
CSC 252: Computer
Organization

Fall 2021: Lecture 19

Process Control

Signals

Instructor: Alan Beadle

Department of Computer Science
University of Rochester

Carnegie Mellon

Announcements

You can take your exam back once you have checked for
grading errors

For integrity reasons, please bring up possible grading
mistakes before you leave with your exam; Not after.

A4 is due in 11 days, and you should have started by now
so that you have time to get help

Carnegie Mellon

Context Switching
• Processes are managed by a shared chunk of memory-resident

OS code called the kernel
• Important: the kernel is not a separate process, but rather runs as

part of some existing process.

• Control flow passes from one process to another via a context
switch

!4

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

Process Graph Example

!5

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

Carnegie Mellon

Interpreting Process Graphs
• Original graph:

• Abstracted graph:

!6

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

Carnegie Mellon

Interpreting Process Graphs
• Original graph:

• Abstracted graph:

!6

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible execution ordering:

Carnegie Mellon

Interpreting Process Graphs
• Original graph:

• Abstracted graph:

!6

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible execution ordering:

a b ecf d

Infeasible execution ordering:

Carnegie Mellon

fork Example: Two consecutive forks

!7

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} forks.c

Carnegie Mellon

fork Example: Two consecutive forks

!7

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

forks.c

Carnegie Mellon

fork Example: Two consecutive forks

!7

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

forks.c

Carnegie Mellon

fork Example: Two consecutive forks

!7

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
L1
Bye
Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in parent

!8

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
} forks.c

Carnegie Mellon

fork Example: Nested forks in parent

!8

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in parent

!8

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in parent

!8

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

Carnegie Mellon

fork Example: Nested forks in children

!9

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
} forks.c

Carnegie Mellon

fork Example: Nested forks in children

!9

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in children

!9

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in children

!9

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

Carnegie Mellon

Reaping Child Processes
• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables
• Called a “zombie”: Living corpse, half alive and half dead

• Reaping
• Performed by parent on terminated child (using wait or waitpid)

!10

Carnegie Mellon

Reaping Child Processes
• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables
• Called a “zombie”: Living corpse, half alive and half dead

• Reaping
• Performed by parent on terminated child (using wait or waitpid)
• Parent is given exit status information
• Kernel then deletes zombie child process

•What if parent doesn’t reap?
• If any parent terminates without reaping a child, then the orphaned

child will be reaped by init process (pid == 1)

!10

Carnegie Mellon

Reaping Child Processes
• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables
• Called a “zombie”: Living corpse, half alive and half dead

• Reaping
• Performed by parent on terminated child (using wait or waitpid)
• Parent is given exit status information
• Kernel then deletes zombie child process

•What if parent doesn’t reap?
• If any parent terminates without reaping a child, then the orphaned

child will be reaped by init process (pid == 1)
• So, only need explicit reaping in long-running processes

• e.g., shells and servers

!10

Carnegie Mellon

Zombie Example

!11

void fork7() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n", getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n", getpid());
 while (1)
 ; /* Infinite loop */
 }
} forks.c

Carnegie Mellon

Zombie Example

!11

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

void fork7() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n", getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n", getpid());
 while (1)
 ; /* Infinite loop */
 }
} forks.c

Carnegie Mellon

Zombie Example

• ps shows child process
as “defunct” (i.e., a
zombie)

!11

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

void fork7() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n", getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n", getpid());
 while (1)
 ; /* Infinite loop */
 }
} forks.c

Carnegie Mellon

Zombie Example

• ps shows child process
as “defunct” (i.e., a
zombie)

• Killing parent allows
child to be reaped by
init

!11

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

void fork7() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n", getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n", getpid());
 while (1)
 ; /* Infinite loop */
 }
} forks.c

Carnegie Mellon

Non-terminating Child

!12

void fork8()
{
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);
 }
} forks.c

Carnegie Mellon

Non-terminating Child

!12

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

void fork8()
{
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);
 }
} forks.c

Carnegie Mellon

Non-terminating Child

• Child process still active even
though parent has terminated.
Can’t be reaped since it’s still
running!

