CSC 252: Computer
Organization
Fall 2021: Lecture 4

Binary Multiplication
Floating Point

Instructor: Alan Beadle

Department of Computer Science
University of Rochester



Announcements

6 days left to complete assignment 1

Office hours are shown on the website. Some are in
person, some are on Zoom.

For office hours using Zoom, use the zoom link in
blackboard sidebar

Today is the end of the data representation unit

Next class we begin assembly programming



Unsigned Multiplication in C

Operands: w bits

True Product: 2*w bits U -v so 0

Discard w bits: w bits

Standard Multiplication Function
Ignores high order w bits

Effectively Implements the following:
UMult,(u,v) = u -v mod 2"



Multiplication

Goal: Computing Product of w-bit numbers x, y
Exact results can be bigger than w bits
Up to 2w Dbits (both signed and unsigned)

Original Number (w bits)

OMax 12" -1

- 0

OMin = _pw-



Multiplication

Goal: Computing Product of w-bit numbers x, y
Exact results can be bigger than w bits
Up to 2w Dbits (both signed and unsigned)

Original Number (w bits) Product (2w bits)

PMax  22w27 OMin?
OMax 7 2"7*-1
- O - O
OMln - _2W—1
PMin L OMin * OMax

_22W—2 + 2W—1



Can We Represent Fractions in

Binary?
What does 10.01> mean?

12.45 = 1*10! + 2*10° + 4*10! + 5*10
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Can We Represent Fractions in

Binary?
What does 10.01> mean?

12.45 = 1*10! + 2*10° + 4*10! + 5*10

10.01, = 1*21 + 0*2° + O0*21 + 1*2~



Can We Represent Fractions in

Binary?
What does 10.01> mean?

12.45 = 1*10! + 2*10° + 4*10! + 5*10

10.01, = 1*21 + 0*20 4+ O*2-1 4+ 1*2-2
= 2.2510



Fractional Binary Numbers

bi

bi.

b>




Decimal Binary

Fixed-Point Representation 0000.
0001.
0010.
0011.
0100.
0101.
0110.
0111.
1000.
1001.
1010.
1011.
1100.
1101.
1110.

1111.

Binary point stays fixed
Fixed interval between representable numbers

+——— 1
O 1 2 3 4 5 6 7 ... 15

© 00 N O U A W N PP O

N T
uu h W N L O



Decimal Binary

Fixed-Point Representation

0 00.00

0.25 00.01

Binary point stays fixed 0.5 00.10
Fixed interval between representable numbers 0-75 00.11
The interval in this example is 0.2510 1 01.00
1.25 01.01

1.5 01.10

HHHHH 1.75 01.11
O 1 2 3 2 10.00
2.25 10.01

Still need to remember the binary 5 5 10.10
point, but just once for all numbers, > 75 10.11
which is implicit given the data type 3 11.00
Usual arithmetic still works 3.25 11.01
No need to align (already aligned) 3.5 11.10

3.75 11.11



Limitations of Fixed-Point (#1)

Can exactly represent numbers only of the
form x/2k

Other rational numbers have repeating bit
representations

Decimal Value Binary Representation

1/3 0.0101010101[01]...
1/5 0.001100110011[0011]...
1/10 0.0001100110011[0011]...

+-+—F—F—— 1+
0 1/41/23/45/43/27/4 2 ... 15/4 b:jbz.b1_bo



Limitations of Fixed-Point (#2)

Can’t represent very small and very large numbers at the
same time




Limitations of Fixed-Point (#2)

Can’t represent very small and very large numbers at the
same time

To represent very large numbers, the (fixed) interval needs
to be large, making it hard to represent small numbers

Unrepresentable
small numbers

=111 +

° |
A Large
Number




Limitations of Fixed-Point (#2)

Can’t represent very small and very large numbers at the
same time

To represent very large numbers, the (fixed) interval needs
to be large, making it hard to represent small numbers

To represent very small numbers, the (fixed) interval needs
to be small, making it hard to represent large numbers

Unrepresentable
large numbers

HHHHHHH S T 0
OL

A Small
Number




Primer: (Normalized) Scientific Notation

In decimal: M x 10E

Decimal Value Scientific Notation
2 2x%x100
-4,321.768 -4.321768x%103

0.000 000 007 51 7.51x10-°



Primer: (Normalized) Scientific Notation

In decimal: M x 10E
E is an integer
Normalized form: 1<= |M| < 10

Decimal Value Scientific Notation
2 2x%x100
-4,321.768 -4.321768x%103

0.000 000 007 51 7.51x10-°



Primer: (Normalized) Scientific Notation

In decimal: M x 10E
E is an integer
Normalized form: 1<= |M| < 10

M x 10E

Significand Base Exponent

Decimal Value Scientific Notation
2 2x%x100
-4,321.768 -4.321768x%103

0.000 000 007 51 7.51x10-°



Primer: (Normalized) Scientific Notation

In binary: (-1)s M 2F
Normalized form:
l<=M< 2
M = 1.bob:1b2bs...

