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Announcements

You can take your exam back once you have checked for
grading errors

For integrity reasons, please bring up possible grading
mistakes before you leave with your exam; Not after.

A4 is due in 11 days, and you should have started by now
so that you have time to get help



Context Switching

* Processes are managed by a shared chunk of memory-resident
OS code called the kernel
« Important: the kernel is not a separate process, but rather runs as
part of some existing process.

* Control flow passes from one process to another via a context
switch

Process A Process B

I
|
I
I
|
I user code
I

kernel code } context switch

Time user code

kernel code } context switch

user code

<



Process Graph Example

int main()

{
pid_t pid;
int x = 1;
child: x=2 ]
pid = Fork(); pr?ﬁff . Child
if (pid == 0) { /x Child x/
printf("child : x=%d\n", ++x); xX== Lparentr x=0
o -® ¢  Parent

ex1t(0); main fork printf exit

}

/* Parent x/
printf("parent: x=%d\n", —--x);
exit(0);

} fork.c




Interpreting Process Graphs

* QOriginal graph:

child: x=2

:..7 ;..
printf exit
x==1 parent: x=0
o @ < J
main fork printf exit

e Abstracted graph:

L - g3
o @ »
a C

n.e



Interpreting Process Graphs

* QOriginal graph:

child: x=2
r@— @
printf exit
x==1 Lparent: x=0
o @ < J
main fork printf exit
e Abstracted graph: Feasible execution ordering:
A A0
e
o — L g J @ a b e C f d
a C d



Interpreting Process Graphs

* QOriginal graph:

child: x=2
r@— @
printf exit
x==1 Lparent: x=0
o @ < J
main fork printf exit
e Abstracted graph: Feasible execution ordering:
A A0
e
o — L g J @ a b e C f d
a C d

Infeasible execution ordering:

7N
a b f ¢ e d



fork Example: Two consecutive forks

void fork2()

{

printf(“LO\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

forks.c




fork Example: Two consecutive forks

void fork2()

{
printf("LO\n");
fork();
printf("L1\n");
fork();
printf("Bye\n");

} forks.c

LO

Bye
»@
printf
Ll Bye
_:.— » »@®
printf  fork printf
Bye

printf
L1 Bye
-0

.7
printf

r@— »@— > >
fork printf fork printf



fork Example: Two consecutive forks

void fork2()
{

printf("LO\n");

fork();

printf("L1\n");

fork();

printf("Bye\n");

forks.c

Bye
»@®
printf
Ll Bye
>@— »> »@®
printf  fork printf
Bye
»@
printf
L0 L1 ‘ Bye
@o— r@— »@— > ad
printf fork printf fork printf

Feasible output:

LO
L1
Bye
Bye
L1
Bye
Bye



fork Example: Two consecutive forks

Bye
>@®
void fork2() printf
{ L1 Bye
printf("“LO\n"); Printf  fork printf
fork(); Bye

printf("L1\n");

fork(); printf
printf("Bye\n"); LO L1l gze

o— @ — r@— > >
} forks.c printf fork printf fork printf
Feasible output: Infeasible output:
LO LO
L1 Bye
Bye L1
Bye Bye
L1 L1
Bye Bye

Bye Bye



fork Example: Nested forks in parent

void fork4()

{
printf(“LO\n");
if (fork() '= 0) {
printf("L1\n");
if (fork() '= 0) {
printf("L2\n");
}

}
printf("Bye\n");

} forks.c




fork Example: Nested forks in parent

void fork4()

{
printf("LO\n");
if (fork() !'= 0) {
printf("L1\n");
if (fork() !'= 0) {
printf("L2\n");
}

}
printf("Bye\n");

} forks.c

LO

Bye Bye

pr Thes ‘ printf
Ll L2 Bye
»@— »> »@— =X

o »
printf fork pr

intf fork printf printf



fork Example: Nested forks in parent

void fork4()

{
printf("LO\n");
if (fork() !'= 0) {
printf("L1\n");
if (fork() !'= 0) {
printf("L2\n");
}

}
printf("Bye\n");

} forks.c

LO

Bye Bye

pr Thes ‘ printf
Ll L2 Bye
»@— »> »@— =X

o »
printf fork pr

intf fork printf printf

Feasible output:

LO
L1
Bye
Bye
L2
Bye



fork Example: Nested forks in parent

void fork4()

{
printf("LO\n");
if (fork() !'= 0) {
printf("L1\n");
if (fork() !'= 0) {
printf("L2\n");
}

}
printf("Bye\n");

