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Announcements

 
 A4 is due 11:59pm, Thursday, November 18

 Remember to let us know about slip days

 Also remember to type the dot when running the turn-in 
script

 Semester ends in about a month!
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Today
• Signals: The Way to Communicate with Processes

• Interrupts and exceptions: how signals are triggered
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Signals

• A signal is a small message that notifies a process that an 
event of some type has occurred in the system

• Sent from the OS kernel 
• Could be requested by another process, by user, or automatically by 

the kernel 
• Signal type is identified by small integer ID’s (1-30)
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ID Name Default Action Corresponding Event
2 SIGINT Terminate User typed ctrl-c 
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated
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Sending Signals with kill Function
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void fork12() 
{ 
    pid_t pid[N]; 
    int i; 
    int child_status; 

    for (i = 0; i < N; i++) 
        if ((pid[i] = fork()) == 0) { 
            /* Child: Infinite Loop */ 
            while(1) 
                ; 
        } 
     
    for (i = 0; i < N; i++) { 
        printf("Killing process %d\n", pid[i]); 
        kill(pid[i], SIGINT); 
    } 

    for (i = 0; i < N; i++) { 
        pid_t wpid = wait(&child_status); 
        if (WIFEXITED(child_status)) 
            printf("Child %d terminated with exit status %d\n", 
                   wpid, WEXITSTATUS(child_status)); 
        else 
            printf("Child %d terminated abnormally\n", wpid); 
    } 
}

forks.c
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Default Actions to Signals

• Each signal type has a predefined default action, which is 
one of:

• The process terminates 
• The process stops until restarted by a SIGCONT signal 
• The process ignores the signal
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Installing Signal Handlers
• The signal function modifies the default action associated 

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)
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Installing Signal Handlers
• The signal function modifies the default action associated 

with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

• Called when process receives signal of type signum
• Referred to as “installing” the handler
• Executing handler is called “catching” or “handling” the signal
• When the handler executes its return statement, control passes 

back to instruction in the control flow of the process that was 
interrupted by receipt of the signal
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Signal Handling Example
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void sigint_handler(int sig) /* SIGINT handler */ 
{ 
    printf("So you think you can stop the bomb with ctrl-c, do you?\n"); 
    sleep(2); 
    printf("Well..."); 
    fflush(stdout); 
    sleep(1); 
    printf("OK. :-)\n"); 
    exit(0); 
} 

int main() 
{ 
    /* Install the SIGINT handler */ 
    if (signal(SIGINT, sigint_handler) == SIG_ERR) 
        unix_error("signal error"); 

    /* Wait for the receipt of a signal */ 
    pause(); 

    return 0; 
} sigint.c
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Signals Handlers as Concurrent Flows

• A signal handler is a separate logical flow (not process) 
that runs concurrently with the main program
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Process A  

while (1) 
    ;

Process A 

handler(){ 
    … 
}

Process B

Time
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Nested Signal Handlers 
• Handlers can be interrupted by other handlers
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(2) Control passes 
to handler S

 Main program

(5) Handler T
returns to 
handler S

Icurr

Inext

(1) Program 
catches signal s

 Handler S  Handler T

(3) Program 
catches signal t

(4)  Control passes 
to handler T

(6) Handler S
returns to 
main program

(7) Main program 
resumes 



Carnegie Mellon

Receiving/Responding to Signals
• Kernel handles signals delivered to a process p when it 

switches to p from kernel mode to user mode (e.g., 
after a context switch)
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Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time
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Receiving/Responding to Signals
• Kernel handles signals delivered to a process p when it 

switches to p from kernel mode to user mode (e.g., 
after a context switch)
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Signal delivered 
to process A

Signal received 
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext
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Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type for a 

process
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent 
signals of type k that are sent to that process are discarded

• A pending signal is received at most once
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Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type for a 

process
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent 
signals of type k that are sent to that process are discarded

• A pending signal is received at most once

• A process can block/mask the receipt of certain signals
• Blocked signals can be delivered, i.e., in the pending state, but will not 

be received/responded to until the signal is unblocked
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Pending/Blocked Bits 

• Kernel maintains pending and masked bit vectors in the 
context of each process

• pending: represents the set of pending signals


• Kernel sets bit k in pending when a signal of type k is delivered 
• Kernel clears bit k in pending when a signal of type k is received  

• masked: represents the set of blocked signals

• Can be set and cleared by using the sigprocmask function 
• Also referred to as the signal mask.

