CSC 252: Computer Organization Fall 2021: Lecture 3

Arithmetic Overflow Fixed point numbers Converting between signed and unsigned Binary arithmetic with logic gates

Instructor: Alan Beadle

Department of Computer Science University of Rochester

Announcement

Programming assignment 1 is in C language. Seek help from TAs.

TAs are best positioned to answer your questions about programming assignments!!!

Programming assignments do NOT repeat the lecture materials. They ask you to synthesize what you have learned from the lectures and work out something new.

Encoding Negative Numbers

Two's Complement, give negative weight to MSB

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-3	5	101
-2	6	110
-1	7	111

Encoding Negative Numbers

Two's Complement, give negative weight to MSB

 $\begin{array}{c} b_2b_1b_0\\ \swarrow\\ Weights in\\ Unsigned \end{array} \begin{array}{c} 2^2\\ 2^2\\ 2^1\\ 2^2\\ 2^1\\ 2^0\\ \end{array}$

	Uncignod	Dinory
Signed	Unsigned	Difiary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-3	5	101
-2	6	110
-1	7	111

Encoding Negative Numbers

Two's Complement, give negative weight to MSB

Two-Complement Implications

Only 1 zero

There is (still) a bit that represents sign!

Unsigned arithmetic still works

010	2
+) 101	+) -3
111	-1

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

Two-Complement Implications

Only 1 zero

There is (still) a bit that represents sign!

Unsigned arithmetic still works

	010	2
+)	101	+) -3
	111	-1

With only 3 bits, 3 + 1 becomes -4 because we don't have enough bits to hold the correct answer

(This is called overflow. More on it later.)

Signed	Binary
0	000
1	001
2	010
3	011
-4	100
-3	101
-2	110
-1	111

 $\begin{array}{ccc}
011 & 3 \\
+) & 001 & +) & 1 \\
100 & -4 \end{array}$

Can We Represent Fractions in Binary?

Yes, in several ways. Here is "Fixed point" notation:

What does 10.01₂ mean?

 $12.45 = 1*10^{1} + 2*10^{0} + 4*10^{-1} + 5*10^{-2}$ $10.01_{2} = 1*2^{1} + 0*2^{0} + 0*2^{-1} + 1*2^{-2} = 2.25_{10}$

Integer Arithmetic Still Works!

01.10	1.50
+ 01.01	+ 1.25
10.11	2.75

Decimal	Binary
0	00.00
0.25	00.01
0.5	00.10
0.75	00.11
1	01.00
1.25	01.01
1.5	01.10
1.75	01.11
2	10.00
2.25	10.01
2.5	10.10
2.75	10.11
3	11.00
3.25	11.01
3.5	11.10
3.75	11.11

Fixed-Point Representation

Fixed interval between two representable numbers as long as the binary point stays fixed

Each bit represents 0.2510

Fixed-point representation of numbers

Next lecture will cover floating point, which is more useful and actually corresponds to C types

01.10	1.50
+ 01.01	+ 1.25
10.11	2.75

Decimal	Binary	
0	00.00	
0.25	00.01	
0.5	00.10	
0.75	00.11	
1	01.00	
1.25	01.01	
1.5	01.10	
1.75	01.11	
2	10.00	
2.25	10.01	
2.5	10.10	
2.75	10.11	
3	11.00	
3.25	11.01	
3.5	11.10	
3.75	11.11	

Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?

Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?

- Integer
- Non-negative
- Between 0 and 255 (8 bits)

Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?

- Integer
- Non-negative
- Between 0 and 255 (8 bits)

Select a data type that captures all these attributes:

Suppose you want to define a variable that represents a person's age. What assumptions can you make about this variable's numerical value?

- Integer
- Non-negative
- Between 0 and 255 (8 bits)

Select a data type that captures all these attributes: unsigned char

What if you want to define a variable that could take negative values?

What if you want to define a variable that could take negative values?

That's what signed data types (e.g., **int**, **short**, etc.) are for

What if you want to define a variable that could take negative values?

That's what signed data types (e.g., **int**, **short**, etc.) are for

How are int values internally represented?

What if you want to define a variable that could take negative values?

That's what signed data types (e.g., **int**, **short**, etc.) are for

How are int values internally represented?

Theoretically could be either signed-magnitude or two's complement

What if you want to define a variable that could take negative values?

That's what signed data types (e.g., **int**, **short**, etc.) are for

How are int values internally represented? Theoretically could be either signed-magnitude or two's complement

Why bother with unsigned variables?

What if you want to define a variable that could take negative values?

That's what signed data types (e.g., **int**, **short**, etc.) are for

How are int values internally represented? Theoretically could be either signed-magnitude or two's complement

Why bother with unsigned variables? Sometimes you need that extra bit for larger positive values

Even when you don't, it makes things more clear and may prevent strange bugs!

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

C Data Type	32-bit	64-bit
(unsigned) char	1	1
(unsigned) short	2	2
(unsigned) int	4	4
(unsigned) long	4	8

C Language #include <limits.h> Declares constants, e.g., ULONG_MAX LONG_MAX LONG_MIN Values platform specific

One Bit Sequence, Two Interpretations

A sequence of bits can be interpreted as either a signed integer or an unsigned integer

Signed	Unsigned	Binary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-3	5	101
-2	6	110
-1	7	111

Signed vs. Unsigned Conversion in C

What happens when we convert between signed and unsigned numbers?

