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Announcements

A1 due tomorrow
 
Remember that you have 3 slip days for the 

semester. Email Abhishek if you want to apply any 
to this assignment.


A2 will be released tonight
 



�4

Carnegie Mellon

IEEE 754 Floating Point Standard
• Single precision: 32 bits


• Double precision: 64 bits

s exp frac

1 8-bit 23-bit

s exp frac

1 11-bit 52-bit

• In C language

•float	 single precision

•double	 double precision
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C Data 
Type Bits Max Value Max Value

(Decimal)
char 8 27 - 1 127
short 16 215 - 1 32767

int 32 231 - 1 2147483647

long 64 263 - 1 ~9.2 × 1018

float 32 (2 - 2-23) × 2127 ~3.4 × 1038

double 64 (2 - 2-52) × 21023 ~1.8 × 10308

Fixed point
(implicit binary point){

SP floating point
DP floating point

Floating Point in C 32-bit Machine
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C Data 
Type Bits Max Value Max Value

(Decimal)
char 8 27 - 1 127
short 16 215 - 1 32767

int 32 231 - 1 2147483647

long 64 263 - 1 ~9.2 × 1018

float 32 (2 - 2-23) × 2127 ~3.4 × 1038

double 64 (2 - 2-52) × 21023 ~1.8 × 10308

Fixed point
(implicit binary point){

SP floating point
DP floating point

• To represent 231 in fixed-point, you need at least 32 bits

• Because fixed-point is a weighted positional representation 

• In floating-point, we directly encode the exponent

• Floating point is based on scientific notation 
• Encoding 31 only needs 7 bits in the exp field

Floating Point in C 32-bit Machine
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Floating Point Conversions/Casting in C

• double/float → int

• Truncates fractional part 
• Like rounding toward zero 
• Not defined when out of range or NaN
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Floating Point Conversions/Casting in C

• double/float → int

• Truncates fractional part 
• Like rounding toward zero 
• Not defined when out of range or NaN

s exp frac

1 8-bit 23-bit

s exp frac

1 11-bit 52-bit

•  int → double
• Exact conversion

• int → float
• Can’t guarantee exact casting. Will round according to rounding mode
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So far in 252…
int, float 
if, else 
+, -, >>

C Program
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So far in 252…

Compiler

Assembler

int, float 
if, else 
+, -, >>

ret, call 
fadd, add 
jmp, jne

00001111 
01010101 
11110000

Fixed-point adder 
(e.g., ripple carry), 
Floating-point adder

C Program

Assembly

Program

Machine

Code

Processor

Transistor

Semantically
Equivalent

Semantically
Equivalent

NAND Gate 
NOR Gate
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So far in 252…
High-Level 
Language C Program

Assembly

Program
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So far in 252…
High-Level 
Language

Instruction Set 
Architecture 

(ISA)

C Program

Assembly

Program

Machine

Code

Processor

Transistor

• ISA: Software programmers’ 
view of a computer


• Provide all info for someone wants 
to write assembly/machine code 

• “Contract” between assembly/
machine code and processor
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So far in 252…
High-Level 
Language

Instruction Set 
Architecture 

(ISA)

C Program

Assembly

Program

Machine

Code

Processor

TransistorCircuit

Microarchitecture

• ISA: Software programmers’ 
view of a computer


• Provide all info for someone wants 
to write assembly/machine code 

• “Contract” between assembly/
machine code and processor

• Processors execute machine 
code (binary). Assembly 
program is merely a text 
representation of machine 
code

• Microarchitecture: Hardware 
implementation of the ISA (with 
the help of circuit technologies)
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This Module (4 Lectures)
High-Level 
Language

Instruction Set 
Architecture 

(ISA)

C Program

Assembly 
Program

Machine 
Code

Processor

TransistorCircuit

Microarchitecture

• Assembly Programming

• Explain how various C 

constructs are implemented in 
assembly code 

• Effectively translating from C to 
assembly program manually 

• Helps us understand how 
compilers work 

• Helps us understand how 
assemblers work 

•Microarchitecture is the 
topic of the next module
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Today: Assembly Programming I: Basics

