
CSC 252: Computer Organization
Fall 2021: Lecture 3

Arithmetic Overflow
Fixed point numbers

Converting between signed and unsigned
Binary arithmetic with logic gates

Instructor: Alan Beadle

Department of Computer Science
University of Rochester

Carnegie Mellon

Announcement

Programming assignment 1 is in C language. Seek
help from TAs.

TAs are best positioned to answer your questions

about programming assignments!!!

Programming assignments do NOT repeat the

lecture materials. They ask you to synthesize what
you have learned from the lectures and work out
something new.

Carnegie Mellon

Encoding Negative Numbers

Two’s Complement, give negative weight to MSB

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Signed

0

1

2

3

-4

-3

-2

-1

b2b1b0

Weights in
Unsigned 202122

Carnegie Mellon

Encoding Negative Numbers

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Signed

0

1

2

3

-4

-3

-2

-1

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Two’s Complement, give negative weight to MSB

Carnegie Mellon

Encoding Negative Numbers

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Signed

0

1

2

3

-4

-3

-2

-1

1012 = 1*20 + 0*21 + (-1*22) = -310

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Two’s Complement, give negative weight to MSB

Carnegie Mellon

Two-Complement Implications
Only 1 zero
There is (still) a bit that represents

sign!
Unsigned arithmetic still works

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111

Carnegie Mellon

Two-Complement Implications
Only 1 zero
There is (still) a bit that represents

sign!
Unsigned arithmetic still works

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111With only 3 bits, 3 + 1
becomes -4 because we don’t
have enough bits to hold the
correct answer

(This is called overflow. More
on it later.)

 011
+) 001

 100

 3
+) 1

 -4

Carnegie Mellon

Can We Represent Fractions in Binary?
Yes, in several ways.
Here is “Fixed point” notation:

What does 10.012 mean?

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2 = 2.2510

Decimal Binary

0 00.00

0.25 00.01

0.5 00.10

0.75 00.11

1 01.00

1.25 01.01

1.5 01.10

1.75 01.11

2 10.00

2.25 10.01

2.5 10.10

2.75 10.11

3 11.00

3.25 11.01

3.5 11.10

3.75 11.11

 01.10
+ 01.01

 10.11

 1.50
+ 1.25

 2.75

Integer Arithmetic Still Works!

Carnegie Mellon

Fixed-Point Representation

Fixed interval between two representable
numbers as long as the binary point stays fixed

Each bit represents 0.2510

Fixed-point representation of numbers

Next lecture will cover floating point, which is

more useful and actually corresponds to C
types

 01.10
+ 01.01

 10.11

 1.50
+ 1.25

 2.75

Decimal Binary

0 00.00

0.25 00.01

0.5 00.10

0.75 00.11

1 01.00

1.25 01.01

1.5 01.10

1.75 01.11

2 10.00

2.25 10.01

2.5 10.10

2.75 10.11

3 11.00

3.25 11.01

3.5 11.10

3.75 11.11

Carnegie Mellon

Data Types (in C)

Suppose you want to define a variable that
represents a person’s age. What assumptions can
you make about this variable’s numerical value?

Carnegie Mellon

Data Types (in C)

Suppose you want to define a variable that
represents a person’s age. What assumptions can
you make about this variable’s numerical value?
 Integer
Non-negative
Between 0 and 255 (8 bits)

Carnegie Mellon

Data Types (in C)

Suppose you want to define a variable that
represents a person’s age. What assumptions can
you make about this variable’s numerical value?
 Integer
Non-negative
Between 0 and 255 (8 bits)

Select a data type that captures all these attributes:

Carnegie Mellon

Data Types (in C)

Suppose you want to define a variable that
represents a person’s age. What assumptions can
you make about this variable’s numerical value?
 Integer
Non-negative
Between 0 and 255 (8 bits)

Select a data type that captures all these attributes:
 unsigned char

Carnegie Mellon

Data Types (in C)

What if you want to define a variable that could
take negative values?

Carnegie Mellon

Data Types (in C)

What if you want to define a variable that could
take negative values?
 That’s what signed data types (e.g., int, short, etc.) are

for

Carnegie Mellon

Data Types (in C)

What if you want to define a variable that could
take negative values?
 That’s what signed data types (e.g., int, short, etc.) are

for

How are int values internally represented?

