
CSC 252: Computer
Organization

Fall 2021: Lecture 18

Wrap-up caching
Processes

Instructor: Alan Beadle

Department of Computer Science
University of Rochester

Carnegie Mellon

Announcements

Midterm solutions online

You can take your exam back once you have checked for
grading errors

For integrity reasons, please bring up possible grading
mistakes before you leave with your exam; Not after.

A4 is online; I will send an announcement tonight

Carnegie Mellon

General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

Carnegie Mellon

General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)

Carnegie Mellon

General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)valid bit

Carnegie Mellon

General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)valid bit

d

dirty bit
(if write-back)

Carnegie Mellon

General Cache Organization (S, E, B)

!3

E = 2e lines per set

S =
2s sets

set
line

0 1 2 B-1tagv

B = 2b bytes per cache line (the data)

Cache size:
C = S x E x B data bytes
Overhead:
Tag, valid bit, dirty bit.
Plus bits for implementing
replacement policy
(not shown).

valid bit

d

dirty bit
(if write-back)

Carnegie Mellon

Cache Access

!4

E = 2e lines per set

S = 2s sets

t bits s bits b bits
Address of word:

tag set
index

Line
offset

Carnegie Mellon

Cache Access

!4

E = 2e lines per set

S = 2s sets

t bits s bits b bits
Address of word:

tag set
index

Line
offset

•Locate set

Carnegie Mellon

Cache Access

!4

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache line (the data)

t bits s bits b bits
Address of word:

tag set
index

Line
offset

•Locate set
•Check if any line in set 
has matching tag
•Yes + line valid: hit

Carnegie Mellon

Cache Access

!4

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit B = 2b bytes per cache line (the data)

t bits s bits b bits
Address of word:

tag set
index

Line
offset

data begins at this offset

•Locate set
•Check if any line in set 
has matching tag
•Yes + line valid: hit
•Locate data starting 
at offset

Carnegie Mellon

Example: Direct Mapped Cache

!5

S = 2s sets

Direct mapped: One line per set
Assume: cache line size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

Carnegie Mellon

Example: Direct Mapped Cache

!5

S = 2s sets

Direct mapped: One line per set
Assume: cache line size 8 bytes

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Carnegie Mellon

Example: Direct Mapped Cache

!6

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

!6

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

tag

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

!6

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

block offset

tag

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

!7

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

Byte 4 is here

block offset

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Example: Direct Mapped Cache

!7

t bits 0…01 100
Address of char:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

Byte 4 is here

block offset

If tag doesn’t match: old line is evicted and replaced

Direct mapped: One line per set
Assume: cache line size 8 bytes

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

Set 0
Set 1
Set 2
Set 3

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

Set 0
Set 1
Set 2
Set 3

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

The two bytes at memory address 6 and 7

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

Set 0
Set 1
Set 2
Set 3

The two bytes at memory address 0 and 1

The two bytes at memory address 6 and 7

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]Set 0
Set 1
Set 2
Set 3 The two bytes at memory address 6 and 7

The two bytes at memory address 8 and 9

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

Set 0
Set 1
Set 2
Set 3 The two bytes at memory address 6 and 7

The two bytes at memory address 8 and 9

Carnegie Mellon

Direct-Mapped Cache Simulation

!8

4-bit address space, i.e., Memory = 16
bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v Tag Line

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0
Set 1
Set 2
Set 3 The two bytes at memory address 6 and 7

The two bytes at memory address 0 and 1

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!9

E = 2: Two lines per set
Assume: cache line size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!9

E = 2: Two lines per set
Assume: cache line size 8 bytes

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

tag

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!10

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

Offset within a line

tag

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!11

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

Offset within a line

short int (2 Bytes) is here

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

!11

t bits 0…01 100
Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

Offset within a line

short int (2 Bytes) is here

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

E = 2: Two lines per set
Assume: cache line size 8 bytes

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]Set 0

Set 1

Carnegie Mellon

2-Way Set Associative Cache Simulation

!12

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v Tag Line

0

0 0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1

Carnegie Mellon

Today
• Processes and Signals: running multiple programs concurrently

• Processes
• Process Control
• Signals

!13

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

!14

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:

!14

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

!14

CPU
Registers

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU

!14

CPU
Registers

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

!14

CPU
Registers

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

• Private address space

!14

CPU
Registers

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

• Private address space

!14

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

• Private address space
• Each program seems to have exclusive use of main

memory.

!14

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

• Private address space
• Each program seems to have exclusive use of main

memory.
• Provided by OS through “virtual memory”

!14

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Multiprocessing: The Illusion

• Computer runs many processes simultaneously

• Applications for one or more users

• Web browsers, email clients, editors, …
• Background tasks

• Monitoring network & I/O devices

!15

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Multiprocessing Example

• Running program “top” on Unit/Linux

• System has 123 processes, 5 of which are active
• Identified by Process ID (PID)

!16

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!17

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Context switch
managed by the OS.
Not controllable by
programmers.

