
CSC 252: Computer
Organization

Fall 2021: Lecture 4

Binary Multiplication
Floating Point

Instructor: Alan Beadle

Department of Computer Science
University of Rochester

Carnegie Mellon

Announcements

6 days left to complete assignment 1

Office hours are shown on the website. Some are in

person, some are on Zoom.

For office hours using Zoom, use the zoom link in

blackboard sidebar

Today is the end of the data representation unit

Next class we begin assembly programming

Carnegie Mellon

Unsigned Multiplication in C

Standard Multiplication Function
Ignores high order w bits

Effectively Implements the following:
UMultw(u , v) = u · v mod 2w

• • •
• • •

u

v*
• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits

• • •

Carnegie Mellon

Multiplication

Goal: Computing Product of w-bit numbers x, y
Exact results can be bigger than w bits
Up to 2w bits (both signed and unsigned)

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits)

Carnegie Mellon

Multiplication

Goal: Computing Product of w-bit numbers x, y
Exact results can be bigger than w bits
Up to 2w bits (both signed and unsigned)

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits)
Product

–22w–2 + 2w–1

22w-2 OMin2

OMin * OMax

PMax

PMin

(2w bits)

0

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

Can We Represent Fractions in
Binary?
What does 10.012 mean?

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

Can We Represent Fractions in
Binary?
What does 10.012 mean?

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

Can We Represent Fractions in
Binary?
What does 10.012 mean?

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

Can We Represent Fractions in
Binary?
What does 10.012 mean?

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

Can We Represent Fractions in
Binary?
What does 10.012 mean?

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

Can We Represent Fractions in
Binary?
What does 10.012 mean?

10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

Can We Represent Fractions in
Binary?
What does 10.012 mean?

10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

Can We Represent Fractions in
Binary?
What does 10.012 mean?

10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

Can We Represent Fractions in
Binary?
What does 10.012 mean?

10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

Can We Represent Fractions in
Binary?
What does 10.012 mean?

10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2

 = 2.2510

2i

2i-1

4

2

1

1/2

1/4

1/8

2-j

bi bi-

1

••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

• • •

Binary point stays fixed
Fixed interval between representable numbers

Decimal Binary

0 0000.

1 0001.

2 0010.

3 0011.

4 0100.

5 0101.

6 0110.

7 0111.

8 1000.

9 1001.

10 1010.

11 1011.

12 1100.

13 1101.

14 1110.

15 1111.

Fixed-Point Representation

0 1 2 3 4 5 6 7 …. 15

Binary point stays fixed
Fixed interval between representable numbers

 The interval in this example is 0.2510

Fixed-Point Representation
Decimal Binary

0 00.00

0.25 00.01

0.5 00.10

0.75 00.11

1 01.00

1.25 01.01

1.5 01.10

1.75 01.11

2 10.00

2.25 10.01

2.5 10.10

2.75 10.11

3 11.00

3.25 11.01

3.5 11.10

3.75 11.11

0 1 2 3

Still need to remember the binary
point, but just once for all numbers,
which is implicit given the data type
Usual arithmetic still works
No need to align (already aligned)

Carnegie Mellon

Limitations of Fixed-Point (#1)

Can exactly represent numbers only of the
form x/2k

Other rational numbers have repeating bit
representations

0 1/4 1/2 3/4 5/4 3/2 7/4 2 …. 15/4 b3b2.b1b0

Decimal Value Binary Representation

1/3 0.0101010101[01]…

1/5 0.001100110011[0011]…

1/10 0.0001100110011[0011]…

Limitations of Fixed-Point (#2)

Can’t represent very small and very large numbers at the
same time

0
+∞

Limitations of Fixed-Point (#2)

Can’t represent very small and very large numbers at the
same time
 To represent very large numbers, the (fixed) interval needs

to be large, making it hard to represent small numbers

0

A Large
Number

Unrepresentable
small numbers

+∞

Limitations of Fixed-Point (#2)

