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Announcements

Midterm solutions online

 

You can take your exam back once you have checked for 
grading errors

 

For integrity reasons, please bring up possible grading 
mistakes before you leave with your exam; Not after.

 

A4 is online; I will send an announcement tonight
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General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)

Cache size: 
C = S x E x B data bytes 
Overhead: 
Tag, valid bit, dirty bit. 
Plus bits for implementing 
replacement policy 
(not shown).

valid bit

d

dirty bit
(if write-back)
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E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache line (the data)

t bits s bits b bits
Address of word:

tag set
index

Line
offset

•Locate set
•Check if any line in set 
has matching tag
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Cache Access

!4

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache line (the data)

t bits s bits b bits
Address of word:

tag set
index

Line
offset

data begins at this offset

•Locate set
•Check if any line in set 
has matching tag
•Yes + line valid: hit
•Locate data starting 
at offset
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S = 2s sets

Direct mapped: One line per set 
Assume: cache line size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654
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Example: Direct Mapped Cache

!5

S = 2s sets

Direct mapped: One line per set 
Assume: cache line size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set
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Assume: cache line size 8 bytes
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Example: Direct Mapped Cache
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t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

block offset

tag

Direct mapped: One line per set 
Assume: cache line size 8 bytes



Carnegie Mellon

Example: Direct Mapped Cache
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t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

Byte 4 is here

block offset

Direct mapped: One line per set 
Assume: cache line size 8 bytes
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Example: Direct Mapped Cache

!7

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

Byte 4 is here

block offset

If tag doesn’t match: old line is evicted and replaced

Direct mapped: One line per set 
Assume: cache line size 8 bytes
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4-bit address space, i.e., Memory = 16 
bytes
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x
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0 ? ?
v Tag Line
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Direct-Mapped Cache Simulation
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4-bit address space, i.e., Memory = 16 
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1
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Direct-Mapped Cache Simulation
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4-bit address space, i.e., Memory = 16 
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
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Direct-Mapped Cache Simulation
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4-bit address space, i.e., Memory = 16 
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3 The two bytes at memory address 6 and 7

The two bytes at memory address 0 and 1
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E-way Set Associative Cache (Here: E = 2)
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E = 2: Two lines per set 
Assume: cache line size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654
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E-way Set Associative Cache (Here: E = 2)

!9

E = 2: Two lines per set 
Assume: cache line size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

tag

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

Offset within a line

tag

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)
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t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

Offset within a line

short int (2 Bytes) is here

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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E-way Set Associative Cache (Here: E = 2)

!11

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

Offset within a line

short int (2 Bytes) is here

No match: 
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

E = 2: Two lines per set 
Assume: cache line size 8 bytes
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2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

Set 0

Set 1
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S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]Set 0

Set 1



Carnegie Mellon
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4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002], 
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0
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

Set 0

Set 1
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]Set 0

Set 1
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2-Way Set Associative Cache Simulation
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4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1
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Today
• Processes and Signals: running multiple programs concurrently


• Processes 
• Process Control 
• Signals

!13
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Processes
• Definition: A process is an instance of a running 

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key 
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

• Private address space
• Each program seems to have exclusive use of main 

memory. 
• Provided by OS through “virtual memory”

!14
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Multiprocessing: The Illusion

• Computer runs many processes simultaneously

• Applications for one or more users

• Web browsers, email clients, editors, …
• Background tasks

• Monitoring network & I/O devices

!15
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Multiprocessing Example

• Running program “top” on Unit/Linux

• System has 123 processes, 5 of which are active
• Identified by Process ID (PID)

!16
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Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data



Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data



Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved 
registers

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data



Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved 
registers

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data



Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved 
registers

Process 2
Stack
Heap

Code
Data

Saved 
registers

Process N
Stack
Heap

Code
Data



Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved 
registers

Process 2
Stack
Heap

Code
Data

Saved 
registers

Process N
Stack
Heap

Code
Data



Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved 
registers

Process 2
Stack
Heap

Code
Data

Saved 
registers

Saved 
registers

Process N
Stack
Heap

Code
Data



Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved 
registers

Process 2
Stack
Heap

Code
Data

Saved 
registers

Saved 
registers

Process N
Stack
Heap

Code
Data



Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved 
registers

Process 2
Stack
Heap

Code
Data

Saved 
registers

Saved 
registers

Process N
Stack
Heap

Code
Data



Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved 
registers

Process 2
Stack
Heap

Code
Data

Saved 
registers

Saved 
registers

Process N
Stack
Heap

Code
Data

Context switch 
managed by the OS. 
Not controllable by 
programmers.
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Multiprocessing: The Multi-Core Case