Carnegie Mellon

Multiprocessing: The Multi-Core Case

• Multicore processors

• Multiple CPUs on single chip
• Share main memory (and some of the

caches)
• Each can execute a separate process

• Scheduling of processors onto
cores done by kernel

!18

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CPU
Registers

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential

!19

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

!19

Process A Process B Process C

Time

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

• Concurrent: A & B, A & C

!19

Process A Process B Process C

Time

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

• Concurrent: A & B, A & C
• Sequential: B & C

!19

Process A Process B Process C

Time

Carnegie Mellon

User View of Concurrent Processes
• Control flows for concurrent processes are physically disjoint in

time

• However, we can think of concurrent processes as running in
parallel with each other

!20

Time

Process A Process B Process C

Carnegie Mellon

Context Switching
• Processes are managed by a shared chunk of memory-resident

OS code called the kernel
• Important: the kernel is not a separate process, but rather runs as

part of some existing process.

• Control flow passes from one process to another via a context
switch

!21

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

Today
• Processes and Signals: running multiple programs concurrently

• Processes
• Process Control
• Signals

!22

Carnegie Mellon

Obtaining Process IDs
•pid_t getpid(void)

• Returns PID of current process

•pid_t getppid(void)
• Returns PID of parent process

!23

Carnegie Mellon

Creating and Terminating Processes
From a programmer’s perspective, we can think of a process as
being in one of three states

• Running	

• Process is either executing, or waiting to be executed and will

eventually be scheduled (i.e., chosen to execute) by the kernel

• Stopped

• Process execution is suspended and will not be scheduled until

further notice (through something call signals)

• Terminated

• Process is stopped permanently

!24

Carnegie Mellon

Terminating Processes
• Process becomes terminated for one of three reasons:

• Receiving a signal whose default action is to terminate
• Returning from the main routine
• Calling the exit function

•void exit(int status)
• Terminates with an exit status of status
• Convention: normal return status is 0, nonzero on error
• Another way to explicitly set the exit status is to return an integer

value from the main routine

•exit is called once but never returns.

!25

Carnegie Mellon

Creating Processes
• Parent process creates a new running child process by calling
fork

•int fork(void)
• Returns 0 to the child process, child’s PID to parent process

• Child is almost identical to parent:

• Child get an identical (but separate) copy of the parent’s (virtual)

address space (i.e., same stack copies, code, etc.)

• Child gets identical copies of the parent’s open file descriptors

• Child has a different PID than the parent

• fork is interesting (and often confusing) because  
it is called once but returns twice

!26

Carnegie Mellon

fork Example

!27

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

Carnegie Mellon

fork Example

!27

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

• Call once, return twice

Carnegie Mellon

fork Example

!27

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

• Call once, return twice
• Concurrent execution

• Can’t predict execution
order of parent and child

Carnegie Mellon

fork Example

!27

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

• Call once, return twice
• Concurrent execution

• Can’t predict execution
order of parent and child

• Duplicate but separate
address space

• x has a value of 1 when fork
returns in parent and child

• Subsequent changes to x
are independent

Carnegie Mellon

fork Example

!27

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

• Call once, return twice
• Concurrent execution

• Can’t predict execution
order of parent and child

• Duplicate but separate
address space

• x has a value of 1 when fork
returns in parent and child

• Subsequent changes to x
are independent

• Shared open files
• stdout is the same in both

parent and child

Carnegie Mellon

Process Address Space

!28

Kernel space

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded from
the executable
file

Program
Counter

Carnegie Mellon

Process Address Space

!28

Kernel space

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded from
the executable
file

Program
Counter

Carnegie Mellon

What Happens at fork()?

!29

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Carnegie Mellon

What Happens at fork()?

!29

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Parent Address Space

Carnegie Mellon

What Happens at fork()?

!29

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Parent
Process

Program

Counter

Parent Address Space

Carnegie Mellon

What Happens at fork()?

!29

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Parent
Process

Program

Counter

Parent Address Space Child Address Space

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Carnegie Mellon

What Happens at fork()?

!29

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Parent
Process

Program

Counter

Parent Address Space Child Address Space

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Child
Process

Program

Counter

Carnegie Mellon

Creating Processes
• Parent process creates a new child process by calling fork
• Child get an identical (but separate) copy of the parent’s (virtual)

address space (i.e., same stack copies, code, etc.)

•int fork(void)

• Returns 0 to the child process
• Returns child’s PID to the parent process

!30

Carnegie Mellon

Process Graph Example

!31

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

Carnegie Mellon

Interpreting Process Graphs
• Original graph:

• Abstracted graph:

!32

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

Carnegie Mellon

Interpreting Process Graphs
• Original graph:

• Abstracted graph:

!32

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible execution ordering:

Carnegie Mellon

Interpreting Process Graphs
• Original graph:

• Abstracted graph:

!32

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible execution ordering:

a b ecf d

Infeasible execution ordering:

