CSC 252: Computer
Organization
Fall 2021: Lecture 19

Process Control

Signals

Instructor: Alan Beadle

Department of Computer Science
University of Rochester

Announcements

You can take your exam back once you have checked for
grading errors

For integrity reasons, please bring up possible grading
mistakes before you leave with your exam; Not after.

A4 is due in 11 days, and you should have started by now
so that you have time to get help

Context Switching

* Processes are managed by a shared chunk of memory-resident
OS code called the kernel
« Important: the kernel is not a separate process, but rather runs as
part of some existing process.

* Control flow passes from one process to another via a context
switch

Process A Process B

I
|
I
I
|
I user code
I

kernel code } context switch

Time user code

kernel code } context switch

user code

<

Process Graph Example

int main()

{
pid_t pid;
int x = 1;
child: x=2]
pid = Fork(); pr?ﬁff . Child
if (pid == 0) { /x Child x/
printf("child : x=%d\n", ++x); xX== Lparentr x=0
o -® ¢ Parent

ex1t(0); main fork printf exit

}

/* Parent x/
printf("parent: x=%d\n", —--x);
exit(0);

} fork.c

Interpreting Process Graphs

* QOriginal graph:

child: x=2

:..7 ;..
printf exit
x==1 parent: x=0
o @ < J
main fork printf exit

e Abstracted graph:

L - g3
o @ »
a C

n.e

Interpreting Process Graphs

* QOriginal graph:

child: x=2
r@— @
printf exit
x==1 Lparent: x=0
o @ < J
main fork printf exit
e Abstracted graph: Feasible execution ordering:
A A0
e
o — L g J @ a b e C f d
a C d

Interpreting Process Graphs

* QOriginal graph:

child: x=2
r@— @
printf exit
x==1 Lparent: x=0
o @ < J
main fork printf exit
e Abstracted graph: Feasible execution ordering:
A A0
e
o — L g J @ a b e C f d
a C d

Infeasible execution ordering:

7N
a b f ¢ e d

fork Example: Two consecutive forks

void fork2()

{

printf(“LO\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

forks.c

fork Example: Two consecutive forks

void fork2()

{
printf("LO\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

} forks.c

LO

Bye
»@
printf
Ll Bye
_:.— » »@®
printf fork printf
Bye

printf
L1 Bye
-0

.7
printf

r@— »@— > >
fork printf fork printf

fork Example: Two consecutive forks

void fork2()
{

printf("LO\n");

fork();

printf("L1\n");

fork();

printf("Bye\n");

forks.c

Bye
»@®
printf
Ll Bye
>@— »> »@®
printf fork printf
Bye
»@
printf
L0 L1 ‘ Bye
@o— r@— »@— > ad
printf fork printf fork printf

Feasible output:

LO
L1
Bye
Bye
L1
Bye
Bye

fork Example: Two consecutive forks

Bye
>@®
void fork2() printf
{ L1 Bye
printf("“LO\n"); Printf fork printf
fork(); Bye

printf("L1\n");

fork(); printf
printf("Bye\n"); LO L1l gze

o— @ — r@— > >
} forks.c printf fork printf fork printf
Feasible output: Infeasible output:
LO LO
L1 Bye
Bye L1
Bye Bye
L1 L1
Bye Bye

Bye Bye

fork Example: Nested forks in parent

void fork4()

{
printf(“LO\n");
if (fork() '= 0) {
printf("L1\n");
if (fork() '= 0) {
printf("L2\n");
}

}
printf("Bye\n");

} forks.c

fork Example: Nested forks in parent

void fork4()

{
printf("LO\n");
if (fork() !'= 0) {
printf("L1\n");
if (fork() !'= 0) {
printf("L2\n");
}

}
printf("Bye\n");

} forks.c

LO

Bye Bye

pr Thes ‘ printf
Ll L2 Bye
»@— »> »@— =X

o »
printf fork pr

intf fork printf printf

fork Example: Nested forks in parent

void fork4()

