CSC 252: Computer
Organization
Fall 2021: Lecture 18

Wrap-up caching
Processes

Instructor: Alan Beadle

Department of Computer Science
University of Rochester

Announcements

Midterm solutions online

You can take your exam back once you have checked for
grading errors

For integrity reasons, please bring up possible grading
mistakes before you leave with your exam; Not after.

A4 is online; | will send an announcement tonight

General Cache Organization (S, E, B)

E = 2¢ lines per set

'd A N\
4 —
t -
d oo
S = +
2s sets
+..

General Cache Organization (S,

2s sets

E = 2¢ lines per set
A

Tooc -

lacoc

Tooc

Tooc

\ tag ofj1]2]-----

B-1

N—

7

~—

B = 2b bytes per cache line (the data)

E, B)

3

General Cache Organization (S,

2s sets

E = 2¢ lines per set
A

Tooc -

oo

Tooc

Tooc

v tag o112

B-1

7

~

valid bit B = 2b bytes per cache line (the data)

E, B)

3

General Cache Organization (S, E, B)

E = 2¢ lines per set

A
'd N\

4 —
+ooo \\
+0..0

S: < +ooo
2s sets

k +000

d ' tag 011]2] =< B-1

dirty bit / ~ ~—

(if write-back) valid bit B = 2b bytes per cache line (the data)

3

General Cache Organization (S, E, B)

E = 2¢ lines per set
A

Tooc

lacoc

Tooc

Tooc

N\
L

\

Cache size:

C =S x E x B data bytes

Overhead:
Tag, valid bit, dirty bit.
Plus bits for implementing

replacement policy

(not shown).

T ——

d \'}

tag

B-1

dirty bit / \

7

(if write-back) valid bit

B = 2b bytes per cache line (the data)

3

Cache Access

E = 2¢ lines per set
A

' Y
-
o0 00
Address of word:
eoee t bits | s bits | b bits
_ — A
S = 2s st eeee tag set Line

index offset

Cache Access

S = 2s set¥

E = 2¢ lines per set
A

» Locate set

Address of word:

t bits s bits | b bits

— A

tag set Line
index offset

Cache Access

S = 2s set¥

E = 2¢ lines per set

A

* Locate set

« Check if any line in set
has matching tag

* Yes + line valid: hit

Address of word:
t bits s bits | b bits
— "
tag set Line
index offset

\'J

tag

B-1

A

|
valid bit

7

B = 2b bytes per cache line (the data)

Cache Access

S = 2s set¥

E = 2¢ lines per set
A

 Locate set
« Check if any line in set
has matching tag
* Yes + line valid: hit
 Locate data starting
at offset

Address of word:
t bits s bits | b bits
— "
tag set Line
index offset

data begins at this offset

\V/ tag 0 1 2 B-1

A
| — _

valid bit B = 2b bytes per cache line (the data)

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache line size 8 bytes

(Address of char:

v | tag | [0]1]|2[3]4]|5]|6]7 tbits | 0...01 100

vl | tag | [o|1]2]|3]4]5]6]7

S=Zsset§
v tag o[1|2]3|4]|5]|6|7

\"} tag 01]1]213]|41]|5]|6]|7

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache line size 8 bytes

(Address of char:

v | tag | [0]1]|2[3]4]|5]|6]7 tbits | 0...01 100

vl | tag | [o|1]2]|3]4]5]6]7

find set

S=Zsset§
v tag o[1|2]3|4]|5]|6|7

\"} tag 01]1]213]|41]|5]|6]|7

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache line size 8 bytes

Address of char:

tbits | 0...01 [100

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache line size 8 bytes

Address of char:

valid? +match: assume yes = hit

tbits | 0...01 [100

v tag 0|1]2|3]14|5]|6]7

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache line size 8 bytes

Address of char:

valid? +match: assume yes = hit

tbits | 0...01 [100

v tag 0|1]2|3]14|5]|6]7

block offset

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache line size 8 bytes

Address of char:

valid? +match: assume yes = hit

tbits | 0...01 [100

vl | tag | [o|1]2|3]4]5]6]7

block offset

Byte 4 is here

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache line size 8 bytes

Address of char:

valid? +match: assume yes = hit

tbits | 0...01 [100

vl | tag | [o|1]2|3]4]5]6]7

block offset

Byte 4 is here

If tag doesn’t match: old line is evicted and replaced

Direct-Mapped Cache Simulation

4-bit address space, i.e., Memory = 16

B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

t=1 s=2 b=1

X XX X bytes
0
1
7
8
0

v Tag Line

Set0| O ? ?

