
CSC 252: Computer
Organization

Fall 2021: Lecture 20

Wrap-up signals

Interrupts and Exceptions

Instructor: Alan Beadle

Department of Computer Science
University of Rochester

Carnegie Mellon

Announcements

 A4 is due 11:59pm, Thursday, November 18

 Remember to let us know about slip days

 Also remember to type the dot when running the turn-in
script

 Semester ends in about a month!

Carnegie Mellon

Today
• Signals: The Way to Communicate with Processes

• Interrupts and exceptions: how signals are triggered

!3

Carnegie Mellon

Signals

• A signal is a small message that notifies a process that an
event of some type has occurred in the system

• Sent from the OS kernel
• Could be requested by another process, by user, or automatically by

the kernel
• Signal type is identified by small integer ID’s (1-30)

!4

Carnegie Mellon

Signals

• A signal is a small message that notifies a process that an
event of some type has occurred in the system

• Sent from the OS kernel
• Could be requested by another process, by user, or automatically by

the kernel
• Signal type is identified by small integer ID’s (1-30)

!4

ID Name Default Action Corresponding Event
2 SIGINT Terminate User typed ctrl-c
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Carnegie Mellon

Sending Signals with kill Function

!5

void fork12()
{
 pid_t pid[N];
 int i;
 int child_status;

 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0) {
 /* Child: Infinite Loop */
 while(1)
 ;
 }

 for (i = 0; i < N; i++) {
 printf("Killing process %d\n", pid[i]);
 kill(pid[i], SIGINT);
 }

 for (i = 0; i < N; i++) {
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);
 }
}

forks.c

Carnegie Mellon

Default Actions to Signals

• Each signal type has a predefined default action, which is
one of:

• The process terminates
• The process stops until restarted by a SIGCONT signal
• The process ignores the signal

!6

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

!7

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:

!7

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum

!7

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum

!7

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

!7

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

• Called when process receives signal of type signum

!7

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

• Called when process receives signal of type signum
• Referred to as “installing” the handler

!7

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

• Called when process receives signal of type signum
• Referred to as “installing” the handler
• Executing handler is called “catching” or “handling” the signal

!7

Carnegie Mellon

Installing Signal Handlers
• The signal function modifies the default action associated

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

• Called when process receives signal of type signum
• Referred to as “installing” the handler
• Executing handler is called “catching” or “handling” the signal
• When the handler executes its return statement, control passes

back to instruction in the control flow of the process that was
interrupted by receipt of the signal

!7

Carnegie Mellon

Signal Handling Example

!8

void sigint_handler(int sig) /* SIGINT handler */
{
 printf("So you think you can stop the bomb with ctrl-c, do you?\n");
 sleep(2);
 printf("Well...");
 fflush(stdout);
 sleep(1);
 printf("OK. :-)\n");
 exit(0);
}

int main()
{
 /* Install the SIGINT handler */
 if (signal(SIGINT, sigint_handler) == SIG_ERR)
 unix_error("signal error");

 /* Wait for the receipt of a signal */
 pause();

 return 0;
} sigint.c

Carnegie Mellon

Signals Handlers as Concurrent Flows

• A signal handler is a separate logical flow (not process)
that runs concurrently with the main program

!9

Process A

while (1)
 ;

Process A

handler(){
 …
}

Process B

Time

Carnegie Mellon

Nested Signal Handlers
• Handlers can be interrupted by other handlers

!10

(2) Control passes
to handler S

 Main program

(5) Handler T
returns to
handler S

Icurr

Inext

(1) Program
catches signal s

 Handler S Handler T

(3) Program
catches signal t

(4) Control passes
to handler T

(6) Handler S
returns to
main program

(7) Main program
resumes

Carnegie Mellon

Receiving/Responding to Signals
• Kernel handles signals delivered to a process p when it

switches to p from kernel mode to user mode (e.g.,
after a context switch)

!11

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

Receiving/Responding to Signals
• Kernel handles signals delivered to a process p when it

switches to p from kernel mode to user mode (e.g.,
after a context switch)