{
printf("LO\n");
if (fork() !'= 0) {
printf("L1\n");
if (fork() !'= 0) {
printf("L2\n");
}

}
printf("Bye\n");

} forks.c

LO

Bye Bye

pr Thes ‘ printf
Ll L2 Bye
»@— »> »@— =X

o »
printf fork pr

intf fork printf printf

Feasible output:

LO
L1
Bye
Bye
L2
Bye

fork Example: Nested forks in parent

void fork4()

{
printf("LO\n");
if (fork() !'= 0) {
printf("L1\n");
if (fork() !'= 0) {
printf("L2\n");
}

}
printf("Bye\n");

} forks.c

LO

Bye Bye

pr Thes ‘ printf
Ll L2 Bye
»@— »> »@— =X

o— >
printf fork pr

Feasible output:

LO
L1
Bye
Bye
L2
Bye

intf fork printf printf

Infeasible output:
LO

Bye

L1

Bye

Bye

L2

fork Example: Nested forks in children

void fork5()
{
printf("LO\n");
if (fork() == 0) {
printf("L1\n");
if (fork() == 0) {
printf("L2\n");
}

}
printf("Bye\n");

} forks.c

fork Example: Nested forks in children

void fork5()
{ L2 Bye

printf("LO\n"); printf printf
if (fork() == 0) { L1l Bye
printf("L1\n"); printf fork printf
if (fork() == 0) { LO Bye
g]

printf(“L2\n"); . ftf fork printt

}

}
printf("Bye\n");

} forks.c

fork Example: Nested forks in children

void fork5()

{

printf("LO\n");

if (fork() == 0) {
printf("L1\n");

if (fork() =

=0) {

printf("L2\n");

}

}
printf("Bye\n");

forks.c

LO

L2 Bye
pfrntf pfg.ntf

L1l Bye

priﬁtf fork pr?ntf

Bye
@

o—

>

printf fork pr'intf

Feasible output:

LO
Bye
L1
L2
Bye
Bye

fork Example: Nested forks in children

void fork5()

{

printf("LO\n");

if (fork() == 0) {
printf("L1\n");
if (fork() == 0) {
printf("L2\n");

}

}
printf("Bye\n");

forks.c

LO

L2 Bye

L1l

pfrntf pfg.ntf
Bye

priﬁtf fork pr?ntf

Bye
@

o—

>

printf fork pr'intf

Feasible output:

LO
Bye
L1
L2
Bye
Bye

LO
Bye
L1
Bye
Bye
L2

Infeasible output:

Reaping Child Processes

 When process terminates, it still consumes system resources
« Examples: Exit status, various OS tables
« Called a “zombie”: Living corpse, half alive and half dead
* Reaping
« Performed by parent on terminated child (using wait or waitpid)

10

Reaping Child Processes

 When process terminates, it still consumes system resources
« Examples: Exit status, various OS tables

« Called a “zombie”: Living corpse, half alive and half dead
* Reaping
« Performed by parent on terminated child (using wait or waitpid)

« Parent is given exit status information
« Kernel then deletes zombie child process

* What if parent doesn’t reap?

« |f any parent terminates without reaping a child, then the orphaned
child will be reaped by init process (pid == 1)

10

Reaping Child Processes

 When process terminates, it still consumes system resources
« Examples: Exit status, various OS tables

« Called a “zombie”: Living corpse, half alive and half dead
* Reaping
« Performed by parent on terminated child (using wait or waitpid)

« Parent is given exit status information
« Kernel then deletes zombie child process

* What if parent doesn’t reap?

