
CSC 252: Computer
Organization

Fall 2021: Lecture 26

Accelerators

Instructor: Alan Beadle

Department of Computer Science
University of Rochester

Carnegie Mellon

Announcements

 A5 due Dec 9th (day after last lecture)

 Let Abhishek know about slip days

 Next lecture is 100% review

Dynamic Power

!5

v

C

Vdd

Dynamic Power

!5

v

C

Vdd

Dynamic Power

!5

v

C

Vdd

Dynamic Power

!5

Energy dissipated for every transition (0->1 or 1->0)

v

C

Vdd

Dynamic Power

!6

v

C

Vdd

Average dynamic power of a transistor:
P = α • (E / T) = α • E f = ½ α C Vdd

2 f

α: switch activity factor. No switching, no dynamic power consumption

Dynamic Power

P = k C V2 f

!7

Dynamic Power

P = k C V2 f
• Increasing f requires V to be increased proportionally

!7

Dynamic Power

P = k C V2 f
• Increasing f requires V to be increased proportionally

• Intuitively: a higher frequency means a shorter cycle time, which
means the critical path of your processor needs to be shorter, which
requires faster transistors, which you get by increasing the voltage

!7

Dynamic Power

P = k C V2 f
• Increasing f requires V to be increased proportionally

• Intuitively: a higher frequency means a shorter cycle time, which
means the critical path of your processor needs to be shorter, which
requires faster transistors, which you get by increasing the voltage

• “Overclocking” just increases the clock speed without increasing
voltage => machine might crash (cycle time shorter than the critical
path delay)

!7

Dynamic Power

P = k C V2 f
• Increasing f requires V to be increased proportionally

• Intuitively: a higher frequency means a shorter cycle time, which
means the critical path of your processor needs to be shorter, which
requires faster transistors, which you get by increasing the voltage

• “Overclocking” just increases the clock speed without increasing
voltage => machine might crash (cycle time shorter than the critical
path delay)

• Corollary: reducing voltage requires reducing frequency

!7

Dynamic Power

P = k C V2 f
• Increasing f requires V to be increased proportionally

• Intuitively: a higher frequency means a shorter cycle time, which
means the critical path of your processor needs to be shorter, which
requires faster transistors, which you get by increasing the voltage

• “Overclocking” just increases the clock speed without increasing
voltage => machine might crash (cycle time shorter than the critical
path delay)

• Corollary: reducing voltage requires reducing frequency
• 15% reduction in voltage requires about 15% slow down in frequency

!7

Dynamic Power

P = k C V2 f
• Increasing f requires V to be increased proportionally

• Intuitively: a higher frequency means a shorter cycle time, which
means the critical path of your processor needs to be shorter, which
requires faster transistors, which you get by increasing the voltage

• “Overclocking” just increases the clock speed without increasing
voltage => machine might crash (cycle time shorter than the critical
path delay)

• Corollary: reducing voltage requires reducing frequency
• 15% reduction in voltage requires about 15% slow down in frequency
• What’s the impact on dynamic power? 0.853 ≈ 60% -> 40% dynamic

power reduction.

!7

Dynamic Power Favors Parallelisms

• Dynamic power favors parallel processing over higher clock rate

!8

P = k C f3

Dynamic Power Favors Parallelisms

• Dynamic power favors parallel processing over higher clock rate
• Take a core and replicate it 4 times: 4x speedup & 4x power

!8

P = k C f3

Dynamic Power Favors Parallelisms

• Dynamic power favors parallel processing over higher clock rate
• Take a core and replicate it 4 times: 4x speedup & 4x power
• Take a core and clock it 4 times faster: 4x speedup but 64x

dynamic power!

!8

P = k C f3

Dynamic Power Favors Parallelisms

• Dynamic power favors parallel processing over higher clock rate
• Take a core and replicate it 4 times: 4x speedup & 4x power
• Take a core and clock it 4 times faster: 4x speedup but 64x

dynamic power!
• Another way to think about this

!8

P = k C f3

Dynamic Power Favors Parallelisms

• Dynamic power favors parallel processing over higher clock rate
• Take a core and replicate it 4 times: 4x speedup & 4x power
• Take a core and clock it 4 times faster: 4x speedup but 64x

dynamic power!
• Another way to think about this

• If a task can be perfectly parallelized by 4 cores, we can
reduce the clock frequency of each core to 1/4 while retaining
the same performance

!8

P = k C f3

Dynamic Power Favors Parallelisms

• Dynamic power favors parallel processing over higher clock rate
• Take a core and replicate it 4 times: 4x speedup & 4x power
• Take a core and clock it 4 times faster: 4x speedup but 64x

dynamic power!
• Another way to think about this

• If a task can be perfectly parallelized by 4 cores, we can
reduce the clock frequency of each core to 1/4 while retaining
the same performance