Carnegie Mellon

Data Types (in C)

What if you want to define a variable that could
take negative values?
 That’s what signed data types (e.g., int, short, etc.) are

for

How are int values internally represented?
 Theoretically could be either signed-magnitude or two’s

complement

Carnegie Mellon

Data Types (in C)

What if you want to define a variable that could
take negative values?
 That’s what signed data types (e.g., int, short, etc.) are

for

How are int values internally represented?
 Theoretically could be either signed-magnitude or two’s

complement

Why bother with unsigned variables?

Carnegie Mellon

Data Types (in C)

What if you want to define a variable that could
take negative values?
 That’s what signed data types (e.g., int, short, etc.) are

for

How are int values internally represented?
 Theoretically could be either signed-magnitude or two’s

complement

Why bother with unsigned variables?
Sometimes you need that extra bit for larger positive

values

 Even when you don’t, it makes things more clear and may

prevent strange bugs!

Carnegie Mellon

Data Types (in C)

C Data Type 32-bit 64-bit

(unsigned) char 1 1

(unsigned) short 2 2

(unsigned) int 4 4

(unsigned) long 4 8

C Language
#include <limits.h>
Declares constants, e.g.,
ULONG_MAX
LONG_MAX
LONG_MIN

Values platform specific

Carnegie Mellon

One Bit Sequence, Two
Interpretations
A sequence of bits can be interpreted as either a

signed integer or an unsigned integer

Signed

0

1

2

3

-4

-3

-2

-1

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Carnegie Mellon

Signed vs. Unsigned Conversion in C

What happens when we convert between signed and
unsigned numbers?

Casting (In C terminology)

Explicit casting between signed & unsigned

Implicit casting
e.g., assignments, function calls

tx = ux;

uy = ty;

int tx, ty = -4;

unsigned ux = 7, uy;

tx = (int) ux; // U2T

uy = (unsigned) ty; // T2U

Carnegie Mellon

Mappings between unsigned and two’s complement
numbers: Keep bit representations and reinterpret

This is “correct” for positive values at least

Mapping Between Signed & Unsigned

Signed

0

1

2

3

-4

-3

-2

-1

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Carnegie Mellon

Mapping Signed « Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T

T2U

=

+/- 16

Carnegie Mellon

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s
Complement

Range

Unsigned
Range

Conversion Visualized

Signed → Unsigned
Ordering Inversion
Negative → Big Positive

Carnegie Mellon

What about converting sizes?

 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

C Data
Type

64-bit

char 1

short 2

int 4

long 8

Carnegie Mellon

What about converting sizes?

 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

C Data
Type

64-bit

char 1

short 2

int 4

long 8
Converting from smaller to larger integer data

type

We need to make sure the sign is correct

Carnegie Mellon

Signed Extension

Task:
Given w-bit signed integer x
Convert it to (w+k)-bit integer with same value

Rule:
Make k copies of sign bit:
X ′ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x

k copies of MSB

• • •X

X ¢ • • • • • •

• • •

w

wk

Carnegie Mellon

What about converting sizes?

 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

C Data
Type

64-bit

char 1

short 2

int 4

long 8

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Converting from smaller to larger integer data
type

We need to make sure the sign is correct

Carnegie Mellon

What about extending unsigned numbers?

Decimal Hex Binary

x 47981 BB 6D 10111011 01101101
ux 47981 00 00 BB 6D 00000000 00000000 10111011 01101101

 unsigned short x = 47981;
 unsigned int ux = x;

Carnegie Mellon

Unsigned (Zero) Extension

Task:
Given w-bit unsigned integer x
Convert it to (w+k)-bit integer with same value

Rule:
Simply pad zeros:
X ′ = 0 ,…, 0 , xw–1 , xw–2 ,…, x0

k copies of 0

• • •X

X ¢ • • • 0000 • • •

• • •

w

wk

Carnegie Mellon

What about truncating?

 int x = 53191;
 short sx = (short) x;

Carnegie Mellon

What about truncating?

 int x = 53191;
 short sx = (short) x;

Decimal Hex Binary

x 53191 00 00 CF C7 00000000 00000000 11001111 11000111
sx -12345 CF C7 11001111 11000111