!14



Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
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Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals 

for process p (PNM set)
• If  (PNM is empty), i.e., no signal is pending & nonmasked

• No signals to respond to; simply pass control to next instruction in the 
logical flow for p

• Else
• Choose least nonzero bit k in pnm and force process p to receive 

signal k, i.e., by executing the corresponding signal handler
• Repeat for all nonzero k in pnm
• Pass control to next instruction in logical flow for p
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Blocking Signals

!16

    sigset_t mask, prev_mask; 

    sigemptyset(&mask); 
    sigaddset(&mask, SIGINT); 

    /* Block SIGINT and save previous blocked set */ 
    sigprocmask(SIG_BLOCK, &mask, &prev_mask); 

    /* Code region that will not be interrupted by SIGINT */ 

    /* Restore previous blocked set, unblocking SIGINT */ 
    sigprocmask(SIG_SETMASK, &prev_mask, NULL);

• Explicit blocking and unblocking signal

• sigprocmask function 
• sigemptyset – Create empty set 
• sigfillset – Add every signal number to set 
• sigaddset – Add signal number to set 
• sigdelset – Delete signal number from set
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Safe Signal Handling

• Handlers are tricky because they are concurrent with main 
program and may share the same global data structures.
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static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid, y = 0; 
    Signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    exit(0); 
}
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static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid, y = 0; 
    Signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    exit(0); 
}

What if the following happens:
• Parent process executes and 

finishes if (x == 5)
• Context switch to child, 

which then terminates, sends 
a SIGCHLD signal

• Another context switch back 
to parent, and now the kernel 
needs to execute the 
SIGCHLD handler

• When return to parent 
process, y == 20!
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Safe Signal Handling

• Handlers are tricky because they are concurrent with main 
program and may share the same global data structures.

• Programmers have no control over the execution ordering between the 

main program and the signal handler, that is: 
• when a signal happens/delivers (depends on user or other process) 
• when the signal handler will be executed (depends on kernel) 

• If not careful, shared data structures can be corrupted
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Fixing the Signal Handling Bug

!19

static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, prev_all; 
    sigfillset(&mask_all); 
    signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); 
    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    Sigprocmask(SIG_SETMASK, &prev_all, NULL); 

    exit(0); 
}

• Block all signals before 
accessing a shared, 
global data structure.


• Can’t use a lock (later 
in this course)
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Async-Signal-Safety 

• Function is async-signal-safe if it either has no access to 
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.
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Async-Signal-Safety 

• Function is async-signal-safe if it either has no access to 
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe 
• Source: “man 7 signal”
• Popular functions on the list:

• _exit, write, wait, waitpid, sleep, kill
• Popular functions that are not on the list:

• printf,  sprintf, malloc, exit 
• Unfortunate fact: write is the only async-signal-safe output 

function
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Another Unsafe Signal Handler Example
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Another Unsafe Signal Handler Example
• Assume a program wants to do the following:


• The parent creates multiple child processes 
• When each child process is created, add the child PID to a 

queue 
• When a child process terminates, the parent process 

removes the child PID from the queue
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Another Unsafe Signal Handler Example
• Assume a program wants to do the following:


• The parent creates multiple child processes 
• When each child process is created, add the child PID to a 

queue 
• When a child process terminates, the parent process 

removes the child PID from the queue
• One possible implementation:


• An array for keeping the child PIDs 
• Use a loop to fork child, and add PID to the array after fork 
• Install a handler for SIGCHLD in parent process 
• The SIGCHLD handler removes the child PID
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First Attempt
void handler(int sig) 
{ 
    pid_t pid; 

    while ((pid = wait(NULL)) > 0) { /* Reap child */ 
        /* Delete the child from the job list */ 
        deletejob(pid); 
    } 
} 

int main(int argc, char **argv) 
{ 
    int pid; 

    Signal(SIGCHLD, handler); 
    initjobs(); /* Initialize the job list */ 

    while (1) { 
        if ((pid = Fork()) == 0) { /* Child */ 
            Execve("/bin/date", argv, NULL); 
        } 
        /* Add the child to the job list */ 
        addjob(pid); 
    } 
    exit(0); 
}
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terminates
• Kernel sends SIGCHLD
• Context switch to parent, 

which executes the SIGCHLD 
handler before 
addjob(pid) is executed
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• The handler deletes the job, 
which isn’t in the queue yet!
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The following can happen:
• The first child runs, and 

terminates
• Kernel sends SIGCHLD
• Context switch to parent, 

which executes the SIGCHLD 
handler before 
addjob(pid) is executed

• The handler deletes the job, 
which isn’t in the queue yet!

• The parent process resumes 
and adds a terminated child 
to job list
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First Attempt
void handler(int sig) 
{ 
    pid_t pid; 

    while ((pid = wait(NULL)) > 0) { /* Reap child */ 
        /* Delete the child from the job list */ 
        deletejob(pid); 
    } 
} 

int main(int argc, char **argv) 
{ 
    int pid; 

    Signal(SIGCHLD, handler); 
    initjobs(); /* Initialize the job list */ 

    while (1) { 
        if ((pid = Fork()) == 0) { /* Child */ 
            Execve("/bin/date", argv, NULL); 
        } 
        /* Add the child to the job list */ 
        addjob(pid); 
    } 
    exit(0); 
}