• Dynamic power becomes 4 x (1/4)3 = 1/16

!8

P = k C f3

Moore’s Law

!9

• Gordon Moore in 1965 predicted that the number of transistors
doubles every year

Moore’s Law

!9

• Gordon Moore in 1965 predicted that the number of transistors
doubles every year

Moore’s Law

!9

• Gordon Moore in 1965 predicted that the number of transistors
doubles every year

Moore’s Law

!9

• Gordon Moore in 1965 predicted that the number of transistors
doubles every year

Moore’s Law

!9

• Gordon Moore in 1965 predicted that the number of transistors
doubles every year

• In 1975 he revised the prediction to doubling every 2 years

Moore’s Law

!9

• Gordon Moore in 1965 predicted that the number of transistors
doubles every year

• In 1975 he revised the prediction to doubling every 2 years
• Today’s widely-known Moore’s Law: number of transistors double

about every 18 months (Moore never used the number 18…)

Moore’s Law

!10

!11Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Scale factor α<1
α = 0.7 => 2X more transistors!

Dennard Scaling

!11Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Parameter Value Scaled
Value

Dopant
concentrations

Na, Nd Na/α, Nd/
α

Dimensions L, W,
Tox

αL, αW,
αTox

Field Ε Ε
Voltage V αV
Capacitance C αC
Current I αI

Scale factor α<1
α = 0.7 => 2X more transistors!

Dennard Scaling

!11Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Parameter Value Scaled
Value

Dopant
concentrations

Na, Nd Na/α, Nd/
α

Dimensions L, W,
Tox

αL, αW,
αTox

Field Ε Ε
Voltage V αV
Capacitance C αC
Current I αI

Scale factor α<1
α = 0.7 => 2X more transistors!

Transistors/Area d d/α2

Dennard Scaling

!11Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Parameter Value Scaled
Value

Dopant
concentrations

Na, Nd Na/α, Nd/
α

Dimensions L, W,
Tox

αL, αW,
αTox

Field Ε Ε
Voltage V αV
Capacitance C αC
Current I αI

Scale factor α<1
α = 0.7 => 2X more transistors!

Propagation time
(~CV/I)

t αt

Frequency (1/t) f f/α

Transistors/Area d d/α2

}

Dennard Scaling

!11Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Parameter Value Scaled
Value

Dopant
concentrations

Na, Nd Na/α, Nd/
α

Dimensions L, W,
Tox

αL, αW,
αTox

Field Ε Ε
Voltage V αV
Capacitance C αC
Current I αI

Scale factor α<1
α = 0.7 => 2X more transistors!

Propagation time
(~CV/I)

t αt

Frequency (1/t) f f/α

Power (CV2f) P α2P
Power/area
(Power density)

Pd Pd

Transistors/Area d d/α2

}

Dennard Scaling

Implications of Dennard Scaling and Moore’s Law

• Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.

!12

Implications of Dennard Scaling and Moore’s Law

• Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.

•More transistors means better microarchitecture, which leads to
better performance even under the same frequency.

!12

Implications of Dennard Scaling and Moore’s Law

• Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.

•More transistors means better microarchitecture, which leads to
better performance even under the same frequency.

• Higher frequency means better performance even under the
same microarchitecture.

!12

Implications of Dennard Scaling and Moore’s Law

• Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.

•More transistors means better microarchitecture, which leads to
better performance even under the same frequency.

• Higher frequency means better performance even under the
same microarchitecture.

• Overall, software gets a free ride: wait for the next generation of
hardware and performance will naturally increase without
consuming more power.

!12

Implications of Dennard Scaling and Moore’s Law

• Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.

•More transistors means better microarchitecture, which leads to
better performance even under the same frequency.

• Higher frequency means better performance even under the
same microarchitecture.

• Overall, software gets a free ride: wait for the next generation of
hardware and performance will naturally increase without
consuming more power.

!12

Moore’s law gave us more transistors;

Dennard scaling made them useful.

Bob Colwell, DAC 2013, June 4, 2013

2005: End of Dennard Scaling

•What Happened?

• Supply voltage Vdd stops scaling (Can’t drop voltage below ~1 V)
• Remember Power = CV2f

!13

2005: End of Dennard Scaling

•What Happened?

• Supply voltage Vdd stops scaling (Can’t drop voltage below ~1 V)
• Remember Power = CV2f

•Why?

• There is a fundamental limit as to how much voltage we need to

switch a transistor, called threshold voltage (Vth).
• Vth stopped scaling because leakage power/reliability/variation

becomes huge issues, and accordingly Vdd stops scaling

!13

2005: End of Dennard Scaling

•What Happened?