Can’t represent very small and very large numbers at the
same time
 To represent very large numbers, the (fixed) interval needs

to be large, making it hard to represent small numbers
 To represent very small numbers, the (fixed) interval needs

to be small, making it hard to represent large numbers

0

A Small
Number

+∞

Unrepresentable
large numbers

Primer: (Normalized) Scientific Notation

In decimal: M × 10E

Decimal Value Scientific Notation

2 2×100

-4,321.768 -4.321768×103

0.000 000 007 51 7.51×10−9

Primer: (Normalized) Scientific Notation

In decimal: M × 10E

E is an integer
Normalized form: 1<= |M| < 10

Decimal Value Scientific Notation

2 2×100

-4,321.768 -4.321768×103

0.000 000 007 51 7.51×10−9

Primer: (Normalized) Scientific Notation

In decimal: M × 10E

E is an integer
Normalized form: 1<= |M| < 10

Decimal Value Scientific Notation

2 2×100

-4,321.768 -4.321768×103

0.000 000 007 51 7.51×10−9

M × 10E

Significand Base Exponent

Primer: (Normalized) Scientific Notation

In binary: (–1)s M 2E

Normalized form:
1<= M < 2
M = 1.b0b1b2b3…

Binary Value Scientific Notation

111011011011
0

(-1)0 1.110110110110
x 212

-101.11 (-1)1 1.0111 x 22

0.00101 (-1)0 1.01 x 2-3

Primer: (Normalized) Scientific Notation

In binary: (–1)s M 2E

Normalized form:
1<= M < 2
M = 1.b0b1b2b3…

Binary Value Scientific Notation

111011011011
0

(-1)0 1.110110110110
x 212

-101.11 (-1)1 1.0111 x 22

0.00101 (-1)0 1.01 x 2-3

(-1)s M × 2E

Sign

Significand BaseExponent

Primer: (Normalized) Scientific Notation

In binary: (–1)s M 2E

Normalized form:
1<= M < 2
M = 1.b0b1b2b3…

Binary Value Scientific Notation

111011011011
0

(-1)0 1.110110110110
x 212

-101.11 (-1)1 1.0111 x 22

0.00101 (-1)0 1.01 x 2-3

(-1)s M × 2E

Sign

Fraction
Significand BaseExponent

Primer: (Normalized) Scientific Notation

In binary: (–1)s M 2E

Normalized form:
1<= M < 2
M = 1.b0b1b2b3…

Fraction

If I tell you that there is a number where:
Fraction = 0101
s = 1
E = 10
You could reconstruct the number as (-1)11.0101x210

(-1)s M × 2E

Sign

Significand BaseExponent

Encoding
MSB s is sign bit s

Primer: Floating Point Representation

In binary: (–1)s M 2E

Normalized form:
1<= M < 2
M = 1.b0b1b2b3…

s exp frac

Fraction

(-1)s M × 2E

Sign

Significand BaseExponent

Encoding
MSB s is sign bit s
exp field encodes Exponent (but not exactly the same, more later)

Primer: Floating Point Representation

In binary: (–1)s M 2E

Normalized form:
1<= M < 2
M = 1.b0b1b2b3…

s exp frac

Fraction

(-1)s M × 2E

Sign

Significand BaseExponent

Encoding
MSB s is sign bit s
exp field encodes Exponent (but not exactly the same, more later)
frac field encodes Fraction (but not exactly the same, more later)

Primer: Floating Point Representation

In binary: (–1)s M 2E

Normalized form:
1<= M < 2
M = 1.b0b1b2b3…

s exp frac

Fraction

(-1)s M × 2E

Sign

Significand BaseExponent

Carnegie Mellon

6-bit Floating Point Example

s exp frac

1 3 2

v = (–1)s M 2E

E exp

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Carnegie Mellon

6-bit Floating Point Example

s exp frac

1 3 2
exp has 3 bits, interpreted as an unsigned value

3 bits can represent exponents from 0 to 7

v = (–1)s M 2E

E exp

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Carnegie Mellon

6-bit Floating Point Example

s exp frac

1 3 2
exp has 3 bits, interpreted as an unsigned value

3 bits can represent exponents from 0 to 7
How about negative exponent?

v = (–1)s M 2E

Carnegie Mellon

6-bit Floating Point Example

s exp frac

1 3 2
exp has 3 bits, interpreted as an unsigned value

3 bits can represent exponents from 0 to 7
How about negative exponent?
Subtract a bias term: E = exp - bias (i.e., exp = E + bias)

v = (–1)s M 2E

Carnegie Mellon

6-bit Floating Point Example

s exp frac

1 3 2
exp has 3 bits, interpreted as an unsigned value

3 bits can represent exponents from 0 to 7
How about negative exponent?
Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

E exp

-3 000

-2 001

-1 010

0 011

1 100

2 101

3 110

4 111

Carnegie Mellon

6-bit Floating Point Example

s exp frac

1 3 2

Example when we use 3 bits for exp (i.e., k = 3):
bias = 3

exp has 3 bits, interpreted as an unsigned value
3 bits can represent exponents from 0 to 7
How about negative exponent?
Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

E exp

-3 000

-2 001

-1 010

0 011

1 100

2 101

3 110

4 111

Carnegie Mellon

6-bit Floating Point Example

s exp frac

1 3 2

E exp

-3 000

-2 001

-1 010

0 011

1 100

2 101

3 110

4 111

Example when we use 3 bits for exp (i.e., k = 3):
bias = 3
 If E = -2, exp is 1 (0012)

exp has 3 bits, interpreted as an unsigned value
3 bits can represent exponents from 0 to 7
How about negative exponent?
Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

Carnegie Mellon

6-bit Floating Point Example

s exp frac

1 3 2

Example when we use 3 bits for exp (i.e., k = 3):
bias = 3
 If E = -2, exp is 1 (0012)
Reserve 000 and 111 for other purposes (more on this

later)

exp has 3 bits, interpreted as an unsigned value
3 bits can represent exponents from 0 to 7
How about negative exponent?
Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

E exp

-3 000

-2 001

-1 010

0 011

1 100

2 101

3 110

4 111

Carnegie Mellon

6-bit Floating Point Example

s exp frac

1 3 2

Example when we use 3 bits for exp (i.e., k = 3):
bias = 3
 If E = -2, exp is 1 (0012)
Reserve 000 and 111 for other purposes (more on this

later)
We can now represent exponents from -2 (exp 001) to 3

(exp 110)

exp has 3 bits, interpreted as an unsigned value
3 bits can represent exponents from 0 to 7
How about negative exponent?
Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

E exp

-3 000

-2 001

-1 010

0 011

1 100

2 101

3 110

4 111

s exp frac

Carnegie Mellon

6-bit Floating Point Example

1
frac has 2 bits, append them after “1.” to form M

 frac = 10 implies M = 1.10

Putting it Together: An Example:

S Exp Frac

3 2

v = (–1)s M 2E

-10.12 = (-1)1 1.01 x 21

s exp frac

Carnegie Mellon

6-bit Floating Point Example

1
frac has 2 bits, append them after “1.” to form M

 frac = 10 implies M = 1.10

Putting it Together: An Example:

1 Exp Frac

3 2

v = (–1)s M 2E

-10.12 = (-1)1 1.01 x 21

s exp frac

Carnegie Mellon

6-bit Floating Point Example

1
frac has 2 bits, append them after “1.” to form M

 frac = 10 implies M = 1.10

Putting it Together: An Example:

1 100 Frac

3 2

v = (–1)s M 2E

-10.12 = (-1)1 1.01 x 21

E exp

-3 000

-2 001

-1 010

0 011

1 100

2 101

3 110

4 111

s exp frac

Carnegie Mellon

6-bit Floating Point Example

1
frac has 2 bits, append them after “1.” to form M

 frac = 10 implies M = 1.10

Putting it Together: An Example:

1 100 01

3 2

v = (–1)s M 2E

-10.12 = (-1)1 1.01 x 21

E exp

-3 000

-2 001

-1 010

0 011

1 100

2 101

3 110

4 111

 When: exp ≠ 000…0 and exp ≠ 111…1

 Exponent coded as a biased value: E = Exp – Bias
 Exp: unsigned value of exp field
 Bias = 2k-1 - 1, where k is number of exponent bits