• Different ISAs and history behind them

• C, assembly, machine code

• Move operations (and addressing modes)
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Instruction Set Architecture
• There used to be many ISAs


• x86, ARM, Power/PowerPC, Sparc, MIPS, IA64, z 
• Very consolidated today: ARM for mobile, x86 for others

• There are even more microarchitectures

• Apple/Samsung/Qualcomm have their own microarchitecture 

(implementation) of the ARM ISA 
• Intel and AMD have different microarchitectures for x86

• ISA is lucrative business: ARM’s Business Model

• Patent the ISA, and then license the ISA 
• Every implementer pays a royalty to ARM 
• Apple/Samsung pays ARM whenever they sell a smartphone

The ARM Diaries, Part 1: How ARM’s Business Model Works: https://www.anandtech.com/show/7112/
the-arm-diaries-part-1-how-arms-business-model-works

https://www.anandtech.com/show/7112/the-arm-diaries-part-1-how-arms-business-model-works
https://www.anandtech.com/show/7112/the-arm-diaries-part-1-how-arms-business-model-works
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• Dominate laptop/desktop/cloud market
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Intel x86 ISA Evolution (Milestones)
• Evolutionary design: Added more features as time goes on



Date Feature Notable 
Implementation

1974 8-bit ISA 8080
1978 16-bit ISA (Basis for IBM PC & DOS) 8086
1980 Add Floating Point instructions 8087
1985 32-bit ISA (Refer to as IA32) 386
1997 Add Multi-Media eXtension (MMX) Pentium/MMX
1999 Add Streaming SIMD Extension (SSE) Pentium III
2001 Intel’s first attempt at 64-bit ISA (IA64, failed) Itanium
2004 Implement AMD’s 64-bit ISA (x86-64, AMD64) Pentium 4E
2008 Add Advanced Vector Extension (AVE) Core i7 Sandy Bridge
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Intel x86 ISA Evolution (Milestones)
• Evolutionary design: Added more features as time goes on
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Backward Compatibility
• Binary executable generated for an older processor can 

execute on a newer processor

• Allows legacy code to be executed on newer machines


• Buy new machines without changing the software 

• x86 is backward compatible up until 8086 (16-bit ISA)

• i.e., an 8086 binary executable can be executed on any of today’s 

x86 machines 

•Great for users, nasty for processor implementers

• Every instruction you put into the ISA, you are stuck with it FOREVER
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x86 Clones: Advanced Micro Devices (AMD)

•Historically

• AMD build processors for x86 ISA 
• A little bit slower, a lot cheaper

•Then

• Recruited top circuit designers from Digital Equipment Corp. and 

other downward trending companies 
• Developed x86-64, their own 64-bit x86 extension to IA32 
• Built first 1 GHz CPU 

• Intel felt hard to admit mistake or that AMD was better
• 2004: Intel Announces EM64T extension to IA32


• Almost identical to x86-64! 
• Today’s 64-bit x86 ISA is basically AMD’s original proposal
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x86 Clones: Advanced Micro Devices (AMD)

•Today: Holding up not too badly
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Our Coverage
• IA32


• The traditional x86 
• 2nd edition of the textbook 

• x86-64

• The standard 
• CSUG machine 
• 3rd edition of the textbook 
• Our focus
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• More instructions typically require more transistors to implement
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Moore’s Law
• More instructions require more transistors to implement
• Gordon Moore in 1965 predicted that the number of 

transistors doubles every year
• In 1975 he revised the prediction to doubling every 2 years
• Today’s widely-known Moore’s Law: number of transistors 

double about every 18 months

• Moore never used the number 18…
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Moore’s Law
• Question: why is transistor count increasing but computers 

are becoming smaller?
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Moore’s Law
• Question: why is transistor count increasing but computers 

are becoming smaller?
• Because transistors are becoming smaller
• ~1.4x smaller each dimension(1.42 ~ 2)

• Moore’s Law is:
• A law of physics?
• A law of circuits?
• A law of economy?
• A law of psychology?

