
CSC 252: Computer Organization
Fall 2021: Lecture 3

Arithmetic Overflow
Fixed point numbers

Converting between signed and unsigned
Binary arithmetic with logic gates

Instructor: Alan Beadle

Department of Computer Science
University of Rochester
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Announcement

Programming assignment 1 is in C language. Seek 
help from TAs.
 
TAs are best positioned to answer your questions 

about programming assignments!!!
 
Programming assignments do NOT repeat the 

lecture materials. They ask you to synthesize what 
you have learned from the lectures and work out 
something new.
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Encoding Negative Numbers

Two’s Complement, give negative weight to MSB

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Signed

0

1

2

3

-4

-3

-2

-1

b2b1b0

Weights in 
Unsigned 202122
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Encoding Negative Numbers

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Signed

0

1

2

3

-4

-3

-2

-1

1012 = 1*20 + 0*21 + (-1*22) = -310

b2b1b0

Weights in 
Unsigned 202122

Weights in 
Signed 2021-22

Two’s Complement, give negative weight to MSB



Carnegie Mellon

Two-Complement Implications
Only 1 zero
There is (still) a bit that represents 

sign!
Unsigned arithmetic still works

   010
+) 101

   111

    2
+) -3

    -1

Signed Binary

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111



Carnegie Mellon

Two-Complement Implications
Only 1 zero
There is (still) a bit that represents 

sign!
Unsigned arithmetic still works

   010
+) 101

   111

    2
+) -3

    -1

Signed Binary

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111With only 3 bits, 3 + 1 
becomes -4 because we don’t 
have enough bits to hold the 
correct answer
 
(This is called overflow. More 
on it later.)

   011
+) 001

   100

    3
+)  1

    -4
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Can We Represent Fractions in Binary?
Yes, in several ways.
Here is “Fixed point” notation:

What does 10.012 mean?
 
12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2 = 2.2510

Decimal Binary

0 00.00

0.25 00.01

0.5 00.10

0.75 00.11

1 01.00

1.25 01.01

1.5 01.10

1.75 01.11

2 10.00

2.25 10.01

2.5 10.10

2.75 10.11

3 11.00

3.25 11.01

3.5 11.10

3.75 11.11

  01.10
+ 01.01

  10.11

  1.50
+ 1.25

  2.75

Integer Arithmetic Still Works!
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Fixed-Point Representation

Fixed interval between two representable 
numbers as long as the binary point stays fixed
 
Each bit represents 0.2510

 

Fixed-point representation of numbers
 
Next lecture will cover floating point, which is 

more useful and actually corresponds to C 
types
 

  01.10
+ 01.01

  10.11

  1.50
+ 1.25

  2.75

Decimal Binary

0 00.00

0.25 00.01

0.5 00.10

0.75 00.11

1 01.00

1.25 01.01

1.5 01.10

1.75 01.11

2 10.00

2.25 10.01

2.5 10.10

2.75 10.11

3 11.00

3.25 11.01

3.5 11.10

3.75 11.11



Carnegie Mellon

Data Types (in C)

Suppose you want to define a variable that 
represents a person’s age. What assumptions can 
you make about this variable’s numerical value?
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Select a data type that captures all these attributes: 
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Data Types (in C)

Suppose you want to define a variable that 
represents a person’s age. What assumptions can 
you make about this variable’s numerical value?
 Integer
Non-negative
Between 0 and 255 (8 bits)
  

Select a data type that captures all these attributes: 
 unsigned char 
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Data Types (in C)

What if you want to define a variable that could 
take negative values?
  
  



Carnegie Mellon

Data Types (in C)

What if you want to define a variable that could 
take negative values?
 That’s what signed data types (e.g., int, short, etc.) are 

for

 
  



Carnegie Mellon

Data Types (in C)

What if you want to define a variable that could 
take negative values?
 That’s what signed data types (e.g., int, short, etc.) are 

for

How are int values internally represented?
  