• Supply voltage Vdd stops scaling (Can’t drop voltage below ~1 V)
• Remember Power = CV2f

•Why?

• There is a fundamental limit as to how much voltage we need to

switch a transistor, called threshold voltage (Vth).
• Vth stopped scaling because leakage power/reliability/variation

becomes huge issues, and accordingly Vdd stops scaling

!13

Source: P. Packan (Intel),
2007 IEDM Short Course

2005: End of Dennard Scaling

•What Happened?

• Supply voltage Vdd stops scaling (Can’t drop voltage below ~1 V)
• Remember Power = CV2f

•Why?

• There is a fundamental limit as to how much voltage we need to

switch a transistor, called threshold voltage (Vth).
• Vth stopped scaling because leakage power/reliability/variation

becomes huge issues, and accordingly Vdd stops scaling
• The demise of Dennard Scaling means the power density

(power consumption per unit area) will increase rather than
staying stable.

!13

2005: End of Dennard Scaling

!14

2005: End of Dennard Scaling

!14

2005: End of Dennard Scaling

!14

Hot
Plate

2005: End of Dennard Scaling

!14

Nuclear
Reactor

Hot
Plate

2005: End of Dennard Scaling

!14

Sun
Surface
(~104)

Nuclear
Reactor

Hot
Plate

Dark Silicon
n. [därk, sĭl′ĭ-kən, -kŏn′]
More transistors on chip (due to Moore’s Law), but a growing
fraction cannot actually be used due to power limits (due to the
end of Dennard Scaling).

!15

2005: End of Dennard Scaling

!16

• Initial response has been to lower frequency and increase cores / chip

2005: End of Dennard Scaling

!16

• Initial response has been to lower frequency and increase cores / chip

2005: End of Dennard Scaling

!16

• Initial response has been to lower frequency and increase cores / chip
• There is a limit to core scaling. Why?

2007: A Revolutionary New Computer

!17

!18

OPINION O
PI

N
IO

N

www.pnas.org/cgi/doi/10.1073/pnas.1302988110 PNAS | April 2, 2013 | vol. 110 | no. 14 | 5273

No Moore’s Law for batteries
Fred Schlachter1

American Physical Society, Washington, DC 20045

The public has become accustomed to
rapid progress in mobile phone technol-
ogy, computers, and access to information;
tablet computers, smart phones, and other
powerful new devices are familiar to most
people on the planet.

These developments are due in part to the
ongoing exponential increase in computer
processing power, doubling approximately
every 2 years for the past several decades.
This pattern is usually called Moore’s Law
and is named for Gordon Moore, a co-
founder of Intel. The law is not a law like
that for gravity; it is an empirical obser-
vation, which has become a self-fulfilling
prophecy. Unfortunately, much of the
public has come to expect that all technol-
ogy does, will, or should follow such a law,
which is not consistent with our everyday
observations: For example, the maximum
speed of cars, planes, or ships does not in-
crease exponentially; maximum speed bare-
ly increases at all.

Cars require a portable fuel, preferably
one that is widely available, low in cost,
and with a high energy density. Gasoline
is nature’s ideal fuel. A full tank of gasoline
contains as much energy as 1,000 sticks of
dynamite. However, cost, national security,
global climate change, and pollution lead
to a national need to wean ourselves from
powering cars with gasoline. There are not
many alternate candidates. Natural gas is
still a fossil fuel, and hydrogen can pres-
ently be produced only at a high energy cost
and has low energy density. And then there
is electricity. We power our mobile phones
and our laptops with lithium-ion batter-
ies—why not power our cars this way? We
already have an infrastructure for generat-
ing and distributing electricity. If only we
had batteries that could store enough ener-
gy to power a car several hundred kilome-
ters and that were not too heavy and would
not cost a fortune.

Sadly, such batteries do not exist. There
is no Moore’s Law for batteries. The reason

there is a Moore’s Law for computer pro-
cessors is that electrons are small and they
do not take up space on a chip. Chip per-
formance is limited by the lithography tech-
nology used to fabricate the chips; as lithog-
raphy improves ever smaller features can be
made on processors. Batteries are not like
this. Ions, which transfer charge in batter-
ies, are large, and they take up space, as do
anodes, cathodes, and electrolytes. A D-cell
battery stores more energy than an AA-cell.
Potentials in a battery are dictated by the
relevant chemical reactions, thus limiting
eventual battery performance. Significant
improvement in battery capacity can only
be made by changing to a different chem-
istry.

