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Announcements

6 days left to complete assignment 1
 
Office hours are shown on the website. Some are in 

person, some are on Zoom.
 
For office hours using Zoom, use the zoom link in 

blackboard sidebar
 
Today is the end of the data representation unit
 
Next class we begin assembly programming
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Unsigned Multiplication in C

Standard Multiplication Function
Ignores high order w bits

Effectively Implements the following:
UMultw(u , v) = u   · v  mod 2w

• • •
• • •

u

v*
• • •u · v

• • •

True Product: 2*w  bits

Operands: w bits

Discard w bits: w bits

• • •
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Multiplication

Goal: Computing Product of w-bit numbers x, y
Exact results can be bigger than w bits
Up to 2w bits (both signed and unsigned)

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits)
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Multiplication

Goal: Computing Product of w-bit numbers x, y
Exact results can be bigger than w bits
Up to 2w bits (both signed and unsigned)

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits)
Product

–22w–2 + 2w–1

22w-2 OMin2

OMin * OMax

PMax

PMin

(2w bits)

0
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12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

Can We Represent Fractions in 
Binary?
What does 10.012 mean?
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12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

Can We Represent Fractions in 
Binary?
What does 10.012 mean?
 

10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2

 = 2.2510



2i

2i-1

4

2

1

1/2

1/4

1/8

2-j

bi bi-

1

••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

• • •



Binary point stays fixed
Fixed interval between representable numbers

  

Decimal Binary

0 0000.

1 0001.

2 0010.

3 0011.

4 0100.

5 0101.

6 0110.

7 0111.

8 1000.

9 1001.

10 1010.

11 1011.

12 1100.

13 1101.

14 1110.

15 1111.

Fixed-Point Representation

0 1 2 3 4 5 6 7 …. 15
 
 
 



Binary point stays fixed
Fixed interval between representable numbers

 The interval in this example is 0.2510

Fixed-Point Representation
Decimal Binary

0 00.00

0.25 00.01

0.5 00.10

0.75 00.11

1 01.00

1.25 01.01

1.5 01.10

1.75 01.11

2 10.00

2.25 10.01

2.5 10.10

2.75 10.11

3 11.00

3.25 11.01

3.5 11.10

3.75 11.11

0 1 2 3

Still need to remember the binary 
point, but just once for all numbers, 
which is implicit given the data type
Usual arithmetic still works
No need to align (already aligned)
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Limitations of Fixed-Point (#1)

Can exactly represent numbers only of the 
form x/2k

Other rational numbers have repeating bit 
representations

0 1/4 1/2 3/4 5/4 3/2 7/4 2 …. 15/4 b3b2.b1b0

Decimal Value Binary Representation

1/3 0.0101010101[01]…

1/5 0.001100110011[0011]…

1/10 0.0001100110011[0011]…



Limitations of Fixed-Point (#2)

Can’t represent very small and very large numbers at the 
same time
  

0
+∞



Limitations of Fixed-Point (#2)

Can’t represent very small and very large numbers at the 
same time
 To represent very large numbers, the (fixed) interval needs 

to be large, making it hard to represent small numbers
  

0

A Large
Number

Unrepresentable
small numbers

+∞



Limitations of Fixed-Point (#2)

Can’t represent very small and very large numbers at the 
same time
 To represent very large numbers, the (fixed) interval needs 

to be large, making it hard to represent small numbers
 To represent very small numbers, the (fixed) interval needs 

to be small, making it hard to represent large numbers

0

A Small 
Number

+∞

Unrepresentable 
large numbers



Primer: (Normalized) Scientific Notation

In decimal: M × 10E

 