 Single precision: 127 (Exp: 1…254, E: -126…127)
 Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

 Significand coded with implied leading 1: M =
1.xxx…x2

 xxx…x: bits of frac field
 Minimum when frac=000…0 (M = 1.0)
 Maximum when frac=111…1 (M = 2.0 – ε)
 Get extra leading bit for “free”

v = (–1)s M 2E“Normalized” Values

 Condition: exp = 000…0

 Exponent value: E = 1 – Bias (instead of E = 0 – Bias)
 Significand coded with implied leading 0: M = 0.xxx…

x2

 xxx…x: bits of frac

 Cases
 exp = 000…0, frac = 000…0

 Represents zero value
 Note distinct values: +0 and –0 (why?)

 exp = 000…0, frac ≠ 000…0
 Numbers closest to 0.0
 Equispaced

v = (–1)s M 2E

E = 1 – Bias
Denormalized Values

Distribution of Values

 8 values

s exp frac

1 3-bits 2-bits

-15 -10 -5 0 5 10 15

Denormalized Normalized Infinity

 6-bit IEEE-like format
 e = 3 exponent bits
 f = 2 fraction bits
 Bias is 23-1-1 = 3

 Notice how the distribution gets denser toward zero.

There are many special values in scientific
computing
+/- ∞, Not-a-Numbers (NaNs) (e.g., 0 / 0, 0 / ∞, ∞ / ∞, sqrt(–

1), ∞ - ∞, ∞ x 0, etc.)

exp = 111 is reserved to represent these numbers

exp = 111, frac = 00
+/- ∞ (depending on the s bit). Overflow results.
Arithmetic on ∞ is exact: 1.0/0.0 = −1.0/−0.0 = + ∞,

1.0/−0.0 = -∞

exp = 111, frac != 00
Represent NaNs

Carnegie Mellon

Special Values

s exp fracv = (–1)s M 2E

E exp

1 100

2 101

3 110

4 111

E exp

-2 000

-2 001

-1 010

0 011

Carnegie Mellon

IEEE 754 Floating Point Standard

Single precision: 32 bits

Double precision: 64 bits

s exp frac

1 8-bit 23-bit

s exp frac

1 11-bit 52-bit

Carnegie Mellon

IEEE Floating Point

IEEE Standard 754
Established in 1985 as uniform standard for floating point

arithmetic
Before that, many idiosyncratic formats

Supported by all major CPUs (and even GPUs and other
processors)

Carnegie Mellon

IEEE Floating Point

IEEE Standard 754
Established in 1985 as uniform standard for floating point

arithmetic
Before that, many idiosyncratic formats

Supported by all major CPUs (and even GPUs and other
processors)

Driven by numerical concerns
Nice standards for rounding, overflow, underflow
Hard to make fast in hardware
Numerical analysts predominated over hardware

designers in defining standard

Carnegie Mellon

IEEE 754 Single Precision (32-bit)

s exp frac

1 8-bit 23-bit

v = (–1)s M 2E

1521310 = 111011011011012
 = (-1)0 1.11011011011012 x 213

bias = 2(8-1)-1 = 127

0 1101101101101000000000010001100

exp = E + bias = 14010

Carnegie Mellon

Floating Point Computations

The problem: Computing on floating point numbers
might produce a result that can’t be precisely
represented

Basic idea
We perform the operation & produce the infinitely precise

result
Make it fit into desired precision
Possibly overflow if exponent too large
Possibly round to fit into frac

Carnegie Mellon

Rounding Modes (Decimal)
Common ones:

 Towards zero (chop)
Round down (-∞)
Round up (+∞)

Nearest Even: Round to nearest; if equally near,
then to the one having an even least significant
digit (bit)

Rounding Mode 1.40 1.60 1.50 2.50 -1.50

Towards zero 1 1 1 2 -1

Round down (-∞) 1 1 1 2 -2

Round up (+∞) 2 2 2 3 -1

Nearest even
(default)