Scientists and battery experts, who have
been optimistic in the recent past about im-
proving lithium-ion batteries and about de-
veloping new battery chemistries—lithium/
air and lithium/sulfur are the leading can-
didates—are considerably less optimistic
now. Improvement in energy storage den-
sity of lithium-ion batteries has been only
incremental for the past decade. A large-
scale research consortium (the Joint Center
for Energy Storage Research) has been cre-
ated with an ambitious goal of improving
energy storage density by a factor of five
and reducing cost by a factor of five in 5
years. This can only happen if there is a ter-
rific, wonderful, and amazing breakthrough
in battery technology. One can only hope.

In addition to increased performance
and lower cost, batteries need to be safe. Of
course gasoline is not safe, there are hun-
dreds of thousands of car fires every year in
the United States. Nonetheless, the public
is more wary of electricity than of gasoline,
and the recent safety issues of lithium-ion
batteries on Boeing 787 aircraft have done
little to reassure the public about the safety
of such batteries. Consumers are question-
ing the practice of putting into cars batter-
ies that can burst into flames.

Meanwhile, while waiting for a wonderful

breakthrough in battery technology, we do
have a valuable and underutilized resource:
energy efficiency, which in many cases is
free or even has a negative cost. Cars can
be made more energy efficient by reducing
size, weight, and power. Incentives to re-
duce vehicle miles driven can be made by
improving access to public transit. There
are policy and financial incentives to driv-
ing less, such as higher taxes on gasoline to
investments in the public transportation
infrastructure.

Improving the energy efficiency of cars
is not a long-term solution to the problems
related to combustion of fossil fuels, as cars
will still be powered by gasoline. However,
improved energy efficiency can happen and
is happening. A good example of improved
energy efficiency is hybrid cars, which can
be considerably more energy efficient than
traditional cars. We must take this prag-
matic direction while awaiting that terrific
breakthrough in battery technology we all
so desire.

Author contributions: F.S. wrote the paper.

The author declares no conflict of interest.
1E-mail: fsschlachter@gmail.com.

Fred Schlachter.

“Improving” Energy Capacity

!19
600 smartphone from 2006 to 2014 on http://www.gsmarena.com/makers.php3

http://www.gsmarena.com/makers.php3

“Improving” Energy Capacity

!19

Screen Size (inches)

Ba
tte

ry
 C

ap
ac

ity
 (m

Ah
)

600 smartphone from 2006 to 2014 on http://www.gsmarena.com/makers.php3

���	��
�

���

���

���

���

���

���������������

http://www.gsmarena.com/makers.php3

“Improving” Energy Capacity

!19

Screen Size (inches)

Ba
tte

ry
 C

ap
ac

ity
 (m

Ah
)

600 smartphone from 2006 to 2014 on http://www.gsmarena.com/makers.php3

���	��
�

���

���

���

���

���

���������������

http://www.gsmarena.com/makers.php3

“Improving” Energy Capacity

!19

Screen Size (inches)

Ba
tte

ry
 C

ap
ac

ity
 (m

Ah
)

600 smartphone from 2006 to 2014 on http://www.gsmarena.com/makers.php3

���	��
�

���

���

���

���

���

���������������

http://www.gsmarena.com/makers.php3

“Improving” Energy Capacity

!20

“Improving” Energy Capacity

!20

“Improving” Energy Capacity

!20

“Improving” Energy Capacity

!20

“Improving” Energy Capacity

!20

Sources of Energy-Inefficiencies
General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

!21
Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010

ALU

RF

Ctrl

Pipe
D$

IF

6%
10%

10%

22%
19%

34%

Sources of Energy-Inefficiencies
General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

!21
Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010

ALU

RF

Ctrl

Pipe
D$

IF

IF: Instruction fetch
Ctrl: Other control logics
Pipe: Pipeline reg, bus, clock
D$: Data cache
RF: Register file
ALU: Functional units

6%
10%

10%

22%
19%

34%

Sources of Energy-Inefficiencies
General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

!21
Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010

ALU

RF

Ctrl

Pipe
D$

IF

IF: Instruction fetch
Ctrl: Other control logics
Pipe: Pipeline reg, bus, clock
D$: Data cache
RF: Register file
ALU: Functional units

Pure Overhead6%
10%

10%

22%
19%

34%

Sources of Energy-Inefficiencies
General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

!21
Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010

ALU

RF

Ctrl

Pipe
D$

IF

IF: Instruction fetch
Ctrl: Other control logics
Pipe: Pipeline reg, bus, clock
D$: Data cache
RF: Register file
ALU: Functional units

Doing Actual Work

Pure Overhead6%
10%

10%

22%
19%

34%

Sources of Energy-Inefficiencies
General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

!21
Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010

ALU

RF

Ctrl

Pipe
D$

IF

IF: Instruction fetch
Ctrl: Other control logics
Pipe: Pipeline reg, bus, clock
D$: Data cache
RF: Register file
ALU: Functional units