Casting (In C terminology) Explicit casting between signed & unsigned

> int tx, ty = -4; unsigned ux = 7, uy; tx = (int) ux; // U2T uy = (unsigned) ty; // T2U

Implicit casting

e.g., assignments, function calls

Mapping Between Signed & Unsigned

Mappings between unsigned and two's complement numbers: Keep bit representations and reinterpret

This is "correct" for positive values at least

	Unsigned	Binary
Signed	Unsigned	Dinary
0	0	000
1	1	001
2	2	010
3	3	011
-4	4	100
-3	5	101
-2	6	110
-1	7	111

Mapping Signed ↔ Unsigned

Conversion Visualized

What about converting sizes?

short int x = 15213; int ix = (int) x; short int y = -15213; int iy = (int) y;

C Data Type	64-bit
char	1
short	2
int	4
long	8

What about converting sizes?

short int x = 15213; int ix = (int) x; short int y = -15213; int iy = (int) y;

Converting from smaller to larger integer data type

We need to make sure the sign is correct

C Data Type	64-bit
char	1
short	2
int	4
long	8

Signed Extension

Task:

Given *w*-bit signed integer *x*

Convert it to (w+k)-bit integer with same value

Rule:

Make *k* copies of sign bit:

$$X' = x_{w-1}, \dots, x_{w-1}, x_{w-1}, x_{w-2}, \dots, x_{w-2}$$

What about converting sizes?

short int x = 15213; int ix = (int) x; short int y = -15213; int iy = (int) y;

Converting from smaller to larger integer data type

We need to make sure the sign is correct

	Decimal	Нех	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 0000000 00111011 01101101
у	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 1111111 11000100 10010011

C Data Type	64-bit
char	1
short	2
int	4
long	8

What about extending unsigned numbers?

unsigned short x = 47981; unsigned int ux = x;

	Decimal	Нех	Binary
x	47981	BB 6D	10111011 01101101
ux	47981	00 00 BB 6D	00000000 0000000 10111011 01101101

Unsigned (Zero) Extension

Task:

Given *w*-bit unsigned integer *x*

Convert it to (w+k)-bit integer with same value

Rule:

What about truncating?

int x = 53191; short sx = (short) x;

What about truncating?

int x = 53191; short sx = (short) x;

	Decimal	Нех	Binary
x	53191	00 00 CF C7	0000000 0000000 11001111 11000111
sx	-12345	CF C7	11001111 11000111

Truncating (e.g., int to short)

- C's implementation: leading bits are truncated, results reinterpreted
- So can't always preserve the numerical value

Unsigned Addition

Similar to Decimal Addition Suppose we have a new data type that is 3-bits wide

	010	2
Normai	+) 101	+) 5
Case	111	7

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Unsigned Addition

Similar to Decimal Addition Suppose we have a new data type that is 3-bits wide

Might **overflow**: result can't be represented within the size of the data type

Normal	010 +) 101	2 +) 5	
Case	111	7	
Overflow	110 +) 101	6 +) 5	
Case	1011		True

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Sum

Unsigned Addition

Similar to Decimal Addition Suppose we have a new data type that is 3-bits wide

Might **overflow**: result can't be represented within the size of the data type

Normal Case	010	2	-	
	+) 101	+) 5	5	
			- 6	
	111	7	7	
Overflow Case	110	6		
	+) 101	+) 5	_	
	1011	11	True Sum	
	011	3	Sum with	

Unsigned	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

with same bits

Unsigned Addition in C

Two's Complement Addition

Has identical bit-level behavior as unsigned addition (a big advantage over sign-magnitude) Overflow can also occur

Normal Case	010 +) 101 111	2 +) -3 -1	-4 -3 -2 -1	100 101 110 111	
Overflow Case	110 +) 101 1011 011	-2 +) -3 -5 3	011 +) 001 0100 100	3 +) 1 4 -4	

Negative Overflow

Positive Overflow

Signed

0

1

2

3

Λ

Binary

000

001

010

011

100

Two's Complement Addition in C

Is This an Overflow?

	Signed	Binary
(signed addition)	0	000
111 _1	1	001
+) 110 +) -2	2	010
	3	011
	-4	100
Truncate	-3	101
	-2	110
	-1	111

This is not an overflow by definition Because the actual result can be represented using the bit width of the datatype (3 bits here)

Basic Logic Gates

NOT

AND

NAND

Half Adder

Add two bits, produce one bit

Α	В	S	\mathbf{C}_{ou}
			t
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Full (1-bit) Adder

Add two bits and carry-in, produce one-bit sum and carry-out.

Four-bit Adder

Ripple-carry Adder Simple, but performance linear to bit width Carry look-ahead adder (CLA) Generate all carriers simultaneously

Four-bit Adder

Ripple-carry Adder

Simple, but performance linear to bit width Carry look-ahead adder (CLA)

Generate all carriers simultaneously

Logic Design

Design digital components from basic logic gates Key idea: use the truth table!

An "Arithmetic Logic Unit" The part of the CPU that does arithmetic

The first ALU on a chip! (around 1969)

An "Arithmetic Logic Unit" The part of the CPU that does arithmetic

The first ALU on a chip! (around 1969)

Contains 75 logic gates, and is 4 bits wide (can be chained)

An "Arithmetic Logic Unit" The part of the CPU that does arithmetic

The first ALU on a chip! (around 1969)

Contains 75 logic gates, and is 4 bits wide (can be chained)

Add/subtract, bitwise operations, shifts

An "Arithmetic Logic Unit" The part of the CPU that does arithmetic

The first ALU on a chip! (around 1969)

Contains 75 logic gates, and is 4 bits wide (can be chained)

Add/subtract, bitwise operations, shifts

Was used in many historically important computers including the PDP-11, on which Unix was developed

The 74181 ALU

