
CSC 252: Computer Organization
Fall 2021: Lecture 3

Arithmetic Overflow
Fixed point numbers

Converting between signed and unsigned
Binary arithmetic with logic gates

Instructor: Alan Beadle

Department of Computer Science
University of Rochester
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Announcement

Programming assignment 1 is in C language. Seek 
help from TAs.
 
TAs are best positioned to answer your questions 

about programming assignments!!!
 
Programming assignments do NOT repeat the 

lecture materials. They ask you to synthesize what 
you have learned from the lectures and work out 
something new.
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Encoding Negative Numbers

Two’s Complement, give negative weight to MSB

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Signed

0

1

2

3

-4

-3

-2

-1

b2b1b0

Weights in 
Unsigned 202122
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Encoding Negative Numbers

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Signed

0

1

2

3

-4

-3

-2

-1

1012 = 1*20 + 0*21 + (-1*22) = -310

b2b1b0

Weights in 
Unsigned 202122

Weights in 
Signed 2021-22

Two’s Complement, give negative weight to MSB
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Two-Complement Implications
Only 1 zero
There is (still) a bit that represents 

sign!
Unsigned arithmetic still works

   010
+) 101

   111

    2
+) -3

    -1

Signed Binary

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111
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Two-Complement Implications
Only 1 zero
There is (still) a bit that represents 

sign!
Unsigned arithmetic still works

   010
+) 101

   111

    2
+) -3

    -1

Signed Binary

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111With only 3 bits, 3 + 1 
becomes -4 because we don’t 
have enough bits to hold the 
correct answer
 
(This is called overflow. More 
on it later.)

   011
+) 001

   100

    3
+)  1

    -4
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Can We Represent Fractions in Binary?
Yes, in several ways.
Here is “Fixed point” notation:

What does 10.012 mean?
 
12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2 = 2.2510

Decimal Binary

0 00.00

0.25 00.01

0.5 00.10

0.75 00.11

1 01.00

1.25 01.01

1.5 01.10

1.75 01.11

2 10.00

2.25 10.01

2.5 10.10

2.75 10.11

3 11.00

3.25 11.01

3.5 11.10

3.75 11.11

  01.10
+ 01.01

  10.11

  1.50
+ 1.25

  2.75

Integer Arithmetic Still Works!
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Fixed-Point Representation

Fixed interval between two representable 
numbers as long as the binary point stays fixed
 
Each bit represents 0.2510

 

Fixed-point representation of numbers
 
Next lecture will cover floating point, which is 

more useful and actually corresponds to C 
types
 

  01.10
+ 01.01

  10.11

  1.50
+ 1.25

  2.75

Decimal Binary

0 00.00

0.25 00.01

0.5 00.10

0.75 00.11

1 01.00

1.25 01.01

1.5 01.10

1.75 01.11

2 10.00

2.25 10.01

2.5 10.10

2.75 10.11

3 11.00

3.25 11.01

3.5 11.10

3.75 11.11
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Data Types (in C)

Suppose you want to define a variable that 
represents a person’s age. What assumptions can 
you make about this variable’s numerical value?
  
  
  

 
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Data Types (in C)

Suppose you want to define a variable that 
represents a person’s age. What assumptions can 
you make about this variable’s numerical value?
 Integer
Non-negative
Between 0 and 255 (8 bits)
  

Select a data type that captures all these attributes: 
 unsigned char 
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Data Types (in C)

What if you want to define a variable that could 
take negative values?
  
  



Carnegie Mellon

Data Types (in C)

What if you want to define a variable that could 
take negative values?
 That’s what signed data types (e.g., int, short, etc.) are 

for

 
  
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Data Types (in C)

What if you want to define a variable that could 
take negative values?
 That’s what signed data types (e.g., int, short, etc.) are 

for

How are int values internally represented?
 Theoretically could be either signed-magnitude or two’s 

complement
  

Why bother with unsigned variables?
Sometimes you need that extra bit for larger positive 

values
  
 Even when you don’t, it makes things more clear and may 

prevent strange bugs!
  
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Data Types (in C)

C Data Type 32-bit 64-bit

(unsigned) char 1 1

(unsigned) short 2 2

(unsigned) int 4 4

(unsigned) long 4 8

C Language
#include <limits.h>
Declares constants, e.g.,
ULONG_MAX
LONG_MAX
LONG_MIN

Values platform specific
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One Bit Sequence, Two 
Interpretations
A sequence of bits can be interpreted as either a 

signed integer or an unsigned integer

Signed

0

1

2

3

-4

-3

-2

-1

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111
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Signed vs. Unsigned Conversion in C

What happens when we convert between signed and 
unsigned numbers?
 
Casting (In C terminology)

Explicit casting between signed & unsigned

Implicit casting
e.g., assignments, function calls

tx = ux;

uy = ty;

int tx, ty = -4;

unsigned ux = 7, uy;

tx = (int) ux; // U2T

uy = (unsigned) ty; // T2U
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Mappings between unsigned and two’s complement 
numbers: Keep bit representations and reinterpret
 
This is “correct” for positive values at least

Mapping Between Signed & Unsigned

Signed

0

1

2

3

-4

-3

-2

-1

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111
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Mapping Signed « Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T

T2U

=

+/- 16
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0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax  + 1

2’s 
Complement 

Range

Unsigned
Range

Conversion Visualized

Signed → Unsigned
Ordering Inversion
Negative → Big Positive
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What about converting sizes?

  short int x =  15213;
  int      ix = (int) x; 
  short int y = -15213;
  int      iy = (int) y;

C Data 
Type

64-bit

char 1

short 2

int 4

long 8
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What about converting sizes?