  



Carnegie Mellon

Data Types (in C)

What if you want to define a variable that could 
take negative values?
 That’s what signed data types (e.g., int, short, etc.) are 

for

How are int values internally represented?
 Theoretically could be either signed-magnitude or two’s 

complement
  
  



Carnegie Mellon

Data Types (in C)

What if you want to define a variable that could 
take negative values?
 That’s what signed data types (e.g., int, short, etc.) are 

for

How are int values internally represented?
 Theoretically could be either signed-magnitude or two’s 

complement
  

Why bother with unsigned variables?
  



Carnegie Mellon

Data Types (in C)

What if you want to define a variable that could 
take negative values?
 That’s what signed data types (e.g., int, short, etc.) are 

for

How are int values internally represented?
 Theoretically could be either signed-magnitude or two’s 

complement
  

Why bother with unsigned variables?
Sometimes you need that extra bit for larger positive 

values
  
 Even when you don’t, it makes things more clear and may 

prevent strange bugs!
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Data Types (in C)

C Data Type 32-bit 64-bit

(unsigned) char 1 1

(unsigned) short 2 2

(unsigned) int 4 4

(unsigned) long 4 8

C Language
#include <limits.h>
Declares constants, e.g.,
ULONG_MAX
LONG_MAX
LONG_MIN

Values platform specific
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One Bit Sequence, Two 
Interpretations
A sequence of bits can be interpreted as either a 

signed integer or an unsigned integer

Signed

0

1

2

3

-4

-3

-2

-1

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111
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Signed vs. Unsigned Conversion in C

What happens when we convert between signed and 
unsigned numbers?
 
Casting (In C terminology)

Explicit casting between signed & unsigned

Implicit casting
e.g., assignments, function calls

tx = ux;

uy = ty;

int tx, ty = -4;

unsigned ux = 7, uy;

tx = (int) ux; // U2T

uy = (unsigned) ty; // T2U
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Mappings between unsigned and two’s complement 
numbers: Keep bit representations and reinterpret
 
This is “correct” for positive values at least

Mapping Between Signed & Unsigned

Signed

0

1

2

3

-4

-3

-2

-1

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111
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Mapping Signed « Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T

T2U

=

+/- 16
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0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax  + 1

2’s 
Complement 

Range

Unsigned
Range

Conversion Visualized

Signed → Unsigned
Ordering Inversion
Negative → Big Positive
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What about converting sizes?

  short int x =  15213;
  int      ix = (int) x; 
  short int y = -15213;
  int      iy = (int) y;

C Data 
Type

64-bit

char 1

short 2

int 4

long 8
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What about converting sizes?

  short int x =  15213;
  int      ix = (int) x; 
  short int y = -15213;
  int      iy = (int) y;

C Data 
Type

64-bit

char 1

short 2

int 4

long 8
Converting from smaller to larger integer data 

type

We need to make sure the sign is correct
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Signed Extension

Task:
Given w-bit signed integer x
Convert it to (w+k)-bit integer with same value

Rule:
Make k copies of sign bit:
X ′ =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x 

k copies of MSB

• • •X 

X ¢ • • • • • •

• • •

w

wk
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What about converting sizes?

  short int x =  15213;
  int      ix = (int) x; 
  short int y = -15213;
  int      iy = (int) y;

C Data 
Type

64-bit

char 1

short 2

int 4

long 8

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Converting from smaller to larger integer data 
type

We need to make sure the sign is correct
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What about extending unsigned numbers?

Decimal Hex Binary

x 47981 BB 6D 10111011 01101101
ux 47981 00 00 BB 6D 00000000 00000000 10111011 01101101

  unsigned short x = 47981;
  unsigned int  ux = x; 
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Unsigned (Zero) Extension

Task:
Given w-bit unsigned integer x
Convert it to (w+k)-bit integer with same value

Rule:
Simply pad zeros:
X ′ =  0 ,…, 0 , xw–1 , xw–2 ,…, x0

k copies of 0

• • •X 

X ¢ • • • 0000 • • •

• • •

w

wk



Carnegie Mellon

What about truncating?

  int    x =  53191;
  short sx = (short) x;
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What about truncating?

  int    x =  53191;
  short sx = (short) x;