• Must kill child explicitly, or else
will keep running indefinitely

!12

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

void fork8()
{
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);
 }
} forks.c

Carnegie Mellon

wait: Synchronizing with Children

!13

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);
 } else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
} forks.c

Carnegie Mellon

wait: Synchronizing with Children

!13

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);
 } else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Carnegie Mellon

wait: Synchronizing with Children

!13

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);
 } else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Carnegie Mellon

wait: Synchronizing with Children

!13

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);
 } else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

Carnegie Mellon

wait: Synchronizing with Children

• Parent reaps a child by calling the wait function

•int wait(int *child_status)
• Suspends current process until one of its children terminates
• Return value is the pid of the child process that terminated
• If child_status != NULL, then the integer it points to will be set

to a value that indicates reason the child terminated and the exit
status:

• Checked using macros defined in wait.h
• WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

• See textbook for details

!14

Carnegie Mellon

Another wait Example
• If multiple children completed, will take in arbitrary order

• Can use macros WIFEXITED and WEXITSTATUS to get information

about exit status

!15

void fork10() {
 int i, child_status;

 for (i = 0; i < N; i++)
 if (fork() == 0) {
 exit(100+i); /* Child */
 }
 for (i = 0; i < N; i++) { /* Parent */
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminate abnormally\n", wpid);
 }
}

forks.c

Carnegie Mellon

waitpid: Waiting for a Specific Process
• pid_t waitpid(pid_t pid, int &status, int options)

• Suspends current process until specific process terminates
• Various options (see textbook)

!16

void fork11() {
 pid_t pid[N];
 int i;
 int child_status;

 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */
 for (i = N-1; i >= 0; i--) {
 pid_t wpid = waitpid(pid[i], &child_status, 0);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminate abnormally\n", wpid);
 }
} forks.c

Carnegie Mellon

!17

 char *myargv[] = {“/bin/ls”, “-lt”, “/usr/include”};
 char *environ[] = {“USER=droh”, “PWD=“/usr/droh”};

 if ((pid = Fork()) == 0) { /* Child runs program */
 if (execve(myargv[0], myargv, environ) < 0) {
 printf("%s: Command not found.\n", myargv[0]);
 exit(1);
 }
 }

Executes “/bin/ls –lt /usr/include” in child process using
current environment:

execve: Loading and Running Programs

Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])

!18

Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:

• Executable file filename
• Argument list argv

• By convention argv[0]==filename
• Environment variable list envp

• “name=value” strings (e.g., USER=droh)

!18

Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:

• Executable file filename
• Argument list argv

• By convention argv[0]==filename
• Environment variable list envp

• “name=value” strings (e.g., USER=droh)

• Overwrites code, data, and stack

• Retains PID, open files and signal context

!18

Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:

• Executable file filename
• Argument list argv

• By convention argv[0]==filename
• Environment variable list envp

• “name=value” strings (e.g., USER=droh)

• Overwrites code, data, and stack

• Retains PID, open files and signal context

• Called once and never returns

• …except if there is an error

!18

Carnegie Mellon

execve Example

!19

envp[n] = NULL
envp[n-1]

envp[0]
…

myargv[argc] = NULL
myargv[2]

myargv[0]
myargv[1]

“/bin/ls”
“-lt”
“/usr/include”

“USER=droh”

“PWD=/usr/droh”

environ

myargv

 if ((pid = Fork()) == 0) { /* Child runs program */
 if (execve(myargv[0], myargv, environ) < 0) {
 printf("%s: Command not found.\n", myargv[0]);
 exit(1);
 }
 }

Executes “/bin/ls –lt /usr/include” in child process using
current environment:

(argc == 3)

Carnegie Mellon

Summary
• Processes

• At any given time, system has multiple active processes
• Only one can execute at a time on a single core, though
• Each process appears to have total control of processor + private memory space