1 2 2 2 -2

Carnegie Mellon

Rounding Modes (Binary Example)

Nearest Even; if equally near, then to the one
having an even least significant digit (bit)

Assuming 3 bits for frac

Precise Value Rounded
Value

Notes

1.000011 1.000 1.000 is the nearest (down)

1.000110 1.001 1.001 is the nearest (up)

1.000100 1.000 1.000 is the nearest even (down)

1.001100 1.010 1.010 is the nearest even (up)

Floating Point Addition
(–1)s1 M1 2E1 + (-1)s2 M2 2E2

1.000 x 2-1 + 11.10 x 2-3

Floating Point Addition
(–1)s1 M1 2E1 + (-1)s2 M2 2E2

1.000 x 2-1 + 11.10 x 2-3

1.000 x 2-1 + 0.111 x 2-1align

Floating Point Addition
(–1)s1 M1 2E1 + (-1)s2 M2 2E2

1.000 x 2-1 + 11.10 x 2-3

1.000 x 2-1 + 0.111 x 2-1

1.111 x 2-1

align

add

Floating Point Addition
(–1)s1 M1 2E1 + (-1)s2 M2 2E2

Exact Result: (–1)s M 2E

Sign s, significand M:
Result of signed align & add

Exponent E: E1
Assume E1 > E2

1.000 x 2-1 + 11.10 x 2-3

1.000 x 2-1 + 0.111 x 2-1

1.111 x 2-1

align

add

Floating Point Addition
(–1)s1 M1 2E1 + (-1)s2 M2 2E2

Exact Result: (–1)s M 2E

Sign s, significand M:
Result of signed align & add

Exponent E: E1
Assume E1 > E2

Fixing
If M ≥ 2, shift M right, increment E
If M < 1, shift M left k positions, decrement E by k
Overflow if E out of range
Round M to fit frac precision

1.000 x 2-1 + 11.10 x 2-3

1.000 x 2-1 + 0.111 x 2-1

1.111 x 2-1

align

add

Mathematical Properties of FP Add

Commutative?

Associative?

Overflow and inexactness of rounding
(3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

0 is additive identity?

Every element has additive inverse (negation)?

Except for infinities & NaNs

Monotonicity: a ≥ b ⇒ a+c ≥ b+c?
Except for infinities & NaNs

Yes

Yes

No

Almost

Almost

Carnegie Mellon

Floating Point Multiplication

(–1)s1 M1 2E1 x (–1)s2 M2 2E2

Carnegie Mellon

Floating Point Multiplication

(–1)s1 M1 2E1 x (–1)s2 M2 2E2

Exact Result: (–1)s M 2E

Sign s: s1 ^ s2
Significand M: M1 x M2
Exponent E: E1 + E2

Carnegie Mellon

Floating Point Multiplication

(–1)s1 M1 2E1 x (–1)s2 M2 2E2

Exact Result: (–1)s M 2E

Sign s: s1 ^ s2
Significand M: M1 x M2
Exponent E: E1 + E2

Fixing
If M ≥ 2, shift M right, increment E
If E out of range, overflow
Round M to fit frac precision

Carnegie Mellon

Floating Point Multiplication

(–1)s1 M1 2E1 x (–1)s2 M2 2E2

Exact Result: (–1)s M 2E

Sign s: s1 ^ s2
Significand M: M1 x M2
Exponent E: E1 + E2

Fixing
If M ≥ 2, shift M right, increment E
If E out of range, overflow
Round M to fit frac precision

Implementation
Biggest chore is multiplying significands

Mathematical Properties of FP Mult

Multiplication Commutative?
Multiplication is Associative?
Possibility of overflow, inexactness of rounding
Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20

1 is multiplicative identity?

Multiplication distributes over addition?
Possibility of overflow, inexactness of rounding
1e20*(1e20-1e20)= 0.0, 1e20*1e20 – 1e20*1e20 = NaN

Monotonicity: a ≥ b & c ≥ 0 ⇒ a * c ≥ b *c?
Except for infinities & NaNs

Yes

No

Yes

No

Almost

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