• Multicore processors

• Multiple CPUs on single chip
• Share main memory (and some of the 

caches)
• Each can execute a separate process

• Scheduling of processors onto 
cores done by kernel

!18
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Concurrent Processes
• Each process is a logical control flow. 
• Two processes run concurrently (are concurrent) if their flows 

overlap in time
• Otherwise, they are sequential
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overlap in time
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• Concurrent: A & B, A & C
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Concurrent Processes
• Each process is a logical control flow. 
• Two processes run concurrently (are concurrent) if their flows 

overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

• Concurrent: A & B, A & C
• Sequential: B & C

!19
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User View of Concurrent Processes
• Control flows for concurrent processes are physically disjoint in 

time


• However, we can think of concurrent processes as running in 
parallel with each other

!20
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Context Switching
• Processes are managed by a shared chunk of memory-resident 

OS code called the kernel
• Important: the kernel is not a separate process, but rather runs as 

part of some existing process.

• Control flow passes from one process to another via a context 
switch

!21
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Today
• Processes and Signals: running multiple programs concurrently


• Processes 
• Process Control 
• Signals

!22
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Obtaining Process IDs
•pid_t getpid(void) 

• Returns PID of current process

•pid_t getppid(void) 
• Returns PID of parent process

!23
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Creating and Terminating Processes
From a programmer’s perspective, we can think of a process as 
being in one of three states


• Running	 

• Process is either executing, or waiting to be executed and will 

eventually be scheduled (i.e., chosen to execute) by the kernel 

• Stopped

• Process execution is suspended and will not be scheduled until 

further notice (through something call signals) 

• Terminated

• Process is stopped permanently 
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Terminating Processes 
• Process becomes terminated for one of three reasons:


• Receiving a signal whose default action is to terminate
• Returning from the main routine
• Calling the exit function

•void exit(int status) 
• Terminates with an exit status of status
• Convention: normal return status is 0, nonzero on error
• Another way to explicitly set the exit status is to return an integer 

value from the main routine

•exit is called once but never returns.
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Creating Processes
• Parent process creates a new running child process by calling 
fork


•int fork(void) 
• Returns 0 to the child process, child’s PID to parent process

• Child is almost identical to parent:

• Child get an identical (but separate) copy of the parent’s (virtual) 

address space (i.e., same stack copies, code, etc.)

• Child gets identical copies of the parent’s open file descriptors

• Child has a different PID than the parent


• fork is interesting (and often confusing) because  
it is called once but returns twice
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fork Example

!27

int main() 
{ 
    pid_t pid; 
    int x = 1; 

    pid = Fork();  
    if (pid == 0) {  /* Child */ 
        printf("child : x=%d\n", ++x);  
 exit(0); 
    } 

    /* Parent */ 
    printf("parent: x=%d\n", --x);  
    exit(0); 
}

linux> ./fork 
parent: x=0 
child : x=2

fork.c
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fork Example

!27

int main() 
{ 
    pid_t pid; 
    int x = 1; 

    pid = Fork();  
    if (pid == 0) {  /* Child */ 
        printf("child : x=%d\n", ++x);  
 exit(0); 
    } 

    /* Parent */ 
    printf("parent: x=%d\n", --x);  
    exit(0); 
}

linux> ./fork 
parent: x=0 
child : x=2

fork.c

• Call once, return twice
• Concurrent execution

• Can’t predict execution 
order of parent and child

• Duplicate but separate 
address space

• x has a value of 1 when fork 
returns in parent and child

• Subsequent changes to x 
are independent

• Shared open files
• stdout is the same in both 

parent and child
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Process Address Space

!28
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What Happens at fork()?

!29

Code Segment
int main() 
{ 
  pid_t pid; 
  int x = 1; 

  pid = Fork();  
  if (pid == 0) { 
    /* Child */ 
    x++; // 2 
    exit(0); 
  } 

  /* Parent */ 
  x--; // 0 
  exit(0); 
}
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Creating Processes
• Parent process creates a new child process by calling fork 
• Child get an identical (but separate) copy of the parent’s (virtual) 

address space (i.e., same stack copies, code, etc.)

•int fork(void) 

• Returns 0 to the child process 
• Returns child’s PID to the parent process
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Process Graph Example

!31

int main() 
{ 
    pid_t pid; 
    int x = 1; 

    pid = Fork();  
    if (pid == 0) {  /* Child */ 
        printf("child : x=%d\n", ++x);  
 exit(0); 
    } 

    /* Parent */ 
    printf("parent: x=%d\n", --x);  
    exit(0); 
}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c
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Interpreting Process Graphs
• Original graph:


• Abstracted graph:
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• Abstracted graph:
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