move is made according to the known probability



- The game theoretic value is the expected value if both players are optimal
- What's the matrix form of this game?

Matrix Normal Form for NONdeterministic games



- A-I: L, A-II: R, B-I: L, B-II: R
- The i,jth entry is the expected value with strategies A-i,B-j

	B-I	B-II
A-I	-8	-8
A-II	-2	3

- von Neumann's result still holds
- Minimax == Maximin

Non-zero sum games

Non-zero sum games

- One player's gain is not the other's loss
- Matrix normal form: simply lists all players' gain

	B-I	B-II
A-I	-5, - 5	-10, <mark>0</mark>
A-II	0, -10	-1, -1

Convention: A's gain first, B's next

Note B now wants to maximize the blue numbers.

Previous zero-sum games trivially represented as

	O-I	O-II
E-I	2, -2	-3, 3
E-II	-3, 3	4, -4

Prisoner's dilemma

	B-testify	B-refuse
A-testify	-5 , -5	0, -10
A-refuse	-10, 0	-1, -1

 A's strategy i dominates A's strategy j, if for every B's strategy, A is better off doing i than j.

	B-testify	B-refuse
A-testify	-5, -5	0, -10
A-refuse	-10, 0	-1, -1

If B-testify: A-testify (-5) is better than A-refuse (-10)

If B-refuse: A-testify (0) is better than A-refuse (-1)

A: Testify is always better than refuse.

A-testify strictly dominates (all outcomes strictly better than) A-refuse.

- Fundamental assumption of game theory: get rid of strictly dominated strategies – they won't happen.
- In some cases like prisoner's dilemma, we can use strict domination to predict the outcome, if both players are rational.

	B-testify	B-refuse
A-testify	-5 , -5	0, -10
A-refuse	-10, 0	-1, -1

- Fundamental assumption of game theory: get rid of strictly dominated strategies – they won't happen.
- In some cases like prisoner's dilemma, we can use strict domination to predict the outcome, if both players are rational.

	B-testify	R-refuse]				
	Dicomy	D TCTUSC			B-testify	B-refuse	
A-testify	-5. -5	010	l		D testify	D TCTG5C	
	-, -	-,	<u></u>		A-testify	-5. - 5	010
A rofuco	10 0	1 1		7 (toothy		o , 10	
7							

- Fundamental assumption of game theory: get rid of strictly dominated strategies – they won't happen.
- In some cases like prisoner's dilemma, we can use strict domination to predict the outcome, if both players are rational.

	B-testify	B-refuse] ,		<u> </u>	
A-testify	-5, -5	0, -10			B-testify	B-refuse
A rofuse	10.0	1 1		A-testify	-5, -5	0, -10
	,]		Ī	
					\	
					D to otif	٦
					B-testify	
				A-testify	-5, -5	

Another strict domination example

Iterated elimination of strictly dominated strategies

		Player B			
		I	II	Ш	IV
	I	3 , 1	4,1	5,9	2 , 6
Player A	II	5,3	5 , 8	9,7	9,3
Play	Ш	2,3	8,4	6 , 2	6 , 3
	IV	3,8	3,1	2,3	4 , 5

Strict domination doesn't always happen...

	I	II	Ш
I	0,4	4,0	5,3
II	4,0	0,4	5,3
III	3,5	3,5	6,6

• What do you think the players will do?

Nash equilibria

• (player 1's strategy s_1^* , player 2's strategy s_2^* , ... player n's strategy s_n^*) is a Nash equilibrium, iff

$$s_i^* = \operatorname{argmin}_s V(s_1^*, \dots, s_{i-1}^*, s, s_{i+1}^*, \dots, s_n^*)$$

 This says: if everybody else plays at the Nash equilibrium, player i will hurt itself unless it also plays at the Nash equilibrium.

N.E. is a local maximum in unilateral moves.

0,4	4,0	5,3
4,0	0,4	5,3
3,5	3,5	6,6

Nash equilibria examples

	B-testify	B-refuse
A-testify	-5, -5	0, -10
A-refuse	-10, 0	-1, -1

- 1. Is there always a Nash equilibrium?
- 2. Can there be more than one Nash equilibrium?

		Player B			
		I	Ш	Ш	IV
	1	3 , 1	4,1	5,9	2 , 6
Player A	II	5,3	5,8	9,7	9,3
Play	Ш	2,3	8,4	6 , 2	6,3
	IV	3,8	3,1	2,3	4 , 5

Example: no N.E. with pure strategies

two-finger Morra

	O-I	O-II
E-I	2, -2	-3, 3
E-II	-3, 3	4, -4

No pure strategy Nash equilibrium, but...