« |f any parent terminates without reaping a child, then the orphaned
child will be reaped by init process (pid == 1)

« S0, only need explicit reaping in long-running processes
* e.g., shells and servers

10

void fork7() {

if (fork() == 0) {
/* Child x/
printf("Terminating Child, PID = %d\n", getpid());
exit(0);

} else {
printf("Running Parent, PID = %d\n", getpid());
while (1)

; /% Infinite loop */

} forks.c

1

void fork7() {
if (fork() == 0) {

/* Child x/
printf("Terminating Child, PID = %d\n", getpid());
exit(0);
} else {
printf("Running Parent, PID = %d\n", getpid());
while (1)
; /% Infinite loop */
} } forks.c

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tecsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated

linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tecsh
6642 ttyp9 00:00:00 ps

1

void fork7() {
if (fork() == 0) {

/* Child x/
printf("Terminating Child, PID = %d\n", getpid());
exit(0);
} else {
printf("Running Parent, PID = %d\n", getpid());
while (1)
; /% Infinite loop */
} } forks.c

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639

Terminating Child, PID = 6640 .
linux> ps ® ps shows child process

PID TTY TIME CMD as “defunct” (i.e., a
6585 ttyp9 00:00:00 tcsh / zombie)
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tecsh
6642 ttyp9 00:00:00 ps

void fork7() {

if (fork() == 0) {

/* Child x/

printf("Terminating Child, PID = %d\n", getpid());

exit(0);
} else {

printf("Running Parent, PID = %d\n", getpid());

while (1)

; /% Infinite loop */

forks.c

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639
Terminating Child, PID

linux> ps
PID TTY
6585 ttyp9
6639 ttyp9
6640 ttyp9
6641 ttyp9

00:
00:
00:
00:

linux> kill 6639
[1] Terminated

linux> ps
PID TTY
6585 ttyp9
6642 ttyp9

00:
00:

TIME
00:00
00:03
00:00
00:00

= 6640

®* ps shows child process

CMD as “defunct” (i.e., a
e / zombie)
forks

forks <defunct>

Ps * Killing parent allows

4%_

TIME
00:00
00:00

child to be reaped by
init

CMD

tcsh

PsS

1

void fork8()
{
if (fork() == 0) {

/% Child %/

printf("Running Child, PID = %d\n",

getpid());
while (1)
; /* Infinite loop *x/
} else {

printf("Terminating Parent, PID = %d\n",

getpid());
exit(0);

forks.c

12

void fork8()

{

if (fork() ==

9) {

/* Child x/
printf("Running Child, PID = %d\n",
getpid());

while (1)

; /* Infinite loop */

} else {

printf("Terminating Parent, PID = %d\n",
getpid());

exit(0);

forks.c

linux> ./forks 8
Terminating Parent, PID
= 6676

Running Child, PID

linux> ps
PID TTY
6585 ttyp9
6676 ttyp9
6677 ttyp9

linux> kill

linux> ps
PID TTY
6585 ttyp9
6678 ttyp9

00:
00:
00:

6676

00:
00:

TIME
00:00
00:06
00:00

TIME
00:00
00:00

= 6675

CMD
tcsh
forks

PsS

CMD
tcsh

PsS

12

void fork8()

{

if (fork() == 0) {
/* Child x/
printf("Running Child, PID = %d\n",
getpid());
while (1)
; /* Infinite loop *x/
} else {

printf("Terminating Parent, PID = %d\n",

getpid());
exit(0);

forks.c

linux> ./forks 8
Terminating Parent, PID = 6675 °
Running Child, PID = 6676
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks
6677 ttyp9 00:00:00 ps — e
linux> kill 6676‘437
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

Child process still active even
though parent has terminated.
Can’t be reaped since it’s still
running!

Must kill child explicitly, or else
will keep running indefinitely

12

wait: Synchronizing with Children

void fork9() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");
exit(0);

} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}

printf("Bye\n");

} forks.c

13

wait: Synchronizing with Children

void fork9() {
int child_status;

HC exit
if (fork() == @) { printf |
printf("HC: hello from child\n");
exit(0);
} else { BCTe
printf("HP: hello from parent\n"); L gff v =z
wait(&child_status); fork printf wait printf

printf("CT: child has terminated\n");
}
printf("Bye\n");
} forks.c

13

wait: Synchronizing with Children

void fork9() {
int child_status;