!12

Signal delivered
to process A

Signal received
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

Carnegie Mellon

Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type for a

process
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent
signals of type k that are sent to that process are discarded

• A pending signal is received at most once

!13

Carnegie Mellon

Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type for a

process
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent
signals of type k that are sent to that process are discarded

• A pending signal is received at most once

• A process can block/mask the receipt of certain signals

!13

Carnegie Mellon

Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type for a

process
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent
signals of type k that are sent to that process are discarded

• A pending signal is received at most once

• A process can block/mask the receipt of certain signals
• Blocked signals can be delivered, i.e., in the pending state, but will not

be received/responded to until the signal is unblocked

!13

Carnegie Mellon

Pending/Blocked Bits

• Kernel maintains pending and masked bit vectors in the
context of each process

• pending: represents the set of pending signals

• Kernel sets bit k in pending when a signal of type k is delivered
• Kernel clears bit k in pending when a signal of type k is received

• masked: represents the set of blocked signals

• Can be set and cleared by using the sigprocmask function
• Also referred to as the signal mask.

!14

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p

!15

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals

for process p (PNM set)

!15

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals

for process p (PNM set)
• If (PNM is empty), i.e., no signal is pending & nonmasked

!15

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals

for process p (PNM set)
• If (PNM is empty), i.e., no signal is pending & nonmasked

• No signals to respond to; simply pass control to next instruction in the
logical flow for p

!15

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals

for process p (PNM set)
• If (PNM is empty), i.e., no signal is pending & nonmasked

• No signals to respond to; simply pass control to next instruction in the
logical flow for p

• Else

!15

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals

for process p (PNM set)
• If (PNM is empty), i.e., no signal is pending & nonmasked

• No signals to respond to; simply pass control to next instruction in the
logical flow for p

• Else
• Choose least nonzero bit k in pnm and force process p to receive

signal k, i.e., by executing the corresponding signal handler

!15

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals

for process p (PNM set)
• If (PNM is empty), i.e., no signal is pending & nonmasked

• No signals to respond to; simply pass control to next instruction in the
logical flow for p

• Else
• Choose least nonzero bit k in pnm and force process p to receive

signal k, i.e., by executing the corresponding signal handler
• Repeat for all nonzero k in pnm

!15

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals

for process p (PNM set)
• If (PNM is empty), i.e., no signal is pending & nonmasked

• No signals to respond to; simply pass control to next instruction in the
logical flow for p

• Else
• Choose least nonzero bit k in pnm and force process p to receive

signal k, i.e., by executing the corresponding signal handler
• Repeat for all nonzero k in pnm
• Pass control to next instruction in logical flow for p

!15

Carnegie Mellon

Blocking Signals

!16

 sigset_t mask, prev_mask;

 sigemptyset(&mask);
 sigaddset(&mask, SIGINT);

 /* Block SIGINT and save previous blocked set */
 sigprocmask(SIG_BLOCK, &mask, &prev_mask);

 /* Code region that will not be interrupted by SIGINT */

 /* Restore previous blocked set, unblocking SIGINT */
 sigprocmask(SIG_SETMASK, &prev_mask, NULL);

• Explicit blocking and unblocking signal

• sigprocmask function
• sigemptyset – Create empty set
• sigfillset – Add every signal number to set
• sigaddset – Add signal number to set
• sigdelset – Delete signal number from set

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

!17

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

!17

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

!17

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

!17

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

!17

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)
• Context switch to child,

which then terminates, sends
a SIGCHLD signal

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

!17

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)
• Context switch to child,

which then terminates, sends
a SIGCHLD signal

• Another context switch back
to parent, and now the kernel
needs to execute the
SIGCHLD handler

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

!17

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)
• Context switch to child,

which then terminates, sends
a SIGCHLD signal

• Another context switch back
to parent, and now the kernel
needs to execute the
SIGCHLD handler

• When return to parent
process, y == 20!