Two-player zero-sum deterministic game with hidden information

- Hidden information: something you don't know but your opponent knows, e.g. hidden cards, or simultaneous moves
- Example: two-finger Morra
 - Each player (O and E) displays 1 or 2 fingers
 - If sum f is odd, O collects \$f from E
 - If sum f is even, E collects \$f from O
 - Strategies?
 - Matrix form?

Two-player zero-sum deterministic game with hidden information

- Hidden information: something you don't know but your opponent knows, e.g. hidden cards, or simultaneous moves
- Example: two-finger Morra
 - Each player (O and E) displays 1 or 2 fingers
 - If sum f is odd, O collects \$f from E
 - If sum f is even, E collects \$f from O
 - Strategies?
 - Matrix form?
 - Maximin= –3, minimax=2
 - The two are not the same!
 - What should O and E do?

	O-I	O-II
E-I	2,-2	-3,3
E-II	-3,3	4,-4

Game theoretic value when there is hidden information

- It turns out O can win a little over 8 cents on average in each game, if O does the right thing.
- Again O can tell E what O will do, and E can do nothing about it!
- The trick is to use a mixed strategy instead of a pure strategy.
 - A mixed strategy is defined by a probability distribution $(p_1, p_2, ..., p_n)$. n = # of pure strategies the player has
 - At the start of each game, the player picks number i according to p_i, and uses the ith pure strategy for this round of the game
- von Neumann: every two-player zero-sum game (even with hidden information) has an optimal (mixed) strategy.

Boring math: Two-finger Morra

E's mixed strategy: (p:I, (1-p):II)

•	O's mixed strategy:	: (q:I, ((1-q):II)
---	---------------------	-------------------	----------	---

What is p, q?

	O-I	O-II
E-I	2	-3
E-II	-3	4

- step 1: let's fix p for E, and O knows that.
 - What if O always play O-I $(q=1)? v_1=p*2+(1-p)*(-3)$
 - What if O always play O-II (q=0)? $v_0 = p^*(-3) + (1-p)^*4$
 - And if O uses some other q? $q^*v_1^+(1-q)^*v_0^-$
 - O is going to pick q to minimize $q^*v_1+(1-q)^*v_0$
 - Since this is a linear combination, such q must be 0 or 1, not something in between!
 - The value for E is min(p*2+(1-p)*(-3), p*(-3)+(1-p)*4)
- step 2: E choose the p that maximizes the value above.

More boring math

- step 1: let's fix p for E.
 - The value for E is min(p*2+(1-p)*(-3), p*(-3)+(1-p)*4), in case O is really nasty
- step 2: E choose the p* that maximizes the value above. $p^* = \operatorname{argmax}_{n} \min(p^*2 + (1-p)^*(-3), p^*(-3) + (1-p)^*4)$
- Solve it with (proof by "it's obvious")

$$p*2+(1-p)*(-3) = p*(-3)+(1-p)*4$$

- E's optimal p* = 7/12, value = -1/12 (expect to lose \$!
 That's the best E can do!)
- Similar analysis on O shows $q^* = 7/12$, value = 1/12

This is a zero-sum, but unfair game.

Recipe for computing A's optimal mixed strategy for a n*m game

- n*m game = A has n pure strategies and B has m. $v_{ij}=(i,j)^{th}$ entry in the matrix form.
- Say A uses mixed strategy (p₁, p₂, ... p_n).

A's expected gain if B uses pure strategy 1: $g_1 = p_1 v_{11} + p_2 v_{21} + ... + p_n v_{n1}$

A's expected gain if B uses pure strategy 2: $g_2 = p_1 v_{12} + p_2 v_{22} + ... + p_n v_{n2}$

. . .

A's expected gain if B uses pure strategy m: $g_m = p_1 v_{1m} + p_2 v_{2m} + ... + p_n v_{nm}$

• Choose (p₁, p₂, ... p_n) to maximize

min(
$$g_1, g_2, ..., g_m$$
)
Subject to: $p_1+p_2+...+p_n=1$

$$0 \le p_i \le 1$$
 for all i

Fundamental theorems

- In a n-player pure strategy game, if iterated elimination of strictly dominated strategies leaves all but one cell (s_1^* , s_2^* , ... s_n^*), then it is the unique NE of the game
- Any NE will survive iterated elimination of strictly dominated strategies
- [Nash 1950]: If n is finite, and each player has finite strategies, then there exists at least one NE (possibly involving mixed strategies)