} forks.c

LO

Bye Bye

pr Thes ‘ printf
Ll L2 Bye
»@— »> »@— =X

o— >
printf fork pr

Feasible output:

LO
L1
Bye
Bye
L2
Bye

intf fork printf printf

Infeasible output:
LO

Bye

L1

Bye

Bye

L2



fork Example: Nested forks in children

void fork5()
{
printf("LO\n");
if (fork() == 0) {
printf("L1\n");
if (fork() == 0) {
printf("L2\n");
}

}
printf("Bye\n");

} forks.c




fork Example: Nested forks in children

void fork5()
{ L2 Bye

printf("LO\n"); printf printf
if (fork() == 0) { L1l Bye
printf("L1\n"); printf fork  printf
if (fork() == 0) { LO Bye
g ]

printf(“L2\n"); . ftf fork printt

}

}
printf("Bye\n");

} forks.c




fork Example: Nested forks in children

void fork5()

{

printf("LO\n");

if (fork() == 0) {
printf("L1\n");

if (fork() =

=0) {

printf("L2\n");

}

}
printf("Bye\n");

forks.c

LO

L2 Bye
pfrntf pfg.ntf

L1l Bye

priﬁtf fork pr?ntf

Bye
@

o—

>

printf fork pr'intf

Feasible output:

LO
Bye
L1
L2
Bye
Bye



fork Example: Nested forks in children

void fork5()

{

printf("LO\n");

if (fork() == 0) {
printf("L1\n");
if (fork() == 0) {
printf("L2\n");

}

}
printf("Bye\n");

forks.c

LO

L2 Bye

L1l

pfrntf pfg.ntf
Bye

priﬁtf fork pr?ntf

Bye
@

o—

>

printf fork pr'intf

Feasible output:

LO
Bye
L1
L2
Bye
Bye

LO
Bye
L1
Bye
Bye
L2

Infeasible output:



Reaping Child Processes

 When process terminates, it still consumes system resources
« Examples: Exit status, various OS tables
« Called a “zombie”: Living corpse, half alive and half dead
* Reaping
« Performed by parent on terminated child (using wait or waitpid)

10



Reaping Child Processes

 When process terminates, it still consumes system resources
« Examples: Exit status, various OS tables

« Called a “zombie”: Living corpse, half alive and half dead
* Reaping
« Performed by parent on terminated child (using wait or waitpid)

« Parent is given exit status information
« Kernel then deletes zombie child process

* What if parent doesn’t reap?

« |f any parent terminates without reaping a child, then the orphaned
child will be reaped by init process (pid == 1)

10



Reaping Child Processes

 When process terminates, it still consumes system resources
« Examples: Exit status, various OS tables

« Called a “zombie”: Living corpse, half alive and half dead
* Reaping
« Performed by parent on terminated child (using wait or waitpid)

« Parent is given exit status information
« Kernel then deletes zombie child process

* What if parent doesn’t reap?

« |f any parent terminates without reaping a child, then the orphaned
child will be reaped by init process (pid == 1)

« S0, only need explicit reaping in long-running processes
* e.g., shells and servers

10



void fork7() {

if (fork() == 0) {
/* Child x/
printf("Terminating Child, PID = %d\n", getpid());
exit(0);

} else {
printf("Running Parent, PID = %d\n", getpid());
while (1)

; /% Infinite loop */

} forks.c

1



void fork7() {
if (fork() == 0) {

/* Child x/
printf("Terminating Child, PID = %d\n", getpid());
exit(0);
} else {
printf("Running Parent, PID = %d\n", getpid());
while (1)
; /% Infinite loop */
} } forks.c

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tecsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated

linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tecsh
6642 ttyp9 00:00:00 ps

1



void fork7() {
if (fork() == 0) {

/* Child x/
printf("Terminating Child, PID = %d\n", getpid());
exit(0);
} else {
printf("Running Parent, PID = %d\n", getpid());
while (1)
; /% Infinite loop */
} } forks.c

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639

Terminating Child, PID = 6640 .
linux> ps ® ps shows child process

PID TTY TIME CMD as “defunct” (i.e., a
6585 ttyp9  00:00:00 tcsh / zombie)
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tecsh
6642 ttyp9 00:00:00 ps



void fork7() {

if (fork() == 0) {

/* Child x/

printf("Terminating Child, PID = %d\n", getpid());

exit(0);
} else {

printf("Running Parent, PID = %d\n", getpid());

while (1)

