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Announcements

Midterm solutions online

You can take your exam back once you have checked for
grading errors

For integrity reasons, please bring up possible grading
mistakes before you leave with your exam; Not after.

A4 is online; | will send an announcement tonight
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Cache Access

S = 2s set¥

E = 2¢ lines per set
A

 Locate set
« Check if any line in set
has matching tag
* Yes + line valid: hit
 Locate data starting
at offset

Address of word:
t bits s bits | b bits
— "
tag set Line
index offset

data begins at this offset

\V/ tag 0 1 2 ...... B-1

A
| — _

valid bit B = 2b bytes per cache line (the data)



Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache line size 8 bytes

( Address of char:
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Direct mapped: One line per set
Assume: cache line size 8 bytes

Address of char:

valid? +match: assume yes = hit
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Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache line size 8 bytes

Address of char:

valid? +match: assume yes = hit

tbits | 0...01 [ 100

vl | tag | [o|1]2|3]4]5]6]7

block offset

Byte 4 is here

If tag doesn’t match: old line is evicted and replaced



Direct-Mapped Cache Simulation
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Direct-Mapped Cache Simulation
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E-way Set Associative Cache (Here: E = 2)
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache line size 8 bytes Address of short int:

tbits | 0...01 [ 100

compare both

valid? +match: yes = hit

v| | tag | [0]1]2]3]4]|5]6]7]| [|v] | tag | [0]1]2]3]4]5]6]7|| —

Offset within a line

short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU),
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Today

* Processes and Signals: running multiple programs concurrently
* Processes
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e Definition: A process is an instance of a running
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* One of the most profound ideas in computer science
« Not the same as “program” or “processor”
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Processes

e Definition: A process is an instance of a running
program.

* One of the most profound ideas in computer science
« Not the same as “program” or “processor”

e Process provides each program with two key
abstractions:

» “Owns” the CPU
« Each program seems to have exclusive use of the CPU

* Done by the OS kernel through “context switching”
» Private address space

« Each program seems to have exclusive use of main
memory.

« Provided by OS through “virtual memory”
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Code

CPU

Registers
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Multiprocessing: The lllusion

Memory

Memory

Memory

Stack

Stack

Stack

Heap

Heap

Heap

Data

Data

Data

Code

Code

Code

CPU

CPU

CPU

Registers

Registers

Registers

* Computer runs many processes simultaneously
« Applications for one or more users

 Web browsers, email clients, editors, ...

« Background tasks
« Monitoring network & I/0O devices
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Multiprocessing Example

X/ Xterm

Processes: 123 total, 5 running, 9 stuck, 109 sleeping, 611 threads

Load Avg: 1,03, 1,13, 1,14 CPU usage: 3,272 user, 5,15% sys, 91,562 idle
SharedLibs: 576K resident, OB data, OB linkedit,

MemRegions: 27358 total, 1127M resident, 35M private, 434M shared,
PhysMem: 1039M wired, 1974M active, 1062M inactive, 4076M used, 18M free,

YM: 280G vsize, 1091M framework vsize, 23075213(1) pageins, 5843367(0) pageouts,

MNetworks: packets: 41046228/11GC in, B6083096/77G out,
Disks: 17874391/349C read, 12847373/5940 written,

11:47:07

PID  COMMAND #CPU TIME #TH  #l/0 #PORT #MREG RPRVT RSHRD RSIZE VPRVT VSIZE
99217- Microsoft Of 0,0 02:28,34 4 1 202 418 2IM 244  21M  BBM  763M

93051  usbmuxd 0,0 00:04,10 3 1 47 B6 436K 216K 480K BOM  2422M
93006  iTunesHelper 0,0 00:01,23 2 1 5 78 728K  3124K 1124K 43M  2429M
84286 bash 0,0 00:00,11 1 0 20 24 224K 732K 484K 17M  2378M
84285 xterm 0,0 00:00,83 1 0 32 73 B9EK 872K 632K 9728K  2382M
95933~ Microsoft Ex 0,3 21:58,97 10 3 360 954 16M  B5M  46M  114M  1057M
94751 sleep 0,0 00:00,00 1 0 17 20 92k 212K 360K  9632K 2370M
94739 launchdadd 0,0 00:00,00 2 1 33 50 488K 220Kk 173BK 48M  2409M
94737 top 6,5 00:02,53 171 0 30 23  1416K 216K 2124K 17M  2378M
94713 automountd 0,0 00:00,02 7 1 53 B4  BBOK 216K  2184K 5H3M  2413M
94701 ocspd 0,0 00:00,05 4 1 61 54  1268K 2644K 3132K 5HOM  2426M
94661 Grab 0.6 00:02,75 6 3 222+ 383+ 15M+  2BM+  40M+  YOM+  2006M+
94653 cookied 0,0 00:00,15 2 1 40 61  3316K 224K  4088K 42M  2411M
L2040 o ] P T .. B e B | 4 o 04 o Tutu e P I D T Kx1 P I. Ral ¥ | A0kl o420k