Binary Value Scientific Notation

111011011011 (-1)°1.110110110110
0 X 212

-101.11 (-1)11.0111 x 22
0.00101 (-1)°1.01 x 23



Primer: (Normalized) Scientific Notation

In binary: (-1)° M 2f Sign

Normalized form: S E
l<=M<?2 ( 1) M X 2
M = 1.bob:b2bs... Significand Base Exponent

Binary Value Scientific Notation

111011011011 (-1)°1.110110110110
0 X 212

-101.11 (-1)11.0111 x 22
0.00101 (-1)°1.01 x 23



Primer: (Normalized) Scientific Notation

In binary: (-1)° M 2f Sign
Normalized form: S E
l<=M<?2 ( 1) M X 2
M = 1.bobi1b2bs... Significand Base Exponent
Fraction

Binary Value Scientific Notation

111011011011 (-1)°1.110110110110
0 X 212

-101.11 (-1)11.0111 x 22
0.00101 (-1)°1.01 x 23



Primer: (Normalized) Scientific Notation

In binary: (-1)s M 2¢ Sign
Normalized form: =
l<=M<?2 ('1)SM X 2
M = 1-b0b11_92b3--- Significand Base Exponent
Fraction

If | tell you that there is a number where:
Fraction = 0101
s=1
E=10
You could reconstruct the number as (-1)!1.0101x21°



Primer: Floating Point Representation

In binary: (-1)s M 2¢

| Sign
Normalized form: =
l<=M<?2 ('1)SM X 2
M = 1-b0b11_92b3--- Significand Base Exponent
Fraction
Encoding

MSB s is sign bit s




Primer: Floating Point Representation

In binary: (-1)s M 2¢
Normalized form:

l<=M< ?2 ('1)SM X 2E

M = 1.bobib2bs...
Fraction

Encoding
MSB s is sign bit s
exp field encodes Exponent (but not exactly the same, more later)

Sign

Significand Base Exponent

s exp




Primer: Floating Point Representation

In binary: (-1)s M 2¢
Normalized form:

l<=M< ?2 ('1)SM X 2E

M = 1.bobib2bs...
Fraction

Encoding
MSB s is sign bit s
exp field encodes Exponent (but not exactly the same, more later)
frac field encodes Fraction (but not exactly the same, more later)

Sign

Significand Base Exponent



exp
000
001
010
011
100
101
110
111

6-bit Floating Point Example

o com

1 3 2

N OO U B W N P O m



: : : E
6-bit Floating Point Example s
1 001

S = [ =@ e 2 010
3 011

1 3 2 4 100

exp has 3 bits, interpreted as an unsigned value S
3 bits can represent exponents from 0 to 7 6 110

7 111



6-bit Floating Point Example

o com

1 3 2
exp has 3 bits, interpreted as an unsigned value

3 bits can represent exponents from 0 to 7
How about negative exponent?



6-bit Floating Point Example

o com

1 3 2
exp has 3 bits, interpreted as an unsigned value

3 bits can represent exponents from 0 to 7
How about negative exponent?
Subtract a bias term: E = exp - bias (i.e., exp = E + bias)



E exp

6-bit Floating Point Example 3 000

-2 001
ceomr OECENCE

1 3 2 0 011

exp has 3 bits, interpreted as an unsigned value 1 100
3 bits can represent exponents from 0 to 7 2 101
How about negative exponent? 3 110

4 111

Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
bias is always 2% - 1, where k is number of exponent bits



E exp

6-bit Floating Point Example 3 000

-2 001
ceomr OECHENCE G

1 3 2 0 011

exp has 3 bits, interpreted as an unsigned value 1 100
3 bits can represent exponents from 0 to 7 2 101
How about negative exponent? 3 110

4 111

Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
bias is always 2% - 1, where k is number of exponent bits

Example when we use 3 bits for exp (i.e., kK = 3):
bias = 3



E exp

6-bit Floating Point Example 3 000

-2 001
ccony ONCENCE G

0O 011

1 3 2
o , 1 100
exp has 3 bits, interpreted as an unsigned value S
3 bits can represent exponents from 0 to 7 3 110
How about negative exponent? 4 111

Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
bias is always 2% - 1, where k is number of exponent bits

Example when we use 3 bits for exp (i.e., kK = 3):
bias = 3
If E =-2,expis 1 (001,)



exp

6-bit Floating Point Example --

= (<1)s M 2F 001
R - | o0 e L ow

1 3 2 0 011

exp has 3 bits, interpreted as an unsigned value 1 100
3 bits can represent exponents from 0 to 7 2 101