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

• Programmers have no control over the execution ordering between the

main program and the signal handler, that is:
• when a signal happens/delivers (depends on user or other process)
• when the signal handler will be executed (depends on kernel)

• If not careful, shared data structures can be corrupted

!18

Carnegie Mellon

Fixing the Signal Handling Bug

!19

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;
 sigfillset(&mask_all);
 signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
 if (x == 5)
 y = x * 2; // You’d expect y == 10
 Sigprocmask(SIG_SETMASK, &prev_all, NULL);

 exit(0);
}

• Block all signals before
accessing a shared,
global data structure.

• Can’t use a lock (later
in this course)

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

!20

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe

!20

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”

!20

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”
• Popular functions on the list:

!20

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”
• Popular functions on the list:

• _exit, write, wait, waitpid, sleep, kill

!20

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”
• Popular functions on the list:

• _exit, write, wait, waitpid, sleep, kill
• Popular functions that are not on the list:

!20

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”
• Popular functions on the list:

• _exit, write, wait, waitpid, sleep, kill
• Popular functions that are not on the list:

• printf, sprintf, malloc, exit

!20

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”
• Popular functions on the list:

• _exit, write, wait, waitpid, sleep, kill
• Popular functions that are not on the list:

• printf, sprintf, malloc, exit
• Unfortunate fact: write is the only async-signal-safe output

function

!20

Carnegie Mellon

Another Unsafe Signal Handler Example

!21

Carnegie Mellon

Another Unsafe Signal Handler Example
• Assume a program wants to do the following:

• The parent creates multiple child processes
• When each child process is created, add the child PID to a

queue
• When a child process terminates, the parent process

removes the child PID from the queue

!21

Carnegie Mellon

Another Unsafe Signal Handler Example
• Assume a program wants to do the following:

• The parent creates multiple child processes
• When each child process is created, add the child PID to a

queue
• When a child process terminates, the parent process

removes the child PID from the queue
• One possible implementation:

• An array for keeping the child PIDs
• Use a loop to fork child, and add PID to the array after fork
• Install a handler for SIGCHLD in parent process
• The SIGCHLD handler removes the child PID

!21

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

!22

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

!22

The following can happen:

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

!22

The following can happen:
• The first child runs, and

terminates

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

!22

The following can happen:
• The first child runs, and

terminates
• Kernel sends SIGCHLD

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

!22

The following can happen:
• The first child runs, and

terminates
• Kernel sends SIGCHLD
• Context switch to parent,

which executes the SIGCHLD
handler before
addjob(pid) is executed

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

!22

The following can happen:
• The first child runs, and

terminates
• Kernel sends SIGCHLD
• Context switch to parent,

which executes the SIGCHLD
handler before
addjob(pid) is executed

• The handler deletes the job,
which isn’t in the queue yet!

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

!22

The following can happen:
• The first child runs, and

terminates
• Kernel sends SIGCHLD
• Context switch to parent,

which executes the SIGCHLD
handler before
addjob(pid) is executed

• The handler deletes the job,
which isn’t in the queue yet!

• The parent process resumes
and adds a terminated child
to job list

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

!23

Key in this example: creating a
child and adding its PID to the
job list must be an atomic unit:
either both happen or neither
happen; there can’t be
anything else that separates
the two.

Carnegie Mellon

Second Attempt
void handler(int sig)
{
 sigset_t mask_all, prev_all;
 pid_t pid;

 sigfillset(&mask_all);
 while ((pid = wait(NULL)) > 0) {
 sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
 deletejob(pid);
 sigprocmask(SIG_SETMASK, &prev_all, NULL);
 }
}
int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;

 sigfillset(&mask_all);
 signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) {
 Execve("/bin/date", argv, NULL);
 }
 sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
 addjob(pid);
 sigprocmask(SIG_SETMASK, &prev_all, NULL);
 }
 exit(0);
}

!24

Carnegie Mellon

Third Attempt (The Correct One)

!25

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, mask_one, prev_one;

 Sigfillset(&mask_all);
 Sigemptyset(&mask_one);
 Sigaddset(&mask_one, SIGCHLD);
 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
 if ((pid = Fork()) == 0) { /* Child process */
 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
 Execve("/bin/date", argv, NULL);
 }
 addjob(pid); /* Add the child to the job list */
 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
 }
 exit(0);
}

Carnegie Mellon

Third Attempt (The Correct One)

!25

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, mask_one, prev_one;

 Sigfillset(&mask_all);
 Sigemptyset(&mask_one);
 Sigaddset(&mask_one, SIGCHLD);
 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
 if ((pid = Fork()) == 0) { /* Child process */
 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
 Execve("/bin/date", argv, NULL);
 }
 addjob(pid); /* Add the child to the job list */
 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
 }
 exit(0);
}

Why this?