Computation vs. Data Movement

!22

ALU

RF

Ctrl

Pipe
D$

IF

64-bit DP
20pJ 26 pJ 256 pJ

1 nJ

500 pJ Efficient
off-chip link

256-bit buses

16 nJ
DRAM
Rd/Wr

256-bit access
8 kB SRAM 50 pJ

20mm

Communication Dominates Arithmetic

Challenges for future computing systems, Bill Dally, 2015

Data movement energy >> computation energy

!23

1
3

15 19

64 72
125 144

374 480

6291
12000

330000

1

10

100

1000

10000

100000

1000000

IN
T8

 A
D

D

IN
T1

6
A

D
D

IN
T8

 M
U

L

IN
T8

 M
A

C

IN
T1

6
M

U
L

IN
T1

6
M

A
C

FP
16

 A
D

D

1B
 S

R
A

M
 W

R

FP
16

 M
A

C

N
O

C

1B
 M

IP
I T

x

D
R

A
M

W
ire

le
ss

Normalized Energy

Compute

Data Transfer

Computation vs. Data Movement
Data movement energy >> computation energy

SIMD
• Single Instruction (operating on) Multiple Data

• Amortizing the cost of instruction delivery/

control across many execution units (even
cores).

• Almost all modern ISAs provide such
instructions:

• x86: MMX/SSE/AVX
• Arm: Neon

!24

6%
10%

10%

22%
19%

34%

ALU

RF

Ctrl

Pipe
D$

IF

Graphics Processing Units/GPUs (SIMT)
• Designed for graphics rendering, which is massively parallel.

!25

N
EE382N: Principles of Computer Architecture

3Adding Programmability to the
Graphics Pipeline

3D Application
or Game

3D API:
OpenGL or
Direct3D

Programmable
Vertex

Processor

Primitive
Assembly

Rasterization &
Interpolation

3D API
Commands

Transformed
Vertices

Assembled
Polygons,
Lines, and

Points

GPU
Command &

Data Stream

Programmable
Fragment
Processor

Rasterized
Pre-transformed

Fragments

Transformed
Fragments

Raster
Operation

s

Framebuffer

Pixel
UpdatesGPU

Front
End

Pre-transformed
Vertices

Vertex Index
Stream

Pixel
Location
Stream

CPU – GPU Boundary

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Graphics rendering pipeline based on rasterization

Same program

for all vertices

Same program

for all pixels

�26

N
EE382N: Principles of Computer Architecture

15Execute shader

15

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

Kayvon Fatahalian, 2008Kayvon Fatahalian

�27

N
EE382N: Principles of Computer Architecture

23Two cores (two fragments in parallel)

23

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 1

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 2

Kayvon Fatahalian, 2008Kayvon Fatahalian

�28

N
EE382N: Principles of Computer Architecture

24Four cores (four fragments in parallel)

24

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

Kayvon Fatahalian, 2008Kayvon Fatahalian

�29

N
EE382N: Principles of Computer Architecture

25Sixteen cores (sixteen fragments in parallel)

25

ALU ALU

ALUALU

ALU ALU

ALUALU

ALU ALU

ALUALU

ALU ALU

ALUALU

16 cores = 16 simultaneous instruction streams

Kayvon Fatahalian, 2008Kayvon Fatahalian

�30

N
EE382N: Principles of Computer Architecture

26Instruction stream coherence

26

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

But… many fragments should
be able to share an instruction
stream!

Kayvon Fatahalian, 2008Kayvon Fatahalian

N
EE382N: Principles of Computer Architecture

28Add ALUs

28

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processingCtx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

Kayvon Fatahalian, 2008Kayvon Fatahalian �31
N

EE382N: Principles of Computer Architecture

27Recall: simple processing core

27

Fetch/
Decode

ALU
(Execute)

Execution
Context

Kayvon Fatahalian, 2008Kayvon Fatahalian

�32
N

EE382N: Principles of Computer Architecture

31Modifying the shader

31

Fetch/
Decode

<VEC8_diffuseShader>:

VEC8_sample vec_r0, vec_v4, t0, vec_s0

VEC8_mul vec_r3, vec_v0, cb0[0]

VEC8_madd vec_r3, vec_v1, cb0[1], vec_r3

VEC8_madd vec_r3, vec_v2, cb0[2], vec_r3

VEC8_clmp vec_r3, vec_r3, l(0.0), l(1.0)

VEC8_mul vec_o0, vec_r0, vec_r3

VEC8_mul vec_o1, vec_r1, vec_r3

VEC8_mul vec_o2, vec_r2, vec_r3

VEC8_mov vec_o3, l(1.0)

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

2 31 4

6 75 8

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

Kayvon Fatahalian, 2008Kayvon Fatahalian

SIMD/vector instructions, each operates on a vector of 8 elements here.