3 110

How about negative exponent?
Subtract a bias term: E = exp - bias (i.e., exp = E + bias) --
bias is always 2% - 1, where k is number of exponent bits

Example when we use 3 bits for exp (i.e., kK = 3):
bias = 3
If E =-2,expis 1 (001,)

Reserve 000 and 111 for other purposes (more on this
later)



exp

6-bit Floating Point Example --

= (<1)s M 2F 001
[ < | o° e 2 o

1 3 2 0O 011
exp has 3 bits, interpreted as an unsigned value 1 100

3 bits can represent exponents from 0 to 7 2 101
How about negative exponent? 3 110
Subtract a bias term: E = exp - bias (i.e., exp = E + bias) --
bias is always 2% - 1, where k is number of exponent bits

Example when we use 3 bits for exp (i.e., kK = 3):
bias = 3
If E =-2,expis 1 (001,)

Reserve 000 and 111 for other purposes (more on this
later)

We can now represent exponents from -2 (exp 001) to 3
(exp 110)



6-bit Floating Point Example

v=(-10M2F KN Frac

1 3 2
frac has 2 bits, append them after “1.” to form M
frac = 10 implies M = 1.10
Putting it Together: An Example:

-10.1> = (-1)* 1.01 x 2¢



6-bit Floating Point Example

v=(-10M2F EEEEN Frac

1 3 2
frac has 2 bits, append them after “1.” to form M
frac = 10 implies M = 1.10
Putting it Together: An Example:

v
-10.1> = (-1)* 1.01 x 2¢



E exp

6-bit Floating Point Example .

-2 001
v=(-1m2: Y Rl
— — 0 011
1 3 2 1 100

frac has 2 bits, append them after “1.” to form 2 101
frac = 10 implies M = 1.10 110
Putting it Together: An Example: --

v .
-10.1> = (-1)* 1.01 x 2¢



E exp

6-bit Floating Point Example .

-2 001
v=(-1sM25 EEEEETN 01 il
— — 0 011
1 3 2 1 100

frac has 2 bits, append them after “1.” to form 2 101
frac = 10 implies M = 1.10 110
Putting it Together: An Example: --

v v v
-10.1> = (-1)* 1.01 x 2¢



‘“Normalized” Values v =(-1)s M 2F

B \When: exp # 000...0 and exp = 111...1

B Exponent coded as a biased value: E = Exp - Bias
" Exp: unsigned value of exp field
" Bias = 2k - 1, where k is number of exponent bits
" Single precision: 127 (Exp: 1...254, E: -126...127)
" Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

B Significand coded with implied leading 1: M =
1.XXX...X2
" XXX...X: bits of frac field
" Minimum when frac=000...0 (M = 1.0)
" Maximum when frac=111...1 (M = 2.0 - €)
" Get extra leading bit for “free”



Denormalized Values — (<1)s M 2t

V
E = 1 - Bias

B Condition: exp = 000...0

B Exponent value: E = 1 - Bias (instead of E = 0 - Bias)

B Significand coded with implied leading 0: M = 0.xxX...
X2
" xxx...X: bits of frac

B Cases
" exp = 000..0, frac = 000..0
" Represents zero value
" Note distinct values: +0 and -0 (why?)
" exp = 000..0, frac # 000..0
" Numbers closest to 0.0
" Equispaced



Distribution of Values

B 6-bit IEEE-lIike format

" e = 3 exponent bits
" f = 2 fraction bits S exp frac

" Blasis 271 =3 1 3-bits 2-bits

® Notice how the distribution gets denser toward zero.

/8 values
A—A—4A

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized  Infinity




Special Values I
-2 001 2 101
R < | &0 | frac
0 011 4 111

There are many special values in scientific
computing

+/- o, Not-a-Numbers (NaNs) (e.g., 0/ 0, 0/ x, « / 0, sqrt(-
1), © - o0, © x 0, etc.)

exp = 111 is reserved to represent these numbers
exp =111, frac = 00
+/- o (depending on the s bit). Overflow results.

Arithmetic on « is exact: 1.0/0.0 = —1.0/—0.0 = + o,
1.0/—0.0 = -

exp =111, frac '= 00
Represent NaNs



IEEE 754 Floating Point Standard

Single precision: 32 bits

S exp frac

1 8-bit 23-bit

Double precision: 64 bits

S exp frac

1 11-bit 52-bit



IEEE Floating Point

|[EEE Standard 754

Established in 1985 as uniform standard for floating point
arithmetic

Before that, many idiosyncratic formats

Supported by all major CPUs (and even GPUs and other
processors)



IEEE Floating Point

|[EEE Standard 754

Established in 1985 as uniform standard for floating point
arithmetic

Before that, many idiosyncratic formats

Supported by all major CPUs (and even GPUs and other
processors)

Driven by numerical concerns
Nice standards for rounding, overflow, underflow
Hard to make fast in hardware