; /% Infinite loop */

forks.c

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639
Terminating Child, PID

linux> ps
PID TTY
6585 ttyp9
6639 ttyp9
6640 ttyp9
6641 ttyp9

00:
00:
00:
00:

linux> kill 6639
[1] Terminated

linux> ps
PID TTY
6585 ttyp9
6642 ttyp9

00:
00:

TIME
00:00
00:03
00:00
00:00

= 6640

®* ps shows child process

CMD as “defunct” (i.e., a
e / zombie)
forks

forks <defunct>

Ps * Killing parent allows

4%_

TIME
00:00
00:00

child to be reaped by
init

CMD

tcsh

PsS

1



void fork8()
{
if (fork() == 0) {

/% Child %/

printf("Running Child, PID = %d\n",

getpid());
while (1)
; /* Infinite loop *x/
} else {

printf("Terminating Parent, PID = %d\n",

getpid());
exit(0);

forks.c

12



void fork8()

{

if (fork() ==

9) {

/* Child x/
printf("Running Child, PID = %d\n",
getpid());

while (1)

; /* Infinite loop */

} else {

printf("Terminating Parent, PID = %d\n",
getpid());

exit(0);

forks.c

linux> ./forks 8
Terminating Parent, PID
= 6676

Running Child, PID

linux> ps
PID TTY
6585 ttyp9
6676 ttyp9
6677 ttyp9

linux> kill

linux> ps
PID TTY
6585 ttyp9
6678 ttyp9

00:
00:
00:

6676

00:
00:

TIME
00:00
00:06
00:00

TIME
00:00
00:00

= 6675

CMD
tcsh
forks

PsS

CMD
tcsh

PsS

12



void fork8()

{

if (fork() == 0) {
/* Child x/
printf("Running Child, PID = %d\n",
getpid());
while (1)
; /* Infinite loop *x/
} else {

printf("Terminating Parent, PID = %d\n",

getpid());
exit(0);

forks.c

linux> ./forks 8
Terminating Parent, PID = 6675 °
Running Child, PID = 6676
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks
6677 ttyp9 00:00:00 ps — e
linux> kill 6676‘437
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

Child process still active even
though parent has terminated.
Can’t be reaped since it’s still
running!

Must kill child explicitly, or else
will keep running indefinitely

12



wait: Synchronizing with Children

void fork9() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");
exit(0);

} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}

printf("Bye\n");

} forks.c

13



wait: Synchronizing with Children

void fork9() {
int child_status;

HC exit
if (fork() == @) { printf |
printf("HC: hello from child\n");
exit(0);
} else { BCTe
printf("HP: hello from parent\n"); L gff v =z
wait(&child_status); fork printf wait printf

printf("CT: child has terminated\n");
}
printf("Bye\n");
} forks.c

13



wait: Synchronizing with Children

void fork9() {
int child_status;

HC exit

if (fork() == @) { printf |
printf("HC: hello from child\n");
exit(0);

} else { BCTe
printf("HP: hello from parent\n"); L gﬁf v =z
wait (&child_status); fork printf wait printf
printf("CT: child has terminated\n");

}

printf("Bye\n");

} forks.c

Feasible output:
HC

HP

CT

Bye

13



wait: Synchronizing with Children

void fork9() {

int child_status;

HC exit

if (fork() == 0) { printf |
printf("HC: hello from child\n");
exit(0);

} else { BCTe
printf("HP: hello from parent\n"); L gﬁf v =z
wait (&child_status); fork printf wait printf
printf("CT: child has terminated\n");

}

printf("Bye\n");

} forks.c
Feasible output: Infeasible output:
HC HP
HP CT
CT Bye

Bye HC

13



wait: Synchronizing with Children

* Parent reaps a child by calling the wait function

®int wait (int *child status)
« Suspends current process until one of its children terminates
« Return value is the pid of the child process that terminated
 f child status != NULL, then the integer it points to will be set
to a value that indicates reason the child terminated and the exit
status:
« Checked using macros defined in wait.h

* WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

- See textbook for details

14



Another wait Example

e |f multiple children completed, will take in arbitrary order
e (Can use macros WIFEXITED and WEXITSTATUS to get information
about exit status

void forklo() {
int i, child_status;

for (1 =0; 1 < N; i++)
if (fork() == 0) {
exit(100+1i); /* Child =/
}
for (1 =0; i < N; i++) { /% Parent x/
pid t wpid = wait(&child_status);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminate abnormally\n", wpid);

}
rorks.cC




waitpid: Waiting for a Specific Process

® pid t waitpid(pid t pid, 1int &status, int options)
« Suspends current process until specific process terminates