Truncating (e.g., int to short)
C’s implementation: leading bits are truncated, results

reinterpreted
So can’t always preserve the numerical value

Carnegie Mellon

Unsigned Addition
Similar to Decimal Addition
Suppose we have a new data type

that is 3-bits wide

 010
+) 101

 111

 2
+) 5

 7

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Normal
Case

Carnegie Mellon

Unsigned Addition
Similar to Decimal Addition
Suppose we have a new data type

that is 3-bits wide

Might overflow: result can’t be
represented within the size of the
data type

 010
+) 101

 111

 2
+) 5

 7

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Normal
Case

Overflow
Case

 110
+) 101

 1011

 6
+) 5

 11 True Sum

Carnegie Mellon

Unsigned Addition
Similar to Decimal Addition
Suppose we have a new data type

that is 3-bits wide

Might overflow: result can’t be
represented within the size of the
data type

 010
+) 101

 111

 2
+) 5

 7

Unsigned Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Normal
Case

Overflow
Case

 110
+) 101

 1011

 6
+) 5

 11 True Sum
 011 3 Sum with same bits

Carnegie Mellon

Unsigned Addition in C

• • •
• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w
bits

UAddw(u , v)

Carnegie Mellon

Two’s Complement Addition

Has identical bit-level behavior as
unsigned addition (a big
advantage over sign-magnitude)
Overflow can also occur

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111

Normal
Case

Overflow
Case

 110
+) 101

 1011

 -2
+) -3

 -5
 011 3

 011
+) 001

 0100

 3
+) 1

 4
 100 -4

Negative Overflow Positive Overflow

Carnegie Mellon

Two’s Complement Addition in C

• • •
• • •

u

v+
• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

Carnegie Mellon

Is This an Overflow?

 111
+) 110

 1101

 -1
+) -2

 -3

Signed Binary

0 000

1 001

2 010

3 011

-4 100

-3 101

-2 110

-1 111

This is not an overflow by definition
Because the actual result can be represented

using the bit width of the datatype (3 bits
here)

Truncate

(signed addition)

Carnegie Mellon

Inverter (NOT Gate)

In Out

0 1

1 0

+1.2V

+0.0V

+1.2V

+0.0V

PMOS

NMOS

Carnegie Mellon

NOR Gate (NOT + OR)

A B C

0 0 1

0 1 0

1 0 0

1 1 0

Carnegie Mellon

Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)

The little
circle
means NOT

Carnegie Mellon

Half Adder

Add two bits, produce one bit

A B S Cou

t

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Truth Table

AND

XOR

Carnegie Mellon

Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Truth Table

A

A

X

X

O

Carnegie Mellon

Four-bit Adder

Ripple-carry Adder
Simple, but performance linear to bit width
Carry look-ahead adder (CLA)
Generate all carriers simultaneously

Carnegie Mellon

Four-bit Adder

Ripple-carry Adder
Simple, but performance linear to bit width
Carry look-ahead adder (CLA)
Generate all carriers simultaneously

Carnegie Mellon

Logic Design

Design digital components from basic logic gates
Key idea: use the truth table!

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

F = (A & B & C)

 | (A & ~B & C)

 | (A & B & ~C)

 | (~A & B & C)

F = (A & B)

 | (A & C)

 | (B & C)

Carnegie Mellon

The 74181 ALU

An “Arithmetic Logic Unit”
The part of the CPU that does arithmetic

The first ALU on a chip! (around 1969)

Carnegie Mellon

The 74181 ALU

An “Arithmetic Logic Unit”
The part of the CPU that does arithmetic

The first ALU on a chip! (around 1969)

Contains 75 logic gates, and is 4 bits wide (can be
chained)

Carnegie Mellon

The 74181 ALU

An “Arithmetic Logic Unit”
The part of the CPU that does arithmetic

The first ALU on a chip! (around 1969)

Contains 75 logic gates, and is 4 bits wide (can be
chained)

Add/subtract, bitwise operations, shifts

Carnegie Mellon

The 74181 ALU

An “Arithmetic Logic Unit”
The part of the CPU that does arithmetic

The first ALU on a chip! (around 1969)

Contains 75 logic gates, and is 4 bits wide (can be
chained)

Add/subtract, bitwise operations, shifts

Was used in many historically important
computers including the PDP-11, on which Unix
was developed

Carnegie Mellon

The 74181 ALU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