Yes

No
No

Yes
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Today: Assembly Programming I: Basics

• Different ISAs and history behind them

• Memory, C, assembly, machine code

• Move operations (and addressing modes)
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Byte-Oriented Memory Organization

• Programs refer to data by address

• Conceptually, envision it as a very large array of bytes: byte-addressable 
• An address is like an index into that array 

• and, a pointer variable stores an address

• • •
00
••
•0

FF
••
•F
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How Does Pointer Work in C???
char a = 4; 
char b = 3; 
char* c; 
c = &a; 
b += (*c);
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How Does Pointer Work in C???
char a = 4; 
char b = 3; 
char* c; 
c = &a; 
b += (*c);

Memory
Content

C
Variable

a
b

c

• The content of a pointer 
variable is memory address.

• The ‘&’ operator (address-of 
operator) returns the memory 
address of a variable.

• The ‘*’ operator returns the 
content stored at the memory 
location pointed by the pointer 
variable (dereferencing)

Memory
Address

0x10
0x11

0x16

…

…

4

37

random0x10
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CPU

Assembly Code’s View of Computer: ISA
Memory

Code 
Data 
Stack

Assembly
Programmer’s
Perspective

of a Computer

• (Byte Addressable) Memory

• Code: instructions 
• Data 
• Stack to support function call

Code 
(Instructions) Data

0x78 
0xfe 
0xe3 
0x05

Instruction is the fundamental 
unit of work.
All instructions are encoded as 
bits (just like data!)
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CPU

Assembly Code’s View of Computer: ISA
Memory

Code 
Data 
Stack

Assembly
Programmer’s
Perspective

of a Computer

• (Byte Addressable) Memory

• Code: instructions 
• Data 
• Stack to support function call

Code 
(Instructions) StackData

0x53 
0x48 
0x89 
0xd3
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CPU

Assembly Code’s View of Computer: ISA

Register 
File

Memory
Code 
Data 
Stack

Assembly
Programmer’s
Perspective

of a Computer

• (Byte Addressable) Memory

• Code: instructions 
• Data 
• Stack to support function call

• Register file

• Faster memory (e.g., 0.5 ns vs. 15 ns) 
• Small memory (e.g., 128 B vs. 16 GB) 
• Heavily used program data



%rax %r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15%rbp

%rsp

%rbx

%rcx

%rdx

%rsi

%rdi

8 Bytes
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x86-64 Integer Register File
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x86-64 Integer Register File
• Lower-half of each register can be independently 

addressed (until 1 bytes)

%eax %ax %al

8 Bytes
4 Bytes

2 Bytes
1 B

C Data Type Size (Bytes)

char 1

short 2

int 4

long 8

Pointer 8
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x86-64 Integer Register File
• Lower-half of each register can be independently 

addressed (until 1 bytes)

%eax %ax %al

8 Bytes
4 Bytes

2 Bytes
1 B

C Data Type Size (Bytes)

char 1

short 2

int 4

long 8

Pointer 8

Floating point data is 
stored in a separate set of 
register file
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Assembly Code’s View of Computer: ISA

Register 
File

Memory
Code 
Data 
Stack

Assembly
Programmer’s
Perspective

of a Computer

• (Byte Addressable) Memory

• Code: instructions 
• Data 
• Stack to support function call 

• Register file

• Faster memory (e.g., 0.5 ns vs. 15 ns) 
• Small memory (e.g., 128 B vs. 16 GB) 
• Heavily used program data
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Assembly Code’s View of Computer: ISA

PC
Register 

File
Memory

Code 
Data 
Stack

Addresses

Data

Instructions

Assembly
Programmer’s
Perspective

of a Computer ALU

• PC: Program counter

• A special register containing address 

of next instruction 
• Called “RIP” in x86-64

• Arithmetic logic unit (ALU)

• Where computation happens

• (Byte Addressable) Memory

• Code: instructions 
• Data 
• Stack to support function call 

• Register file

• Faster memory (e.g., 0.5 ns vs. 15 ns) 
• Small memory (e.g., 128 B vs. 16 GB) 
• Heavily used program data
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Assembly Code’s View of Computer: ISA

PC
Register 

File
Memory

Code 
Data 
Stack

Addresses

Data

InstructionsCondition 
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

• PC: Program counter

• A special register containing address 

of next instruction 
• Called “RIP” in x86-64

• Arithmetic logic unit (ALU)