• Spawning processes

• Call fork
• One call, two returns

• Process completion

• Call exit
• One call, no return

• Reaping and waiting for processes

• Call wait or waitpid

• Loading and running programs

• Call execve (or variant)
• One call, (normally) no return

!20

Carnegie Mellon

Today
• Process Control

• Signals: The Way to Communicate with Processes

!21

Carnegie Mellon

Signals

• A signal is a small message that notifies a process that an
event of some type has occurred in the system

• Sent from the OS kernel
• Could be requested by another process, by user, or automatically by

the kernel
• Signal type is identified by small integer ID’s (1-30)

!22

Carnegie Mellon

Signals

• A signal is a small message that notifies a process that an
event of some type has occurred in the system

• Sent from the OS kernel
• Could be requested by another process, by user, or automatically by

the kernel
• Signal type is identified by small integer ID’s (1-30)

!22

ID Name Default Action Corresponding Event
2 SIGINT Terminate User typed ctrl-c
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:

!23

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

!23

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)

!23

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)

!23

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)
• The termination of a child process (SIGCHLD)

!23

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)
• The termination of a child process (SIGCHLD)

• Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destination process.

!23

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)
• The termination of a child process (SIGCHLD)

• Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destination process.
• Note: kill doesn’t mean you are going to kill the target process. It is just a

system call that allows you to send signals. Of course the signal you send
could be SIGKILL.

!23

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:

!24

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)

!24

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process

!24

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process
• Catch the signal by executing a user-level function called signal handler

!24

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process
• Catch the signal by executing a user-level function called signal handler

• Similar to a hardware exception handler being called in response
to an asynchronous interrupt:

!24

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process
• Catch the signal by executing a user-level function called signal handler

• Similar to a hardware exception handler being called in response
to an asynchronous interrupt:

!24

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler
returns to
next instruction

Icurr
Inext

(1) Signal received
by process

Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program sends
arbitrary signal to a process

• Examples

• /bin/kill –9 24818  

Send SIGKILL to process 24818
• /bin/kill itself doesn’t kill the

process. 9 is the ID for the SIGKILL
signal, which terminates the
process

!25

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps

Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program sends
arbitrary signal to a process

• Examples

• /bin/kill –9 24818  

Send SIGKILL to process 24818
• /bin/kill itself doesn’t kill the

process. 9 is the ID for the SIGKILL
signal, which terminates the
process

!25

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps

Carnegie Mellon

Process Groups

• Every process belongs to exactly one process group

!26

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group
20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

Carnegie Mellon

Process Groups

• Every process belongs to exactly one process group

!26

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group
20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp()  
Return process group of current
process
setpgid()  
Change process group of a process

Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program
sends arbitrary signal to a
process or process group

• Examples

• /bin/kill –9 –24817  

Send SIGKILL to every process
in process group 24817

!27

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program
sends arbitrary signal to a
process or process group

• Examples

• /bin/kill –9 –24817  

Send SIGKILL to every process
in process group 24817

!27

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Carnegie Mellon

Sending Signals from the Keyboard
• Typing ctrl-c causes the kernel to send a SIGINT to every

process in the foreground process group.

• SIGINT – default action is to terminate each process

• Typing ctrl-z causes the kernel to send a SIGTSTP to
every job in the foreground process group.

• SIGTSTP – default action is to stop (suspend) each process

!28

Carnegie Mellon

Example of ctrl-c and ctrl-z

!29

bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107

<types ctrl-z>
Suspended
bluefish> ps w
 PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17
28109 pts/8 R+ 0:00 ps w

bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w
 PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state)
Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

Carnegie Mellon

Sending Signals with kill Function

!30

void fork12()
{
 pid_t pid[N];
 int i;
 int child_status;

 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0) {
 /* Child: Infinite Loop */
 while(1)
 ;
 }

 for (i = 0; i < N; i++) {
 printf("Killing process %d\n", pid[i]);
 kill(pid[i], SIGINT);
 }

 for (i = 0; i < N; i++) {
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);
 }
}

forks.c