Numerical analysts predominated over hardware
designers in defining standard



IEEE 754 Single Precision (32-bit)

Vv=(-1M2F Dpijas =261 =127

S exp frac
0 10001100 11011011011010000000000

1 8-bit 23-bit

15213,, =11101101101101,
=(-1)°1.1101101101101, x 213

exp = E + bias = 14010



Floating Point Computations

The problem: Computing on floating point numbers

might produce a result that can’t be precisely
represented

Basic idea

We perform the operation & produce the infinitely precise
result

Make it fit into desired precision

Possibly overflow if exponent too large
Possibly round to fit into frac



Rounding Modes (Decimal)

Common ones:
Towards zero (chop)
Round down (-x)
Round up (+x)

Nearest Even: Round to nearest; if equally near,
then to the one having an even least significant

digit (bit)
Rounding Mode
Towards zero
Round down (-x)

Round up (+x)

Nearest even
(default)

1.40 1.60 1.50 2.50

1
1
2
1

1

1
2
2

1

1
2
2

2

2
3
2

-1.50



Rounding Modes (Binary Example)

Nearest Even; if equally near, then to the one
having an even least significant digit (bit)

Assuming 3 bits for frac

Precise Value Rounded

1.000011
1.000110
1.000100

1.001100

Value
1.000

1.001
1.000

1.010

Notes

1.000 is the nearest (down)
1.001 is the nearest (up)

1.000 is the nearest even (down)

1.010 is the nearest even (up)



Floating Point Addition
(-1)st M1 281 + (-1)2 M2 2F2

1.000 x 2t +11.10 x 23



Floating Point Addition
(-1)st M1 281 + (-1)2 M2 2F2

1.000 x 2t +11.10 x 23

’

align1.000 x 21 + 0.111 x 2%



Floating Point Addition
(-1)st M1 281 + (-1)2 M2 2F2

1.000 x 2t +11.10 x 23

’

align1.000 x 21 + 0.111 x 2%

‘

add 1.111 x 21



Floating Point Addition

(-1)s2 M1 21 4+ (-1)2 M2 2°F2
Exact Result: (-1)* M 2°F

Sign s, significand M: 1.000x 21+ 11.10 x 2-3
Result of signed align & add

Exponent E: E1 i,
Assume Bl > E2 align 1.000 x 21 + 0.111 x 21

‘

add 1.111 x 21



Floating Point Addition

(-1)s2 M1 21 4+ (-1)2 M2 2°F2
Exact Result: (-1)* M 2°F

Sign s, significand M: 1.000x 21+ 11.10 x 2-3
Result of signed align & add
Exponent E: E1 i
Assume Bl > E2 align 1.000 x 21 + 0.111 x 21
. add 1.111 x 2
FIXing

If M = 2, shift M right, increment E

If M < 1, shift M left k positions, decrement E by k
Overflow if E out of range

Round M to fit frac precision



Mathematical Properties of FP Add

Commutative? Yes

Associative?  No
Overflow and inexactness of rounding
(3.14+1e10)-1e10 = 0, 3.14+(1lel0-1e10) = 3.14

O is additive identity? Yes

Every element has additive inverse (negation)? Almost
Except for infinities & NaNs

Monotonicity: a = b = a+c = b+c? Almost
Except for infinities & NaNs



Floating Point Multiplication

(-1)st M1 281 x (-1)2 M2 2F2



Floating Point Multiplication

(-1)st M1 288 x (-1)2 M2 2F
Exact Result: (-1)> M 2F
Sign s: sl © s2
Significand M: M1 x MZ2
Exponent E: EI + EZ



Floating Point Multiplication

(-1)st M1 281 x (-1)2 M2 2F
Exact Result: (-1)> M 2F
Sign s: sl © s2
Significand M: M1 x MZ2
Exponent E: EI + EZ
Fixing
If M = 2, shift M right, increment E

If E out of range, overflow
Round M to fit frac precision



Floating Point Multiplication

(-1)st M1 281 x (-1)2 M2 2F
Exact Result: (-1)> M 2F
Sign s: sl © s2
Significand M: M1 x MZ2
Exponent E: EI + EZ
Fixing
If M = 2, shift M right, increment E
If E out of range, overflow
Round M to fit frac precision
Implementation
Biggest chore is multiplying significands



Mathematical Properties of FP Mult

Multiplication Commutative? Yes

Multiplication is Associative? No
Possibility of overflow, inexactness of rounding
Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20

1 is multiplicative identity? Yes

Multiplication distributes over addition? No
Possibility of overflow, inexactness of rounding
1e20*(1e20-1e20)= 0.0, 1e20*1e20 - 1e20*1e20 = NaN

Monotonicity:a=b &c=0 = a*c=b *c? Almost
Except for infinities & NaNs
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