!23

Key in this example: creating a 
child and adding its PID to the 
job list must be an atomic unit: 
either both happen or neither 
happen; there can’t be 
anything else that separates 
the two.
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Second Attempt
void handler(int sig) 
{ 
    sigset_t mask_all, prev_all; 
    pid_t pid; 

    sigfillset(&mask_all); 
    while ((pid = wait(NULL)) > 0) { 
        sigprocmask(SIG_BLOCK, &mask_all, &prev_all); 
        deletejob(pid); 
        sigprocmask(SIG_SETMASK, &prev_all, NULL); 
    } 
} 
int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, prev_all; 

    sigfillset(&mask_all); 
    signal(SIGCHLD, handler); 
    initjobs(); /* Initialize the job list */ 

    while (1) { 
        if ((pid = Fork()) == 0) { 
            Execve("/bin/date", argv, NULL); 
        } 
        sigprocmask(SIG_BLOCK, &mask_all, &prev_all); 
        addjob(pid); 
        sigprocmask(SIG_SETMASK, &prev_all, NULL); 
    } 
    exit(0); 
}

!24



Carnegie Mellon

Third Attempt (The Correct One)

!25

int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, mask_one, prev_one; 

    Sigfillset(&mask_all); 
    Sigemptyset(&mask_one); 
    Sigaddset(&mask_one, SIGCHLD); 
    Signal(SIGCHLD, handler); 
    initjobs(); /* Initialize the job list */ 

    while (1) { 
        Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */ 
        if ((pid = Fork()) == 0) { /* Child process */ 
            Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */ 
            Execve("/bin/date", argv, NULL); 
        } 
 addjob(pid);  /* Add the child to the job list */ 
        Sigprocmask(SIG_SETMASK, &prev_one, NULL);  /* Unblock SIGCHLD */ 
    } 
    exit(0); 
}
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Third Attempt (The Correct One)

!25

int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, mask_one, prev_one; 

    Sigfillset(&mask_all); 
    Sigemptyset(&mask_one); 
    Sigaddset(&mask_one, SIGCHLD); 
    Signal(SIGCHLD, handler); 
    initjobs(); /* Initialize the job list */ 

    while (1) { 
        Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */ 
        if ((pid = Fork()) == 0) { /* Child process */ 
            Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */ 
            Execve("/bin/date", argv, NULL); 
        } 
 addjob(pid);  /* Add the child to the job list */ 
        Sigprocmask(SIG_SETMASK, &prev_one, NULL);  /* Unblock SIGCHLD */ 
    } 
    exit(0); 
}

Why this?
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Maybe Thinking is Hard
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Today
• Signals: The Way to Communicate with Processes

• Interrupts and exceptions: how signals are triggered

!27
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Interrupts in a Processor

!28

Processor

Chipset
Bus

ke
yb
oa
rd

di
sk

ne
tw
or
k

Interrupt 
Signal 
Lines



Carnegie Mellon

Interrupts, a.k.a., Asynchronous Exceptions

• Caused by events external to the processor
• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction
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Interrupts, a.k.a., Asynchronous Exceptions

• Caused by events external to the processor
• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt
• Used by the kernel to take back control from user programs

•  I/O interrupt from external device
• Hitting Ctrl-C at the keyboard
• Arrival of a packet from a network
• Arrival of data from a disk
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Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:
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• Intentional
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Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions

• Faults
• Unintentional but possibly recoverable 
• Examples: page faults (recoverable), protection faults (the 

infamous Segmentation Fault!) (unrecoverable in Linux), floating 
point exceptions (unrecoverable in Linux)

• These exceptions will generate signals to processes
• Aborts
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Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions

• Faults
• Unintentional but possibly recoverable 
• Examples: page faults (recoverable), protection faults (the 

infamous Segmentation Fault!) (unrecoverable in Linux), floating 
point exceptions (unrecoverable in Linux)

• These exceptions will generate signals to processes
• Aborts

• Unintentional and unrecoverable
• Examples: illegal instruction, parity error, machine check
• Aborts current program through a SIGABRT signal
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Each Exception Has a Handler
• Each type of event has a  

unique exception number k


• k = index into exception 
table


• Exception table lives in 
memory. Its start address is 
stored in a special register


• Handler k is called each 
time exception k occurs

!31
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Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?
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Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?

• Ctrl + C sends a keyboard interrupt to the CPU, which triggers an 
interrupt handler

• The interrupt handler, executed by the kernel, triggers certain piece of 
the kernel, which generates the signal, which is then delivered to the 
target process
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When to Execute the Handler?
• Interrupts: when convenient. Typically wait until the current 

instructions in the pipeline are finished

• Exceptions: typically immediately as programs can’t continue 

without resolving the exception (e.g., page fault)

•Maskable verses Unmaskable


• Interrupts can be individually masked (i.e., ignored by CPU) 
• Synchronous exceptions are usually unmaskable 

• Some interrupts are intentionally unmaskable

• Called non-maskable interrupts (NMI) 
• Indicating a critical error has occurred, and that the system is 

probably about to crash

!33
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Where Do You Restart?
• Interrupts/Traps


• Handler returns to the following instruction
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• Interrupts/Traps


• Handler returns to the following instruction
• Faults


• Exception handler returns to the instruction that caused the 
exception, i.e., re-execute it!
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Where Do You Restart?
• Interrupts/Traps


• Handler returns to the following instruction
• Faults


• Exception handler returns to the instruction that caused the 
exception, i.e., re-execute it!

• Aborts

• Never returns to the program

!34