Decimal Hex Binary

x 53191 00 00 CF C7 00000000 00000000 11001111 11000111
sx -12345 CF C7 11001111 11000111

Truncating (e.g., int to short)
C’s implementation: leading bits are truncated, results 

reinterpreted
So can’t always preserve the numerical value



Carnegie Mellon

Unsigned Addition
Similar to Decimal Addition
Suppose we have a new data type 

that is 3-bits wide 

 

   010
+) 101

   111

    2
+)  5

     7

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Normal
Case
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Unsigned Addition
Similar to Decimal Addition
Suppose we have a new data type 

that is 3-bits wide 

Might overflow: result can’t be 
represented within the size of the 
data type

   010
+) 101

   111

    2
+)  5

     7

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Normal
Case

Overflow
Case

   110
+) 101

  1011

    6
+)  5

    11 True Sum
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Unsigned Addition
Similar to Decimal Addition
Suppose we have a new data type 

that is 3-bits wide 

Might overflow: result can’t be 
represented within the size of the 
data type

   010
+) 101

   111

    2
+)  5

     7

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Normal
Case

Overflow
Case

   110
+) 101

  1011

    6
+)  5

    11 True Sum
   011      3 Sum with same bits
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Unsigned Addition in C

• • •
• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w 
bits

UAddw(u , v)
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Two’s Complement Addition

Has identical bit-level behavior as 
unsigned addition (a big 
advantage over sign-magnitude)
Overflow can also occur

   010
+) 101

   111

    2
+) -3

    -1

Signed Binary

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111

Normal
Case

Overflow
Case

   110
+) 101

  1011

   -2
+) -3

    -5
   011 3

   011
+) 001

  0100

    3
+)  1

     4
   100 -4

Negative Overflow Positive Overflow
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Two’s Complement Addition in C

• • •
• • •

u

v+
• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)
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Is This an Overflow?

   111
+) 110

  1101

   -1
+) -2

    -3

Signed Binary

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111

This is not an overflow by definition
Because the actual result can be represented 

using the bit width of the datatype (3 bits 
here)

Truncate

(signed addition)
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Inverter (NOT Gate)

In Out

0 1

1 0

+1.2V

+0.0V

+1.2V

+0.0V

PMOS

NMOS
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NOR Gate (NOT + OR)

A B C

0 0 1

0 1 0

1 0 0

1 1 0
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Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)

The little 
circle 
means NOT
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Half Adder

Add two bits, produce one bit

A B S Cou

t

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Truth Table

AND

XOR
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Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Truth Table

A

A

X

X

O
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Four-bit Adder

Ripple-carry Adder
Simple, but performance linear to bit width
Carry look-ahead adder (CLA)
Generate all carriers simultaneously
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Four-bit Adder

Ripple-carry Adder
Simple, but performance linear to bit width
Carry look-ahead adder (CLA)
Generate all carriers simultaneously
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Logic Design

Design digital components from basic logic gates
Key idea: use the truth table!
 

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

F = (A & B & C)

        | (A & ~B & C)

        | (A & B & ~C)

        | (~A & B & C)

F = (A & B)

        | (A & C)

        | (B & C)
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The 74181 ALU

An “Arithmetic Logic Unit”
The part of the CPU that does arithmetic

The first ALU on a chip! (around 1969)



Carnegie Mellon

The 74181 ALU

An “Arithmetic Logic Unit”
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Contains 75 logic gates, and is 4 bits wide (can be 
chained)



Carnegie Mellon

The 74181 ALU

An “Arithmetic Logic Unit”
The part of the CPU that does arithmetic

The first ALU on a chip! (around 1969)

Contains 75 logic gates, and is 4 bits wide (can be 
chained)

Add/subtract, bitwise operations, shifts
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The 74181 ALU

An “Arithmetic Logic Unit”
The part of the CPU that does arithmetic

The first ALU on a chip! (around 1969)

Contains 75 logic gates, and is 4 bits wide (can be 
chained)

Add/subtract, bitwise operations, shifts

Was used in many historically important 
computers including the PDP-11, on which Unix 
was developed
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The 74181 ALU
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