�33

16 cores, each with 8 ALUs. Each core here runs the same
program (fragment shader)

N
EE382N: Principles of Computer Architecture

32128 fragments in parallel

32
= 16 simultaneous instruction streams

16 cores = 128 ALUs

Kayvon Fatahalian, 2008Kayvon Fatahalian

�34

16 cores, each with 8 ALUs. Cores here run different programs
(some are processing vertices, some are processing fragments)

N
EE382N: Principles of Computer Architecture

33128 [] in parallel

33

vertices / fragments
primitives

CUDA threads
OpenCL work items

compute shader threads

primitives

vertices

fragments

Kayvon Fatahalian, 2008Kayvon Fatahalian

Each Core Does Fine-Grained Multi-threading

!35

N
EE382N: Principles of Computer Architecture

33128 [] in parallel

33

vertices / fragments
primitives

CUDA threads
OpenCL work items

compute shader threads

primitives

vertices

fragments

Kayvon Fatahalian, 2008Kayvon Fatahalian

Wrap: a group of
threads (8 here)

No need for branch prediction and out-of-
order execution. Simple core design.

Nvidia Maxwell GPU (2014)

!36

• Today: General Purpose GPU (GPGPU), used for any massive
parallel applications:

• Physics simulation
• Deep learning
• Computer vision

Nvidia Maxwell GPU (2014)

!36

• Today: General Purpose GPU (GPGPU), used for any massive
parallel applications:

• Physics simulation
• Deep learning
• Computer vision

Entering the Era of Specialization

!37

Entering the Era of Specialization
• GPUs are very efficient for massively parallel program

!37

Entering the Era of Specialization
• GPUs are very efficient for massively parallel program
• But are still fairly general, so there are still many inefficiencies

• Still need to fetch and decode instructions
• Still have (very large) caches, so data delivery isn’t efficient

!37

Entering the Era of Specialization
• GPUs are very efficient for massively parallel program
• But are still fairly general, so there are still many inefficiencies

• Still need to fetch and decode instructions
• Still have (very large) caches, so data delivery isn’t efficient

• Idea: instead of building general-purpose processors that can
do everything, but inefficiently, let’s build specialized processors
that can only do limited things, but extremely efficiently.

!37

Entering the Era of Specialization
• GPUs are very efficient for massively parallel program
• But are still fairly general, so there are still many inefficiencies

• Still need to fetch and decode instructions
• Still have (very large) caches, so data delivery isn’t efficient

• Idea: instead of building general-purpose processors that can
do everything, but inefficiently, let’s build specialized processors
that can only do limited things, but extremely efficiently.

• A.k.a., domain-specific accelerators

!37

Example: Vector Dot Product

!38

a[5]

a[4]

a[3]

a[2]

a[1]

a[0]

b[
5]

b[
4]

b[
3]

b[
2]

b[
1]

b[
0] MAC

Example: Vector Dot Product

!38

a[5]

a[4]

a[3]

a[2]

a[1]

a[0]

b[
5]

b[
4]

b[
3]

b[
2]

b[
1]

b[
0] MAC

Register

Example: Vector Dot Product

!39

a[5]

a[4]

a[3]

a[2]

a[1]

b[
5]

b[
4]

b[
3]

b[
2]

b[
1]

MAC

a[0] x b[0]

Register

Example: Vector Dot Product

!40

a[5]

a[4]

a[3]

a[2]

b[
5]

b[
4]

b[
3]

b[
2]

MAC

a[0] x b[0]

Register

+ a[1] x b[1]

Example: Vector Dot Product

!41

a[5]

a[4]

a[3]

b[
5]

b[
4]

b[
3]

MAC

a[0] x b[0]

Register

+ a[1] x b[1]
+ a[2] x b[2]

Example: Vector Dot Product

!42

a[5]

a[4]

b[
5]

b[
4]

MAC

a[0] x b[0]

Register

+ a[1] x b[1]
+ a[2] x b[2]
+ a[3] x b[3]

Example: Vector Dot Product

!43

a[5]

b[
5]

MAC

a[0] x b[0]

Register

+ a[1] x b[1]
+ a[2] x b[2]
+ a[3] x b[3]
+ a[4] x b[4]

Example: Vector Dot Product

!44

MAC

a[0] x b[0]