Decimal Value Scientific Notation

2 2×100

-4,321.768 -4.321768×103

0.000 000 007 51 7.51×10−9



Primer: (Normalized) Scientific Notation

In decimal: M × 10E

E is an integer
Normalized form: 1<= |M| < 10

Decimal Value Scientific Notation

2 2×100

-4,321.768 -4.321768×103

0.000 000 007 51 7.51×10−9



Primer: (Normalized) Scientific Notation

In decimal: M × 10E

E is an integer
Normalized form: 1<= |M| < 10

Decimal Value Scientific Notation

2 2×100

-4,321.768 -4.321768×103

0.000 000 007 51 7.51×10−9

M × 10E

Significand Base Exponent



Primer: (Normalized) Scientific Notation

In binary: (–1)s M 2E

Normalized form:
1<= M < 2
M = 1.b0b1b2b3…

Binary Value Scientific Notation

111011011011
0

(-1)0 1.110110110110 
x 212

-101.11 (-1)1 1.0111 x 22

0.00101 (-1)0 1.01 x 2-3



Primer: (Normalized) Scientific Notation

In binary: (–1)s M 2E

Normalized form:
1<= M < 2
M = 1.b0b1b2b3…

Binary Value Scientific Notation

111011011011
0

(-1)0 1.110110110110 
x 212

-101.11 (-1)1 1.0111 x 22

0.00101 (-1)0 1.01 x 2-3

(-1)s M × 2E

Sign

Significand BaseExponent



Primer: (Normalized) Scientific Notation

In binary: (–1)s M 2E

Normalized form:
1<= M < 2
M = 1.b0b1b2b3…

Binary Value Scientific Notation

111011011011
0

(-1)0 1.110110110110 
x 212

-101.11 (-1)1 1.0111 x 22

0.00101 (-1)0 1.01 x 2-3

(-1)s M × 2E

Sign

Fraction
Significand BaseExponent



Primer: (Normalized) Scientific Notation

In binary: (–1)s M 2E

Normalized form:
1<= M < 2
M = 1.b0b1b2b3…

Fraction

If I tell you that there is a number where:
Fraction = 0101
s = 1
E = 10
You could reconstruct the number as (-1)11.0101x210

(-1)s M × 2E

Sign

Significand BaseExponent



Encoding
MSB s is sign bit s
 
 

Primer: Floating Point Representation

In binary: (–1)s M 2E

Normalized form:
1<= M < 2
M = 1.b0b1b2b3…

s exp frac

Fraction

(-1)s M × 2E

Sign

Significand BaseExponent



Encoding
MSB s is sign bit s
exp field encodes Exponent (but not exactly the same, more later)
 

Primer: Floating Point Representation

In binary: (–1)s M 2E

Normalized form:
1<= M < 2
M = 1.b0b1b2b3…

s exp frac

Fraction

(-1)s M × 2E

Sign

Significand BaseExponent



Encoding
MSB s is sign bit s
exp field encodes Exponent (but not exactly the same, more later)
frac field encodes Fraction (but not exactly the same, more later)

Primer: Floating Point Representation

In binary: (–1)s M 2E

Normalized form:
1<= M < 2
M = 1.b0b1b2b3…

s exp frac

Fraction

(-1)s M × 2E

Sign

Significand BaseExponent
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6-bit Floating Point Example

s exp frac

1 3 2

v = (–1)s M 2E

E exp

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111
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6-bit Floating Point Example

s exp frac

1 3 2
exp has 3 bits, interpreted as an unsigned value

3 bits can represent exponents from 0 to 7
  

v = (–1)s M 2E

E exp

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111
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6-bit Floating Point Example

s exp frac

1 3 2
exp has 3 bits, interpreted as an unsigned value

3 bits can represent exponents from 0 to 7
How about negative exponent?
  