• Where computation happens

• Condition codes

• Store status information about most 

recent arithmetic or logical operation 
• Used for conditional branch

• (Byte Addressable) Memory

• Code: instructions 
• Data 
• Stack to support function call 

• Register file

• Faster memory (e.g., 0.5 ns vs. 15 ns) 
• Small memory (e.g., 128 B vs. 16 GB) 
• Heavily used program data
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CPU

Assembly Program Instructions

PC
Register 

File
Memory

Code 
Data 
Stack 
Heap

Addresses

Data

InstructionsCondition 
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

• Compute Instruction: Perform arithmetics on register or memory data

•addq %eax, %ebx 
• C constructs: +, -, >>, etc.
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• Compute Instruction: Perform arithmetics on register or memory data

•addq %eax, %ebx 
• C constructs: +, -, >>, etc.

• Data Movement Instruction: Transfer data between memory and register

• movq %eax, (%ebx)
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CPU

Assembly Program Instructions

PC
Register 

File
Memory

Code 
Data 
Stack 
Heap

Addresses

Data

InstructionsCondition 
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

• Compute Instruction: Perform arithmetics on register or memory data

•addq %eax, %ebx 
• C constructs: +, -, >>, etc.

• Data Movement Instruction: Transfer data between memory and register

• movq %eax, (%ebx)

• Control Instruction: Alter the sequence of instructions (by changing PC)

• jmp, call 
• C constructs: if-else, do-while, function call, etc.
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Turning C into Object Code
C Code (sum.c)
long plus(long x, long y);  

void sumstore(long x, long y,  
              long *dest) 
{ 
    long t = plus(x, y); 
    *dest = t; 
}



!29

Turning C into Object Code
C Code (sum.c)
long plus(long x, long y);  

void sumstore(long x, long y,  
              long *dest) 
{ 
    long t = plus(x, y); 
    *dest = t; 
}

Generated x86-64 Assembly
sumstore: 
   pushq   %rbx 
   movq    %rdx, %rbx 
   call    plus 
   movq    %rax, (%rbx) 
   popq    %rbx 
   ret
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Turning C into Object Code
C Code (sum.c)
long plus(long x, long y);  

void sumstore(long x, long y,  
              long *dest) 
{ 
    long t = plus(x, y); 
    *dest = t; 
}

Generated x86-64 Assembly
sumstore: 
   pushq   %rbx 
   movq    %rdx, %rbx 
   call    plus 
   movq    %rax, (%rbx) 
   popq    %rbx 
   ret

Obtain (on CSUG machine) with command 
gcc –Og –S sum.c -o sum.s
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Turning C into Object Code
Generated x86-64 Assembly
sumstore: 
   pushq   %rbx 
   movq    %rdx, %rbx 
   call    plus 
   movq    %rax, (%rbx) 
   popq    %rbx 
   ret
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Binary Code for sumstore

0x53 
0x48 
0x89 
0xd3 
0xe8 
0xf2 
0xff 
0xff 
0xff 
0x48 
0x89 
0x03 
0x5b 
0xc3

Turning C into Object Code

Memory

Generated x86-64 Assembly
sumstore: 
   pushq   %rbx 
   movq    %rdx, %rbx 
   call    plus 
   movq    %rax, (%rbx) 
   popq    %rbx 
   ret
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Address Memory

Generated x86-64 Assembly
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Generated x86-64 Assembly
sumstore: 
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Binary Code for sumstore

0x53 
0x48 
0x89 
0xd3 
0xe8 
0xf2 
0xff 
0xff 
0xff 
0x48 
0x89 
0x03 
0x5b 
0xc3

Turning C into Object Code

• Total of 14 bytes

• Instructions have variable 

lengths: e.g., 1, 3, or 5 bytes

• Code starts at memory address 

0x0400595

0x0400595

Address Memory

Obtain (on CSUG machine) with command 
gcc –c sum.s -o sum.o

Generated x86-64 Assembly
sumstore: 
   pushq   %rbx 
   movq    %rdx, %rbx 
   call    plus 
   movq    %rax, (%rbx) 
   popq    %rbx 
   ret
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Fetch Instruction 
(According to PC)
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 0x4801d8
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addq %rax,(%rbx)
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