Register

+ a[1] x b[1]
+ a[2] x b[2]
+ a[3] x b[3]
+ a[4] x b[4]
+ a[5] x b[5]

p =

• Does nothing but vector dot product

• No instruction fetch and decode

(there is no instruction)
• The register is close to the ALU and

gets reused over and over: good
data delivery efficiency

• Very simple control

Example: Vector Dot Product

!44

MAC

a[0] x b[0]

Register

+ a[1] x b[1]
+ a[2] x b[2]
+ a[3] x b[3]
+ a[4] x b[4]
+ a[5] x b[5]

p =

Matrix Vector Multiplication

!45

a[5]

a[4]

a[3]

a[2]

a[1]

a[0]

b[
5]

b[
4]

b[
3]

b[
2]

b[
1]

b[
0]

MAC

Matrix Vector Multiplication

!45

a[5]

a[4]

a[3]

a[2]

a[1]

a[0]

b[
5]

b[
4]

b[
3]

b[
2]

b[
1]

b[
0]

MAC

MAC

c[
5]

c[
4]

c[
3]

c[
2]

c[
1]

c[
0]

Matrix Vector Multiplication

!46

a[5]

a[4]

a[3]

a[2]

a[1]

a[0]

b[
5]

b[
4]

b[
3]

b[
2]

b[
1]

MAC

MAC

c[
5]

c[
4]

c[
3]

c[
2]

c[
1]

c[
0]

a[0] x b[0]

Matrix Vector Multiplication

!47

a[5]

a[4]

a[3]

a[2]

a[1]

b[
5]

b[
4]

b[
3]

b[
2]

MAC

MAC

c[
5]

c[
4]

c[
3]

c[
2]

c[
1]

a[0] x b[0]
+ a[1] x b[1]

a[0] x c[0]

Matrix Vector Multiplication

!48

a[5]

a[4]

a[3]

a[2]

b[
5]

b[
4]

b[
3]

MAC

MAC

c[
5]

c[
4]

c[
3]

c[
2]

a[0] x b[0]
+ a[1] x b[1]

a[0] x c[0]

+ a[2] x b[2]

+ a[1] x c[1]

Matrix Vector Multiplication

!49

a[5]

a[4]

a[3]

b[
5]

b[
4]

MAC

MAC

c[
5]

c[
4]

c[
3]

a[0] x b[0]
+ a[1] x b[1]

a[0] x c[0]

+ a[2] x b[2]

+ a[1] x c[1]

+ a[3] x b[3]

+ a[2] x c[2]

Matrix Vector Multiplication

!50

a[5]

a[4]

b[
5]

MAC

MAC

c[
5]

c[
4]

a[0] x b[0]
+ a[1] x b[1]

a[0] x c[0]

+ a[2] x b[2]

+ a[1] x c[1]

+ a[3] x b[3]

+ a[2] x c[2]

+ a[4] x b[4]

+ a[3] x c[3]

Matrix Vector Multiplication

!51

a[5]

MAC

MAC

c[
5]

a[0] x b[0]
+ a[1] x b[1]

a[0] x c[0]

+ a[2] x b[2]

+ a[1] x c[1]

+ a[3] x b[3]

+ a[2] x c[2]

+ a[4] x b[4]

+ a[3] x c[3]

+ a[5] x b[5]

+ a[4] x c[4]

p1 =

Matrix Vector Multiplication

!52

MAC

MAC

a[0] x b[0]
+ a[1] x b[1]

a[0] x c[0]

+ a[2] x b[2]

+ a[1] x c[1]

+ a[3] x b[3]

+ a[2] x c[2]

+ a[4] x b[4]

+ a[3] x c[3]
+ a[4] x c[4]

p1 =

p2 =

+ a[5] x c[5]

+ a[5] x b[5]

Matrix Matrix Multiplication

!53

a[5]

a[4]

a[3]

a[2]

a[1]

a[0]

b[
5]

b[
4]

b[
3]

b[
2]

b[
1]

b[
0] MAC

MACc[
5]

c[
4]

c[
3]

c[
2]

c[
1]

c[
0]

Matrix Matrix Multiplication

!53

a[5]

a[4]

a[3]

a[2]

a[1]

a[0]

b[
5]

b[
4]

b[
3]

b[
2]

b[
1]

b[
0] MAC

MACc[
5]

c[
4]

c[
3]

c[
2]

c[
1]

c[
0]

MAC

MAC

d[5]

d[4]

d[3]

d[2]

d[1]

d[0]

Matrix Matrix Multiplication

!53

a[5]

a[4]

a[3]

a[2]

a[1]

a[0]

b[
5]

b[
4]

b[
3]

b[
2]

b[
1]

b[
0] MAC

MACc[
5]

c[
4]

c[
3]

c[
2]

c[
1]

c[
0]

MAC

MAC

d[5]

d[4]

d[3]

d[2]

d[1]

d[0]

• Systolic array (Kung & Leiserson,
1978). Basically a matrix multiplication
engine.