 Various options (see textbook)

void forkll() {
pid_t pid[N];
int i:
int child _status;

for (1 = 0; 1 < N; 1i++)
if ((pid[i] = fork()) == 0)
exit(100+1); /* Child x/
for (1 = N-1; 1 >=0; i--) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminate abnormally\n", wpid);

} forks.c




execve: Loading and Running Programs

Executes “/bin/1s -1t /usr/include” in child process using
current environment:

char xmyargv[] = {“/bin/ls”, “-1t”, “/usr/include”};
char xenviron[] = {“USER=droh”, “PWD=*/usr/droh”};

if ((pid = Fork()) == 0) { /% Child runs program x/
if (execve(myargv[0], myargv, environ) < 0) {
printf("%s: Command not found.\n", myargv[0]);
exit(1l);

17



execve: Loading and Running Programs

® int execve(char *filename, char *argv[], char *envp[])

18



execve: Loading and Running Programs

® int execve(char *filename, char *argv[], char *envp[])

e | oads and runs in the current process:
Executable file £ilename
« Argument list argv
- By convention argv[0]==filename
Environment variable list envp
* “name=value” strings (e.g., USER=droh)

18



execve: Loading and Running Programs

® int execve(char *filename, char *argv[], char *envp[])

e | oads and runs in the current process:
Executable file filename
« Argument list argv
- By convention argv[0]==filename
Environment variable list envp
* “name=value” strings (e.g., USER=droh)
e Overwrites code, data, and stack
Retains PID, open files and signal context

18



execve: Loading and Running Programs

® int execve(char *filename, char *argv[], char *envp[])

e | oads and runs in the current process:
Executable file filename
« Argument list argv
- By convention argv[0]==filename
Environment variable list envp
* “name=value” strings (e.g., USER=droh)
e Overwrites code, data, and stack
Retains PID, open files and signal context

* Called once and never returns
...except if there is an error

18



execve Example

Executes “/bin/1s -1t /usr/include” in child process using
current environment:

myargv[argc] = NULL
(argc == 3) myargv[2] ——> “/usr/include”
myargv [1] IR NG O
[0]

Myargyv ——> e gy —> “/bin/1ls”

envp[n] = NULL
envp [n-1] —> “PWD=/usr/droh”
. envp [0] —> “USER=droh”
environ >

if ((pid = Fork()) == 0) { /% Child runs program x/
if (execve(myargv[0], myargv, environ) < 0) {
printf("%s: Command not found.\n", myargv[0]);
exit(1l);

19



Summary

e Processes
« At any given time, system has multiple active processes
« Only one can execute at a time on a single core, though
» Each process appears to have total control of processor + private memory space

* Spawning processes
e Call fork
* One call, two returns
e Process completion
e Call exit
« One call, no return
* Reaping and waiting for processes
e Call wait orwaitpid
* Loading and running programs
« Call execve (or variant)
« One call, (hormally) no return

20



Today

e Signals: The Way to Communicate with Processes

21



Signals

* A signal is a small message that notifies a process that an
event of some type has occurred in the system

e Sent from the OS kernel

« Could be requested by another process, by user, or automatically by
the kernel

« Signal type is identified by small integer ID’s (1-30)

22



Signals

* A signal is a small message that notifies a process that an
event of some type has occurred in the system

e Sent from the OS kernel

« Could be requested by another process, by user, or automatically by

the kernel

« Signal type is identified by small integer ID’s (1-30)

ID Name Default Action
2 SIGINT  Terminate

9 SIGKILL Terminate

11 SIGSEGV Terminate

14 SIGALRM Terminate

17 SIGCHLD Ignore

Corresponding Event

User typed ctrl-c

Kill program (cannot override or ignore)
Segmentation violation

Timer signal

Child stopped or terminated

22



Signal Concepts: Sending a Signal

* Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination
process

e Kernel sends a signal for one of the following reasons:

23
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23



Signal Concepts: Sending a Signal

* Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination
process

e Kernel sends a signal for one of the following reasons:

« Kernel has detected a system event such as:
« Exception: divide-by-zero (SIGFPE)
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« Kernel has detected a system event such as:
« Exception: divide-by-zero (SIGFPE)
o Interrupt: user pressing Ctrl + C (SIGINT)
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Signal Concepts: Sending a Signal

* Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination
process

e Kernel sends a signal for one of the following reasons:

« Kernel has detected a system event such as:
« Exception: divide-by-zero (SIGFPE)
o Interrupt: user pressing Ctrl + C (SIGINT)
« The termination of a child process (SIGCHLD)
« Another process has invoked the ki1l system call to explicitly

request the kernel to send a signal to the destination process.