HC exit

if (fork() == @) { printf |
printf("HC: hello from child\n");
exit(0);

} else { BCTe
printf("HP: hello from parent\n"); L gﬁf v =z
wait (&child_status); fork printf wait printf
printf("CT: child has terminated\n");

}

printf("Bye\n");

} forks.c

Feasible output:
HC

HP

CT

Bye

13

wait: Synchronizing with Children

void fork9() {

int child_status;

HC exit

if (fork() == 0) { printf |
printf("HC: hello from child\n");
exit(0);

} else { BCTe
printf("HP: hello from parent\n"); L gﬁf v =z
wait (&child_status); fork printf wait printf
printf("CT: child has terminated\n");

}

printf("Bye\n");

} forks.c
Feasible output: Infeasible output:
HC HP
HP CT
CT Bye

Bye HC

13

wait: Synchronizing with Children

* Parent reaps a child by calling the wait function

®int wait (int *child status)
« Suspends current process until one of its children terminates
« Return value is the pid of the child process that terminated
 f child status != NULL, then the integer it points to will be set
to a value that indicates reason the child terminated and the exit
status:
« Checked using macros defined in wait.h

* WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

- See textbook for details

14

Another wait Example

e |f multiple children completed, will take in arbitrary order
e (Can use macros WIFEXITED and WEXITSTATUS to get information
about exit status

void forklo() {
int i, child_status;

for (1 =0; 1 < N; i++)
if (fork() == 0) {
exit(100+1i); /* Child =/
}
for (1 =0; i < N; i++) { /% Parent x/
pid t wpid = wait(&child_status);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

}
rorks.cC

waitpid: Waiting for a Specific Process

® pid t waitpid(pid t pid, 1int &status, int options)
« Suspends current process until specific process terminates

 Various options (see textbook)

void forkll() {
pid_t pid[N];
int i:
int child _status;

for (1 = 0; 1 < N; 1i++)
if ((pid[i] = fork()) == 0)
exit(100+1); /* Child x/
for (1 = N-1; 1 >=0; i--) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminate abnormally\n", wpid);

} forks.c

execve: Loading and Running Programs

Executes “/bin/1s -1t /usr/include” in child process using
current environment:

char xmyargv[] = {“/bin/ls”, “-1t”, “/usr/include”};
char xenviron[] = {“USER=droh”, “PWD=*/usr/droh”};

if ((pid = Fork()) == 0) { /% Child runs program x/
if (execve(myargv[0], myargv, environ) < 0) {
printf("%s: Command not found.\n", myargv[0]);
exit(1l);

17

execve: Loading and Running Programs

® int execve(char *filename, char *argv[], char *envp[])

18

execve: Loading and Running Programs

® int execve(char *filename, char *argv[], char *envp[])

e | oads and runs in the current process:
Executable file £ilename
« Argument list argv
- By convention argv[0]==filename
Environment variable list envp
* “name=value” strings (e.g., USER=droh)

18

execve: Loading and Running Programs

® int execve(char *filename, char *argv[], char *envp[])

e | oads and runs in the current process:
Executable file filename
« Argument list argv
- By convention argv[0]==filename
Environment variable list envp
* “name=value” strings (e.g., USER=droh)
e Overwrites code, data, and stack
Retains PID, open files and signal context

18

execve: Loading and Running Programs

® int execve(char *filename, char *argv[], char *envp[])

e | oads and runs in the current process:
Executable file filename
« Argument list argv
- By convention argv[0]==filename
Environment variable list envp
* “name=value” strings (e.g., USER=droh)
e Overwrites code, data, and stack
Retains PID, open files and signal context

* Called once and never returns
...except if there is an error

18

execve Example

Executes “/bin/1s -1t /usr/include” in child process using
current environment:

myargv[argc] = NULL
(argc == 3) myargv[2] ——> “/usr/include”
myargv [1] IR NG O
[0]