• Convolution neural network heavily
relies on this. Used in Google’s TPU,
among other industry products.

Google Tensor Processing Unit
• Convolution in deep learning can be transformed to matrix multiplication.

• TPU: specialized processor (i.e., systolic array architecture) for tensor

processing (matrix multiply)

• 30x~80x more power-efficient than GPU

!54

Another Domain: Video Compression

!55Numbers credit: Kayvon Fatahalian

Another Domain: Video Compression

!55

 30-second video @ 1080p resolution (1920 x 1080 pixels per frame) @ 30 frames per second (FPS)
 3 colors per pixel + 1 byte per color → 6.2 MB/frame → 6.2 MB x 30 s x 30 FPS = 5.2 GB total size
 Actual H.264 video file size: 65.4 MB (80-to-1 compression ratio).
 Compression/encoding done in real-time without you even realizing it!

Numbers credit: Kayvon Fatahalian

Another Domain: Computational Photography

!56

Conventional cameras Today’s “cameras”

• Use computational algorithms to mimic a DSLR.

•Must be done in real-time. Executed on a dedicated Image

Signal Processor (ISP).

Another Domain: Computational Photography

!57

Portrait mode: simulate a large aperture

HDR mode: simulate a high
dynamic range sensor

360° (VR/Panoramic) Videos and Photos

!58

https://www.cursosfotografiabarcelona.com/como-hacer-una-foto-esferica-360-grados-reflex/

https://www.cursosfotografiabarcelona.com/como-hacer-una-foto-esferica-360-grados-reflex/

VR Video Capturing

!59
https://twitter.com/yitechnology/status/918116570559336448

Google Jump VR

https://www.wired.com/2016/04/heres-360-degree-video-camera-facebook-giving-away/

Facebook Surround 360

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45617.pdf

https://twitter.com/yitechnology/status/918116570559336448
https://www.wired.com/2016/04/heres-360-degree-video-camera-facebook-giving-away/
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45617.pdf

Autonomous Machines

!60https://www.wired.com/story/news-rules-clear-way-self-driving-cars/

https://www.wired.com/story/news-rules-clear-way-self-driving-cars/

Autonomous Machines

!61https://www.wired.com/2017/05/the-physics-of-drones/

https://www.wired.com/2017/05/the-physics-of-drones/

Photorealistic Rendering

!62https://notrianglestudio.com/all-categories-blog/why-photorealistic-renderings-should-be-part-of-your-real-estate-marketing-strategy

https://notrianglestudio.com/all-categories-blog/why-photorealistic-renderings-should-be-part-of-your-real-estate-marketing-strategy

Photorealistic Rendering

!63https://www.youtube.com/watch?v=uY4cE_nq2IY

https://www.youtube.com/watch?v=uY4cE_nq2IY

Photorealistic Rendering
• Digital post-processing pushes the limit of photography

• Requires optics/sensor/algorithm co-design

!64https://www.digitaltrends.com/gaming/battlefield-v-dxr-ray-tracing-tested/

https://www.digitaltrends.com/gaming/battlefield-v-dxr-ray-tracing-tested/

Today’s Processor Chips are Full of Accelerators

!65
https://www.techradar.com/news/apple-m1-chip https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive

Today’s Processor Chips are Full of Accelerators

!66

Qualcomm
Snapdragon

820 SoC

Qualcomm
Snapdragon

835 SoC

Traditional Scope of Computer Systems

!67

Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

• Take a program and try to
figure out how to best
execute on the hardware

Real Scope of Computer Systems

!68

Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

• Understand the problem to be
solved, design algorithms,
understand algorithms
characteristics to design the
best computer systems.

• It’s no longer enough to work
with a given program without
understanding it.

CSC 292/572: Mobile Visual Computing

!69

Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

Computer graphics

Video/image
compression

Computational
photography

AR/VR

Display and lightning
systems

The Most Important Take Away of 252
• “There is no magic.”

• Every thing can be derived from first principles. Trust your

logical reasoning.

• Apply to virtually everything in science and engineering.

!70

The Second Most Important Take Away of 252

• “Things don’t have to be this way.”

• As long as you don’t violate physics, you can design a computer

however you want.

• But every design decision you make usually involves certain trade-

offs. Be clear what your design goal is.

!71

The Third Most Important Take Away of 252
• Virtual all computer system design practices follow a small set of

basic principles.

• It is these basic principles that are important, not the practices.

!72

Make
common

case faster

Combine the
best of both

worlds

Locality

Parallelism

Speculation
Hierarchy

Heterogeneity

Virtualization

Specialization
{ {

#pragma