Thinking in Parallel is Hard

�26

Thinking in Parallel is Hard

�26

Maybe Thinking is Hard

Carnegie Mellon

Today
• Signals: The Way to Communicate with Processes

• Interrupts and exceptions: how signals are triggered

!27

Carnegie Mellon

Interrupts in a Processor

!28

Processor

Chipset
Bus

ke
yb
oa
rd

di
sk

ne
tw
or
k

Interrupt
Signal
Lines

Carnegie Mellon

Interrupts, a.k.a., Asynchronous Exceptions

• Caused by events external to the processor
• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

!29

Carnegie Mellon

Interrupts, a.k.a., Asynchronous Exceptions

• Caused by events external to the processor
• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

!29

Carnegie Mellon

Interrupts, a.k.a., Asynchronous Exceptions

• Caused by events external to the processor
• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt
• Used by the kernel to take back control from user programs

• I/O interrupt from external device
• Hitting Ctrl-C at the keyboard
• Arrival of a packet from a network
• Arrival of data from a disk

!29

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

!30

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions

• Faults

!30

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions

• Faults
• Unintentional but possibly recoverable
• Examples: page faults (recoverable), protection faults (the

infamous Segmentation Fault!) (unrecoverable in Linux), floating
point exceptions (unrecoverable in Linux)

• These exceptions will generate signals to processes
• Aborts

!30

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions

• Faults
• Unintentional but possibly recoverable
• Examples: page faults (recoverable), protection faults (the

infamous Segmentation Fault!) (unrecoverable in Linux), floating
point exceptions (unrecoverable in Linux)

• These exceptions will generate signals to processes
• Aborts

• Unintentional and unrecoverable
• Examples: illegal instruction, parity error, machine check
• Aborts current program through a SIGABRT signal

!30

Carnegie Mellon

Each Exception Has a Handler
• Each type of event has a  

unique exception number k

• k = index into exception
table

• Exception table lives in
memory. Its start address is
stored in a special register

• Handler k is called each
time exception k occurs

!31

0
1
2 ...

n-1

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

Carnegie Mellon

Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?

!32

Carnegie Mellon

Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?

• Ctrl + C sends a keyboard interrupt to the CPU, which triggers an
interrupt handler

!32

Carnegie Mellon

Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?

• Ctrl + C sends a keyboard interrupt to the CPU, which triggers an
interrupt handler

• The interrupt handler, executed by the kernel, triggers certain piece of
the kernel, which generates the signal, which is then delivered to the
target process

!32

Carnegie Mellon

When to Execute the Handler?
• Interrupts: when convenient. Typically wait until the current

instructions in the pipeline are finished

• Exceptions: typically immediately as programs can’t continue

without resolving the exception (e.g., page fault)

•Maskable verses Unmaskable

• Interrupts can be individually masked (i.e., ignored by CPU)
• Synchronous exceptions are usually unmaskable

• Some interrupts are intentionally unmaskable

• Called non-maskable interrupts (NMI)
• Indicating a critical error has occurred, and that the system is

probably about to crash

!33

Carnegie Mellon

Where Do You Restart?
• Interrupts/Traps

• Handler returns to the following instruction

!34

Carnegie Mellon

Where Do You Restart?
• Interrupts/Traps

• Handler returns to the following instruction
• Faults

• Exception handler returns to the instruction that caused the
exception, i.e., re-execute it!

!34

Carnegie Mellon

Where Do You Restart?
• Interrupts/Traps

• Handler returns to the following instruction
• Faults

• Exception handler returns to the instruction that caused the
exception, i.e., re-execute it!

• Aborts

• Never returns to the program

!34