  

v = (–1)s M 2E
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6-bit Floating Point Example

s exp frac

1 3 2
exp has 3 bits, interpreted as an unsigned value

3 bits can represent exponents from 0 to 7
How about negative exponent?
Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
  

v = (–1)s M 2E
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6-bit Floating Point Example

s exp frac

1 3 2
exp has 3 bits, interpreted as an unsigned value

3 bits can represent exponents from 0 to 7
How about negative exponent?
Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

E exp

-3 000

-2 001

-1 010

0 011

1 100

2 101

3 110

4 111
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6-bit Floating Point Example

s exp frac

1 3 2

Example when we use 3 bits for exp (i.e., k = 3):
bias = 3
  
  

exp has 3 bits, interpreted as an unsigned value
3 bits can represent exponents from 0 to 7
How about negative exponent?
Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

E exp

-3 000

-2 001

-1 010

0 011

1 100

2 101

3 110

4 111
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6-bit Floating Point Example

s exp frac

1 3 2

E exp

-3 000

-2 001

-1 010

0 011

1 100

2 101

3 110

4 111

Example when we use 3 bits for exp (i.e., k = 3):
bias = 3
 If E = -2, exp is 1 (0012)
  

exp has 3 bits, interpreted as an unsigned value
3 bits can represent exponents from 0 to 7
How about negative exponent?
Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E
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6-bit Floating Point Example

s exp frac

1 3 2

Example when we use 3 bits for exp (i.e., k = 3):
bias = 3
 If E = -2, exp is 1 (0012)
Reserve 000 and 111 for other purposes (more on this 

later)
  

exp has 3 bits, interpreted as an unsigned value
3 bits can represent exponents from 0 to 7
How about negative exponent?
Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

E exp

-3 000

-2 001

-1 010

0 011

1 100

2 101

3 110

4 111
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6-bit Floating Point Example

s exp frac

1 3 2

Example when we use 3 bits for exp (i.e., k = 3):
bias = 3
 If E = -2, exp is 1 (0012)
Reserve 000 and 111 for other purposes (more on this 

later)
We can now represent exponents from -2 (exp 001) to 3 

(exp 110)

exp has 3 bits, interpreted as an unsigned value
3 bits can represent exponents from 0 to 7
How about negative exponent?
Subtract a bias term: E = exp - bias (i.e., exp = E + bias)
bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

E exp

-3 000

-2 001

-1 010

0 011

1 100

2 101

3 110

4 111



s exp frac
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6-bit Floating Point Example

1
frac has 2 bits, append them after “1.” to form M

 frac = 10 implies M = 1.10

Putting it Together: An Example:

S Exp Frac

3 2

v = (–1)s M 2E

-10.12 = (-1)1 1.01 x 21



s exp frac
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6-bit Floating Point Example

1
frac has 2 bits, append them after “1.” to form M

 frac = 10 implies M = 1.10

Putting it Together: An Example:

1 Exp Frac

3 2

v = (–1)s M 2E

-10.12 = (-1)1 1.01 x 21



s exp frac
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6-bit Floating Point Example

1
frac has 2 bits, append them after “1.” to form M

 frac = 10 implies M = 1.10

Putting it Together: An Example:

1 100 Frac

3 2

v = (–1)s M 2E

-10.12 = (-1)1 1.01 x 21

E exp

-3 000

-2 001

-1 010

0 011

1 100

2 101

3 110

4 111



s exp frac
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6-bit Floating Point Example

1
frac has 2 bits, append them after “1.” to form M

 frac = 10 implies M = 1.10

Putting it Together: An Example:

1 100 01

3 2

v = (–1)s M 2E

-10.12 = (-1)1 1.01 x 21

E exp

-3 000

-2 001

-1 010

0 011

1 100

2 101

3 110

4 111



 When: exp ≠ 000…0 and exp ≠ 111…1

 Exponent coded as a biased value: E  =  Exp – Bias
 Exp: unsigned value of exp field 
 Bias = 2k-1 - 1, where k is number of exponent bits

 Single precision: 127 (Exp: 1…254, E: -126…127)
 Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