* Running program “top” on Unit/Linux
« System has 123 processes, 5 of which are active
« |dentified by Process ID (PID)

16
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Multiprocessing lllustration

.....Memory__
Process1 : Process?2 ' Process N
Stack ' Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
registers registers registers
Context switch
CPU
o managed by the OS.
- Not controllable by

programmers.
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Multiprocessing: The Multi-Core Case

Memory

Stack Stack Stack

Heap Heap Heap

Data Data . m Data

Code Code Code

Saved Saved Saved
registers reqgisters reqgisters

* Multicore processors

CPU CPU » Multiple CPUs on single chip

Registers Registers . Share main memory (and some of the

caches)
« Each can execute a separate process

« Scheduling of processors onto
cores done by kernel

18



Concurrent Processes

* Each process is a logical control flow.

e Two processes run concurrently (are concurrent) if their flows
overlap in time

* Otherwise, they are sequential
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* Each process is a logical control flow.

e Two processes run concurrently (are concurrent) if their flows
overlap in time

* Otherwise, they are sequential
* Examples (running on single core):

Process A Process B Process C

Time
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Process A Process B Process C
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Concurrent Processes

* Each process is a logical control flow.

e Two processes run concurrently (are concurrent) if their flows
overlap in time

* Otherwise, they are sequential

* Examples (running on single core):
e« Concurrent: A& B,A&C
e Sequential: B & C

Process A Process B Process C

Time

19



User View of Concurrent Processes

* Control flows for concurrent processes are physically disjoint in
time

* However, we can think of concurrent processes as running in
parallel with each other

Process A Process B Process C

Time

20



Context Switching

* Processes are managed by a shared chunk of memory-resident
OS code called the kernel
« Important: the kernel is not a separate process, but rather runs as
part of some existing process.

* Control flow passes from one process to another via a context
switch

Process A Process B

I
|
I
I
|
I user code
I

kernel code } context switch

Time user code

kernel code } context switch

user code

<

21



Today

* Processes and Signals: running multiple programs concurrently

* Process Control

22



Obtaining Process IDs

epid t getpid(void)
« Returns PID of current process

®*pid t getppid(void)
« Returns PID of parent process

23



Creating and Terminating Processes

From a programmer’s perspective, we can think of a process as
being in one of three states

* Running

« Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

* Stopped

e Process execution is suspended and will not be scheduled until
further notice (through something call signals)

* Terminated
e Process is stopped permanently

24



Terminating Processes

* Process becomes terminated for one of three reasons:
 Receiving a signal whose default action is to terminate
« Returning from the main routine
« Calling the exit function

e vold exit (int status)
o Terminates with an exit status of status

« Convention: normal return status is 0, nonzero on error

« Another way to explicitly set the exit status is to return an integer
value from the main routine

® oxit Is called once but never returns.

25



Creating Processes

* Parent process creates a new running child process by calling
fork

e nt fork(void)
« Returns 0 to the child process, child’s PID to parent process
 Child is almost identical to parent:

« Child get an identical (but separate) copy of the parent’s (virtual)
address space (i.e., same stack copies, code, etc.)

« Child gets identical copies of the parent’s open file descriptors
« Child has a different PID than the parent

e fork is interesting (and often confusing) because
it is called once but returns twice

26



fork Example

int main()

{

pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) { /x Child x/
printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent x/
printf("parent: x=%d\n", —--x);
exit(0);

fork.c

linux> ./fork
parent: x=0
child : x=2
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fork Example

int main()

{

pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) { /x Child x/
printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent x/
printf("parent: x=%d\n", —--x);
exit(0);

fork.c

linux> ./fork
parent: x=0
child : x=2

e Call once, return twice

27



fork Example

int main() * Call once, return twice

{ : . e Concurrent execution
pid_t pid; ’ . .
int x = 1; e Can’t predict execution

order of parent and child

pid = Fork();

if (pid == 0) { /x Child x/
printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent x/
printf("parent: x=%d\n", —--x);
exit(0);

} fork.c

linux> ./fork
parent: x=0
child : x=2
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fork Example

int main()

{

pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) { /x Child x/
printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent x/
printf("parent: x=%d\n", —--x);
exit(0);

fork.c

linux> ./fork
parent: x=0
child : x=2

e Call once, return twice

e Concurrent execution

e Can’t predict execution
order of parent and child

e Duplicate but separate
address space

¢ X has a value of 1 when fork
returns in parent and child

e Subsequent changes to x
are independent
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fork Example

int main()