Myargyv ——> e gy —> “/bin/1ls”

envp[n] = NULL
envp [n-1] —> “PWD=/usr/droh”
. envp [0] —> “USER=droh”
environ >

if ((pid = Fork()) == 0) { /% Child runs program x/
if (execve(myargv[0], myargv, environ) < 0) {
printf("%s: Command not found.\n", myargv[0]);
exit(1l);

19

Summary

e Processes
« At any given time, system has multiple active processes
« Only one can execute at a time on a single core, though
» Each process appears to have total control of processor + private memory space

* Spawning processes
e Call fork
* One call, two returns
e Process completion
e Call exit
« One call, no return
* Reaping and waiting for processes
e Call wait orwaitpid
* Loading and running programs
« Call execve (or variant)
« One call, (hormally) no return

20

Today

e Signals: The Way to Communicate with Processes

21

Signals

* A signal is a small message that notifies a process that an
event of some type has occurred in the system

e Sent from the OS kernel

« Could be requested by another process, by user, or automatically by
the kernel

« Signal type is identified by small integer ID’s (1-30)

22

Signals

* A signal is a small message that notifies a process that an
event of some type has occurred in the system

e Sent from the OS kernel

« Could be requested by another process, by user, or automatically by

the kernel

« Signal type is identified by small integer ID’s (1-30)

ID Name Default Action
2 SIGINT Terminate

9 SIGKILL Terminate

11 SIGSEGV Terminate

14 SIGALRM Terminate

17 SIGCHLD Ignore

Corresponding Event

User typed ctrl-c

Kill program (cannot override or ignore)
Segmentation violation

Timer signal

Child stopped or terminated

22

Signal Concepts: Sending a Signal

* Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination
process

e Kernel sends a signal for one of the following reasons:

23

Signal Concepts: Sending a Signal

* Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination
process

e Kernel sends a signal for one of the following reasons:
« Kernel has detected a system event such as:

23

Signal Concepts: Sending a Signal

* Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination
process

e Kernel sends a signal for one of the following reasons:

« Kernel has detected a system event such as:
« Exception: divide-by-zero (SIGFPE)

23

Signal Concepts: Sending a Signal

* Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination
process

e Kernel sends a signal for one of the following reasons:

« Kernel has detected a system event such as:
« Exception: divide-by-zero (SIGFPE)
o Interrupt: user pressing Ctrl + C (SIGINT)

23

Signal Concepts: Sending a Signal

* Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination
process

e Kernel sends a signal for one of the following reasons:

« Kernel has detected a system event such as:
« Exception: divide-by-zero (SIGFPE)
o Interrupt: user pressing Ctrl + C (SIGINT)
« The termination of a child process (SIGCHLD)

23

Signal Concepts: Sending a Signal

* Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination
process

e Kernel sends a signal for one of the following reasons:

« Kernel has detected a system event such as:
« Exception: divide-by-zero (SIGFPE)
o Interrupt: user pressing Ctrl + C (SIGINT)
« The termination of a child process (SIGCHLD)
« Another process has invoked the ki1l system call to explicitly

request the kernel to send a signal to the destination process.

23

Signal Concepts: Sending a Signal

* Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination
process

e Kernel sends a signal for one of the following reasons:

« Kernel has detected a system event such as:
« Exception: divide-by-zero (SIGFPE)
o Interrupt: user pressing Ctrl + C (SIGINT)
« The termination of a child process (SIGCHLD)

« Another process has invoked the ki1l system call to explicitly

request the kernel to send a signal to the destination process.

« Note: ki11 doesn’t mean you are going to Kill the target process. It is just a

system call that allows you to send signals. Of course the signal you send
could be SIGKILL.