 Significand coded with implied leading 1: M  =  
1.xxx…x2

  xxx…x: bits of frac field
 Minimum when frac=000…0 (M = 1.0)
 Maximum when frac=111…1 (M = 2.0 – ε)
 Get extra leading bit for “free”

v = (–1)s M 2E“Normalized” Values



 Condition: exp = 000…0

 Exponent value: E = 1 – Bias (instead of E = 0 – Bias)
 Significand coded with implied leading 0: M = 0.xxx…

x2

 xxx…x: bits of frac

 Cases
  exp = 000…0, frac = 000…0

 Represents zero value
 Note distinct values: +0 and –0 (why?)

 exp = 000…0, frac ≠ 000…0
 Numbers closest to 0.0
 Equispaced

v = (–1)s M 2E

E  =  1 – Bias
Denormalized Values



Distribution of Values

 8 values

s exp frac

1 3-bits 2-bits

-15 -10 -5 0 5 10 15

Denormalized Normalized Infinity

 6-bit IEEE-like format
 e = 3 exponent bits
 f = 2 fraction bits
 Bias is 23-1-1 = 3

 Notice how the distribution gets denser toward zero. 



There are many special values in scientific 
computing
+/- ∞, Not-a-Numbers (NaNs) (e.g., 0 / 0, 0 / ∞, ∞ / ∞, sqrt(–

1), ∞ - ∞, ∞ x 0, etc.)

exp = 111 is reserved to represent these numbers

exp = 111, frac = 00
+/- ∞ (depending on the s bit). Overflow results.
Arithmetic on ∞ is exact: 1.0/0.0 = −1.0/−0.0 = + ∞,  

1.0/−0.0 = -∞

exp = 111, frac != 00
Represent NaNs

Carnegie Mellon

Special Values

s exp fracv = (–1)s M 2E

E exp

1 100

2 101

3 110

4 111

E exp

-2 000

-2 001

-1 010

0 011
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IEEE 754 Floating Point Standard

Single precision: 32 bits

Double precision: 64 bits

s exp frac

1 8-bit 23-bit

s exp frac

1 11-bit 52-bit
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IEEE Floating Point

IEEE Standard 754
Established in 1985 as uniform standard for floating point 

arithmetic
Before that, many idiosyncratic formats

Supported by all major CPUs (and even GPUs and other 
processors)
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IEEE Floating Point

IEEE Standard 754
Established in 1985 as uniform standard for floating point 

arithmetic
Before that, many idiosyncratic formats

Supported by all major CPUs (and even GPUs and other 
processors)

Driven by numerical concerns
Nice standards for rounding, overflow, underflow
Hard to make fast in hardware
Numerical analysts predominated over hardware 

designers in defining standard
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IEEE 754 Single Precision (32-bit)

s exp frac

1 8-bit 23-bit

v = (–1)s M 2E

1521310  = 111011011011012   
               = (-1)0 1.11011011011012 x 213

bias = 2(8-1)-1 = 127

0 1101101101101000000000010001100

exp = E + bias = 14010
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Floating Point Computations

The problem: Computing on floating point numbers 
might produce a result that can’t be precisely 
represented

 

Basic idea
We perform the operation & produce the infinitely precise 

result
Make it fit into desired precision
Possibly overflow if exponent too large
Possibly round to fit into frac
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Rounding Modes (Decimal)
Common ones:

 Towards zero (chop)
Round down (-∞)
Round up (+∞)

Nearest Even: Round to nearest; if equally near, 
then to the one having an even least significant 
digit (bit)

Rounding Mode 1.40 1.60 1.50 2.50 -1.50

Towards zero 1 1 1 2 -1

Round down (-∞) 1 1 1 2 -2

Round up (+∞) 2 2 2 3 -1

Nearest even 
(default)

1 2 2 2 -2
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Rounding Modes (Binary Example)

Nearest Even; if equally near, then to the one 
having an even least significant digit (bit)

Assuming 3 bits for frac

Precise Value Rounded 
Value

Notes

1.000011 1.000 1.000 is the nearest (down)