{

pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) { /x Child x/
printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent x/
printf("parent: x=%d\n", —--x);
exit(0);

fork.c

linux> ./fork
parent: x=0
child : x=2

e Call once, return twice

e Concurrent execution

e Can’t predict execution
order of parent and child

e Duplicate but separate
address space

¢ X has a value of 1 when fork
returns in parent and child

e Subsequent changes to x
are independent

e Shared open files

¢ stdout is the same in both
parent and child

27



Process Address Space

Loaded from
the executable
file

0x400000

0

Kernel space

User stack
(created at runtime)

T

l

Memory-mapped region for
shared libraries

T

<

Run-time heap
(created by malloc)

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Unused

<l

Memory
invisible to
user code

srsp
(stack
pointer)

brk

Program
Counter
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Process Address Space

Loaded from
the executable
file

0x400000

0

Kernel space

User stack
(created at runtime)

T

l

Memory-mapped region for
shared libraries

T

<

Run-time heap
(created by malloc)

Read/write data segment

Unused

o

Memory
invisible to
user code

srsp
(stack
pointer)

brk

Program
Counter
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What Happens at fork () ?

Code Segment
int main()
{
pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) {
/* Child x/
X++; // 2
exit(0);

}

/*x Parent x/
x-—; // 0
exit(0);




What Happens at fork () ?

Parent Address Space

Stack
x=1

Code Segment
int main()
{
pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) {
/* Child x/
X++; // 2
exit(0);

}

/*x Parent x/
x-—; // 0
exit(0);




What Happens at fork () ?

Parent Address Space

Stack
Xx=1

Code Segment
int main()
{
pid_t pid;
Parent Uit = Ly
Process .
Program ﬁ pld =.F0rk();
Counter if (pld_== 0) {
/* Child x/
X++; // 2
exit(0);
¥

/*x Parent x/
x-—; // 0
exit(0);




What Happens at fork () ?

Parent
Process

Parent Address Space

Stack
x=1

Code Segment
int main()
{
pid_t pid;
int x = 1;

Program —— pid = Fork();

Counter

if (pid == 0) {
/* Child x/
X++; // 2
exit(0);

}

/*x Parent x/
x-—; // 0
exit(0);

Child Address Space

Stack
x=1

Code Segment
int main()
{
pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) {
/* Child x/
X++; // 2
exit(0);

}

/* Parent x/
x—; // 0
exit(0);
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What Happens at fork () ?

Parent
Process

Parent Address Space

Stack
Xx=1

Code Segment
int main()
{
pid_t pid;
int x = 1;

Program —— pid = Fork();

Counter

if (pid == 0) {
/* Child x/
X++; // 2
exit(0);

}

/*x Parent x/
x-—; // 0
exit(0);

Child Address Space

Stack
Xx=1

Code Segment
int main()
{
pid_t pid;
int x = 1;

if (pid == 0) {
/% Child x/
X++; // 2
exit(0);

}

/* Parent x/
x—; // 0
exit(0);

pid = Fork(); «——

Child

Process
Program
Counter
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Creating Processes

e Parent process creates a new child process by calling fork
e Child get an identical (but separate) copy of the parent’s (virtual)
address space (i.e., same stack copies, code, etc.)
® int fork(void)
e Returns 0 to the child process
e Returns child’s PID to the parent process
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Process Graph Example

int main()

{
pid_t pid;
int x = 1;
child: x=2 ]
pid = Fork(); pr?ﬁff . Child
if (pid == 0) { /x Child x/
printf("child : x=%d\n", ++x); xX== Lparentr x=0
o -® ¢  Parent

ex1t(0); main fork printf exit

}

/* Parent x/
printf("parent: x=%d\n", —--x);
exit(0);

} fork.c
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Interpreting Process Graphs

* QOriginal graph:

child: x=2
o "0,
printf exit
x==1 parent: x=0
.T g :._
main fork printf exit

e Abstracted graph:

L :5 :%
(= @ >
a (o]

n.e
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Interpreting Process Graphs

* QOriginal graph:

child: x=2
r@— @
printf exit
x==1 Lparent: x=0
o @ < J
main fork printf exit
e Abstracted graph: Feasible execution ordering:
A A0
e
o — L g J @ a b e C f d
a C d
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Interpreting Process Graphs

* QOriginal graph:

child: x=2
r@— @
printf exit
x==1 Lparent: x=0
o @ < J
main fork printf exit
e Abstracted graph: Feasible execution ordering:
A A0
e
o — L g J @ a b e C f d
a C d

Infeasible execution ordering:
Y 7N
a b f c e d
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