  short int x =  15213;
  int      ix = (int) x; 
  short int y = -15213;
  int      iy = (int) y;

C Data 
Type

64-bit

char 1

short 2

int 4

long 8
Converting from smaller to larger integer data 

type

We need to make sure the sign is correct



Carnegie Mellon

Signed Extension

Task:
Given w-bit signed integer x
Convert it to (w+k)-bit integer with same value

Rule:
Make k copies of sign bit:
X ′ =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x 

k copies of MSB

• • •X 

X ¢ • • • • • •

• • •

w

wk
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What about converting sizes?

  short int x =  15213;
  int      ix = (int) x; 
  short int y = -15213;
  int      iy = (int) y;

C Data 
Type

64-bit

char 1

short 2

int 4

long 8

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Converting from smaller to larger integer data 
type

We need to make sure the sign is correct
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What about extending unsigned numbers?

Decimal Hex Binary

x 47981 BB 6D 10111011 01101101
ux 47981 00 00 BB 6D 00000000 00000000 10111011 01101101

  unsigned short x = 47981;
  unsigned int  ux = x; 
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Unsigned (Zero) Extension

Task:
Given w-bit unsigned integer x
Convert it to (w+k)-bit integer with same value

Rule:
Simply pad zeros:
X ′ =  0 ,…, 0 , xw–1 , xw–2 ,…, x0

k copies of 0

• • •X 

X ¢ • • • 0000 • • •

• • •

w

wk
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What about truncating?

  int    x =  53191;
  short sx = (short) x;
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What about truncating?

  int    x =  53191;
  short sx = (short) x;

Decimal Hex Binary

x 53191 00 00 CF C7 00000000 00000000 11001111 11000111
sx -12345 CF C7 11001111 11000111

Truncating (e.g., int to short)
C’s implementation: leading bits are truncated, results 

reinterpreted
So can’t always preserve the numerical value
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Unsigned Addition
Similar to Decimal Addition
Suppose we have a new data type 

that is 3-bits wide 

 

   010
+) 101

   111

    2
+)  5

     7

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Normal
Case
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Unsigned Addition
Similar to Decimal Addition
Suppose we have a new data type 

that is 3-bits wide 

Might overflow: result can’t be 
represented within the size of the 
data type

   010
+) 101

   111

    2
+)  5

     7

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Normal
Case

Overflow
Case

   110
+) 101

  1011

    6
+)  5

    11 True Sum
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Unsigned Addition
Similar to Decimal Addition
Suppose we have a new data type 

that is 3-bits wide 

Might overflow: result can’t be 
represented within the size of the 
data type

   010
+) 101

   111

    2
+)  5

     7

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Normal
Case

Overflow
Case

   110
+) 101

  1011

    6
+)  5

    11 True Sum
   011      3 Sum with same bits
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Unsigned Addition in C

• • •
• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w 
bits

UAddw(u , v)
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Two’s Complement Addition

Has identical bit-level behavior as 
unsigned addition (a big 
advantage over sign-magnitude)
Overflow can also occur

   010
+) 101

   111

    2
+) -3

    -1

Signed Binary

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111

Normal
Case

Overflow
Case

   110
+) 101

  1011

   -2
+) -3

    -5
   011 3

   011
+) 001

  0100

    3
+)  1

     4
   100 -4

Negative Overflow Positive Overflow
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Two’s Complement Addition in C

• • •
• • •

u

v+
• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)



Carnegie Mellon

Is This an Overflow?

   111
+) 110

  1101

   -1
+) -2

    -3

Signed Binary

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111

This is not an overflow by definition
Because the actual result can be represented 

using the bit width of the datatype (3 bits 
here)

Truncate

(signed addition)
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Inverter (NOT Gate)

In Out

0 1

1 0

+1.2V

+0.0V

+1.2V

+0.0V

PMOS

NMOS
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NOR Gate (NOT + OR)

A B C

0 0 1

0 1 0

1 0 0

1 1 0
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Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)

The little 
circle 
means NOT
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Half Adder

Add two bits, produce one bit

A B S Cou

t

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Truth Table

AND

XOR
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Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Truth Table

A

A

X

X

O
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Four-bit Adder

Ripple-carry Adder
Simple, but performance linear to bit width
Carry look-ahead adder (CLA)
Generate all carriers simultaneously



Carnegie Mellon

Four-bit Adder

Ripple-carry Adder
Simple, but performance linear to bit width
Carry look-ahead adder (CLA)
Generate all carriers simultaneously
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Logic Design

Design digital components from basic logic gates
Key idea: use the truth table!
 

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

F = (A & B & C)

        | (A & ~B & C)

        | (A & B & ~C)

        | (~A & B & C)

F = (A & B)

        | (A & C)

        | (B & C)



Carnegie Mellon

The 74181 ALU

An “Arithmetic Logic Unit”
The part of the CPU that does arithmetic

The first ALU on a chip! (around 1969)
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chained)



Carnegie Mellon

The 74181 ALU

An “Arithmetic Logic Unit”
The part of the CPU that does arithmetic

The first ALU on a chip! (around 1969)

Contains 75 logic gates, and is 4 bits wide (can be 
chained)

Add/subtract, bitwise operations, shifts
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The 74181 ALU

An “Arithmetic Logic Unit”
The part of the CPU that does arithmetic

The first ALU on a chip! (around 1969)

Contains 75 logic gates, and is 4 bits wide (can be 
chained)

Add/subtract, bitwise operations, shifts

Was used in many historically important 
computers including the PDP-11, on which Unix 
was developed
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The 74181 ALU
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