23

Signal Concepts: Receiving a Signal

* A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

* Some possible ways to react:

24

Signal Concepts: Receiving a Signal

* A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

* Some possible ways to react:
e |gnore the signal (do nothing)

24

Signal Concepts: Receiving a Signal

* A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

* Some possible ways to react:

« |gnore the signal (do nothing)
« Terminate the process

24

Signal Concepts: Receiving a Signal

* A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

* Some possible ways to react:

« |gnore the signal (do nothing)
« Terminate the process
« Catch the signal by executing a user-level function called signal handler

24

Signal Concepts: Receiving a Signal

* A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

* Some possible ways to react:
« |gnore the signal (do nothing)
« Terminate the process
« Catch the signal by executing a user-level function called signal handler

e Similar to a hardware exception handler being called in response
to an asynchronous interrupt:

24

Signal Concepts: Receiving a Signal

* A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

* Some possible ways to react:
« |gnore the signal (do nothing)
« Terminate the process
« Catch the signal by executing a user-level function called signal handler

e Similar to a hardware exception handler being called in response
to an asynchronous interrupt:

(1) Signal received (2) Control passes
by process I, | to signal handler
lrext (3) Signal
| handler runs
(4) Signal handler
returns to

next instruction
24

Sending Signals with /bin/ki11 Program

e /bin/kill program sends
arbitrary signal to a process

e Examples

« /bin/kill -9 24818
Send SIGKILL to process 24818

e /bin/kill itself doesn’t kill the
process. 9 is the ID for the SIGKILL

signal, which terminates the
process

linux> ./forks 16
Childl: pid=24818
Child2: pid=24819

linux> ps
PID TTY
24788 pts/2
24818 pts/2
24819 pts/2
24820 pts/2

00:
00:
00:
00:

pgrp=24817
pgrp=24817

TIME CMD
00:00 tcsh
00:02 forks
00:02 forks
00:00 ps

25

Sending Signals with /bin/ki11 Program

e /bin/kill program sends
arbitrary signal to a process

e Examples

e /bin/kill -9 24818
Send SIGKILL to process 24818

e /bin/kill itself doesn’t kill the
process. 9 is the ID for the SIGKILL
signal, which terminates the
Process

linux> ./forks 16
Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
PID TTY TIME CMD

|24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps

25

Process Groups

* Every process belongs to exactly one process group

pid=20
pgid=20
\ Background Background
m @ process group 32 process group 40
pid=21 pid=22
pgid=20 pgid=20
Foreground

process group
20

26

Process Groups

* Every process belongs to exactly one process group

Background Background
@ @ process group 32 process group 40
pid=21 pid=22 ge tpgrp ()
pgid=20 Pgid=20 Return process group of current
Foreground process
process group _
20 setpgid()

Change process group of a process

26

Sending Signals with /bin/ki11 Program

/bin/kill program
sends arbitrary signal to a
[Process or process group

Examples
. /bin/kill -9 -24817

Send SIGKILL to every process
in process group 24817

linux> ./forks 16
Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps

linux>

27

Sending Signals with /bin/ki11 Program

/bin/kill program
sends arbitrary signal to a
Process or process group

Examples
. /bin/kill -9 -24817

Send SIGKILL to every process
in process group 24817

linux> ./forks 16
Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
PID TTY
24788 pts/2

TIME CMD
00:00:00 tecsh

24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps

linux>

27

Sending Signals from the Keyboard

* Typing ctrl-c causes the kernel to send a SIGINT to every
process in the foreground process group.
« SIGINT — default action is to terminate each process

* Typing ctrl-z causes the kernel to send a SIGTSTP to
every job in the foreground process group.
o SIGTSTP - default action is to stop (suspend) each process

28

Example of ctrl-cand ctrl-z

bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107

<types ctrl-z>

Suspended
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17
28109 pts/8 R+ 0:00 ps w

bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state)
Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
S: session leader
+: foreground proc group

See “man ps” for more
details

29

Sending Signals with ki11 Function

int
int

for

for

for

pid_

zoid forkl2()

t pid[N];
1,
child_status;
(1 =0; 1 < N; 1++)
if ((pid[i] = fork()) == 0) {
/* Child: Infinite Loop */
while(1)
}
(1 =0; 1 < N; 1++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);
(1 =0; 1 < N; 1++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))]
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminated abnormally\n", wpid);

forks.

30