1.000110 1.001 1.001 is the nearest (up)

1.000100 1.000 1.000 is the nearest even (down)

1.001100 1.010 1.010 is the nearest even (up)



Floating Point Addition
(–1)s1 M1  2E1   +   (-1)s2 M2  2E2

 
 
 
 
 

 

1.000 x 2-1 + 11.10 x 2-3



Floating Point Addition
(–1)s1 M1  2E1   +   (-1)s2 M2  2E2

 
 
 
 
 

 

1.000 x 2-1 + 11.10 x 2-3

1.000 x 2-1 + 0.111 x 2-1align



Floating Point Addition
(–1)s1 M1  2E1   +   (-1)s2 M2  2E2

 

1.000 x 2-1 + 11.10 x 2-3

1.000 x 2-1 + 0.111 x 2-1

1.111 x 2-1

align

add



Floating Point Addition
(–1)s1 M1  2E1   +   (-1)s2 M2  2E2

Exact Result: (–1)s M  2E

Sign s, significand M: 
Result of signed align & add

Exponent E: E1
Assume E1 > E2
 
 
 

 

1.000 x 2-1 + 11.10 x 2-3

1.000 x 2-1 + 0.111 x 2-1

1.111 x 2-1

align

add



Floating Point Addition
(–1)s1 M1  2E1   +   (-1)s2 M2  2E2

Exact Result: (–1)s M  2E

Sign s, significand M: 
Result of signed align & add

Exponent E: E1
Assume E1 > E2
 
 
 

Fixing
If M ≥ 2, shift M right, increment E
If M < 1, shift M left k positions, decrement E by k
Overflow if E out of range
Round M to fit frac precision

1.000 x 2-1 + 11.10 x 2-3

1.000 x 2-1 + 0.111 x 2-1

1.111 x 2-1

align

add



Mathematical Properties of FP Add

Commutative? 
 
Associative?

Overflow and inexactness of rounding
(3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
 

0 is additive identity? 
 
Every element has additive inverse (negation)?

Except for infinities & NaNs
 

Monotonicity: a ≥ b ⇒ a+c ≥ b+c?
Except for infinities & NaNs

Yes

Yes

No

Almost

Almost
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Floating Point Multiplication

(–1)s1 M1  2E1   x   (–1)s2 M2  2E2
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Floating Point Multiplication

(–1)s1 M1  2E1   x   (–1)s2 M2  2E2

Exact Result: (–1)s M  2E

Sign s: s1 ^ s2
Significand M: M1 x  M2
Exponent E: E1 + E2
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Floating Point Multiplication

(–1)s1 M1  2E1   x   (–1)s2 M2  2E2

Exact Result: (–1)s M  2E

Sign s: s1 ^ s2
Significand M: M1 x  M2
Exponent E: E1 + E2

Fixing
If M ≥ 2, shift M right, increment E
If E out of range, overflow 
Round M to fit frac precision
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Floating Point Multiplication

(–1)s1 M1  2E1   x   (–1)s2 M2  2E2

Exact Result: (–1)s M  2E

Sign s: s1 ^ s2
Significand M: M1 x  M2
Exponent E: E1 + E2

Fixing
If M ≥ 2, shift M right, increment E
If E out of range, overflow 
Round M to fit frac precision

Implementation
Biggest chore is multiplying significands



Mathematical Properties of FP Mult

Multiplication Commutative?
Multiplication is Associative?
Possibility of overflow, inexactness of rounding
Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20
 

1 is multiplicative identity?
 
Multiplication distributes over addition?
Possibility of overflow, inexactness of rounding
1e20*(1e20-1e20)= 0.0,  1e20*1e20 – 1e20*1e20 = NaN
 

Monotonicity: a ≥ b  & c ≥ 0  ⇒ a * c ≥ b *c?
Except for infinities & NaNs

Yes

No

Yes

No

Almost
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