23



Signal Concepts: Sending a Signal

* Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination
process

e Kernel sends a signal for one of the following reasons:

« Kernel has detected a system event such as:
« Exception: divide-by-zero (SIGFPE)
o Interrupt: user pressing Ctrl + C (SIGINT)
« The termination of a child process (SIGCHLD)

« Another process has invoked the ki1l system call to explicitly

request the kernel to send a signal to the destination process.

« Note: ki11 doesn’t mean you are going to Kill the target process. It is just a

system call that allows you to send signals. Of course the signal you send
could be SIGKILL.

23



Signal Concepts: Receiving a Signal

* A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

* Some possible ways to react:

24
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the kernel to react in some way to the delivery of the signal

* Some possible ways to react:
« |gnore the signal (do nothing)
« Terminate the process
« Catch the signal by executing a user-level function called signal handler

e Similar to a hardware exception handler being called in response
to an asynchronous interrupt:
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Signal Concepts: Receiving a Signal

* A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

* Some possible ways to react:
« |gnore the signal (do nothing)
« Terminate the process
« Catch the signal by executing a user-level function called signal handler

e Similar to a hardware exception handler being called in response
to an asynchronous interrupt:

(1) Signal received (2) Control passes
by process I, | to signal handler
lrext (3) Signal
| handler runs
(4) Signal handler
returns to

next instruction
24



Sending Signals with /bin/ki11 Program

e /bin/kill program sends
arbitrary signal to a process

e Examples

« /bin/kill -9 24818
Send SIGKILL to process 24818

e /bin/kill itself doesn’t kill the
process. 9 is the ID for the SIGKILL

signal, which terminates the
process

linux> ./forks 16
Childl: pid=24818
Child2: pid=24819

linux> ps
PID TTY
24788 pts/2
24818 pts/2
24819 pts/2
24820 pts/2

00:
00:
00:
00:

pgrp=24817
pgrp=24817

TIME CMD
00:00 tcsh
00:02 forks
00:02 forks
00:00 ps

25



Sending Signals with /bin/ki11 Program

e /bin/kill program sends
arbitrary signal to a process

e Examples

e /bin/kill -9 24818
Send SIGKILL to process 24818

e /bin/kill itself doesn’t kill the
process. 9 is the ID for the SIGKILL
signal, which terminates the
Process

linux> ./forks 16
Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
PID TTY TIME CMD

|24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps

25



Process Groups

* Every process belongs to exactly one process group

pid=20
pgid=20
\ Background Background
m @ process group 32 process group 40
pid=21 pid=22
pgid=20 pgid=20
Foreground

process group
20

26



Process Groups

* Every process belongs to exactly one process group

Background Background
@ @ process group 32 process group 40
pid=21 pid=22 ge tpgrp ( )
pgid=20 Pgid=20 Return process group of current
Foreground process
process group _
20 setpgid()

Change process group of a process

26



Sending Signals with /bin/ki11 Program

/bin/kill program
sends arbitrary signal to a
[Process or process group

Examples
. /bin/kill -9 -24817

Send SIGKILL to every process
in process group 24817

linux> ./forks 16
Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps

linux>
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Sending Signals with /bin/ki11 Program

/bin/kill program
sends arbitrary signal to a
Process or process group

Examples
. /bin/kill -9 -24817

Send SIGKILL to every process
in process group 24817

linux> ./forks 16
Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
PID TTY
24788 pts/2

TIME CMD
00:00:00 tecsh

24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps

linux>
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Sending Signals from the Keyboard

* Typing ctrl-c causes the kernel to send a SIGINT to every
process in the foreground process group.
« SIGINT — default action is to terminate each process

* Typing ctrl-z causes the kernel to send a SIGTSTP to
every job in the foreground process group.
o SIGTSTP - default action is to stop (suspend) each process
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Example of ctrl-cand ctrl-z

bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107

<types ctrl-z>

Suspended
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17
28109 pts/8 R+ 0:00 ps w

bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state)
Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
S: session leader
+: foreground proc group

See “man ps” for more
details
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Sending Signals with ki11 Function

int
int

for

for

for

pid_

zoid forkl2()

t pid[N];
1,
child_status;
(1 =0; 1 < N; 1++)
if ((pid[i] = fork()) == 0) {
/* Child: Infinite Loop */
while(1)
}
(1 =0; 1 < N; 1++) {
printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);
(1 =0; 1 < N; 1++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status)) ]
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf("Child %d terminated abnormally\n", wpid);

forks.
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