Set 1

Set 2

Set 3

0000,
0001,
0111,
1000,

0000,

Direct-Mapped Cache Simulation

t=1 s=2 b=t
X XX X bytes
v Tag Line
Set0| O ? ?
Set 1
Set 2

Set 3

4-bit address space, i.e., Memory = 16

B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

0

O 00 N =

0000,
0001,
0111,
1000,

, miss
J

0000,

Direct-Mapped Cache Simulation

t=1 s=2 b=t
X XX X bytes
v Tag Line
Set0| 1 0 M[O-1]
Set 1
Set 2

Set 3

4-bit address space, i.e., Memory = 16

B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

0

O 00 N =

0000,
0001,
0111,
1000,

, miss
J

0000,

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit address space, i.e., Memory = 16
X | XX | X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,],
7 0111,],
8 1000,],
0 (0000,
v Tag Line
Set0| 1 0 M[O-1] |« The two bytes at memory address 0 and 1
Set 1
Set 2

Set 3

Direct-Mapped Cache Simulation

t=1 s=2 Db=1 4-bit address space, i.e., Memory = 16
X XX X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,], hit
7 0111,],
8 1000,],
0 (0000,
v Tag Line
Set0| 1 0 M[O-1] |« The two bytes at memory address 0 and 1
Set 1
Set 2

Set 3

Direct-Mapped Cache Simulation

t=1 s=2 Db=1 4-bit address space, i.e., Memory = 16
X XX X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,],
0 (0000,
v Tag Line
Set0| 1 0 M[O-1] |« The two bytes at memory address 0 and 1
Set 1
Set 2

Set 3

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit address space, i.e., Memory = 16
X | XX | X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,],
0 (0000,
v Tag Line
Set0| 1 0 M[O-1] |« The two bytes at memory address 0 and 1
Set 1
Set 2
Set3| 1 0 M[6-7]

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit address space, i.e., Memory = 16
X | XX | X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,],
0 (0000,
v Tag Line
Set0| 1 0 M[O-1] |« The two bytes at memory address 0 and 1
Set 1
Set 2
Set3| 1 0 M[6-7] |<*— The two bytes at memory address 6 and 7

8

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit address space, i.e., Memory = 16
X | XX | X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 (0000,
v Tag Line
Set0| 1 0 M[O-1] |« The two bytes at memory address 0 and 1
Set 1
Set 2
Set3| 1 0 M[6-7] |<*— The two bytes at memory address 6 and 7

8

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit address space, i.e., Memory = 16
X XX X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 (0000,
v Tag Line
Set0| 1 1 M[8-9] |« The two bytes at memory address 8 and 9
Set 1
Set 2
Set3| 1 0 M[6-7] |<*— The two bytes at memory address 6 and 7

8

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit address space, i.e., Memory = 16
X XX X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 0000, miss
v Tag Line
Set0| 1 1 M[8-9] |« The two bytes at memory address 8 and 9
Set 1
Set 2
Set3| 1 0 M[6-7] |<*— The two bytes at memory address 6 and 7

8

Direct-Mapped Cache Simulation

t=1 s=2 b=1 4-bit address space, i.e., Memory = 16
X | XX | X bytes
B=2 bytes/line, S=4 sets, E=1 line/set
Address trace (reads, one byte per read):
0 0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 0000, miss
v Tag Line
Set0| 1 0 M[O-1] |« The two bytes at memory address 0 and 1
Set 1
Set 2
Set3| 1 0 M[6-7] |<*— The two bytes at memory address 6 and 7

8

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache line size 8 bytes Address of short int:

tbits | 0...01 [100

v| [tag | [0[1]2]3]4]|5[6]7]| |[v] | tag | [0]1]2]3]4]5]6]7

v| | tag | [0]1]2]3]4]5[6]7]]| ||v] [tag | [0]1]2]3]4]5[6]7

v| [tag | [0[1[2]3]4]|5[6]7]| |[v] | tag | [0]1]2]3]4]5]6]7

v| [tag | [0[1[2]3]4]|5[6]7]| |[v] | tag | [0]1]2]3]4]5]6]7

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache line size 8 bytes Address of short int:

tbits | 0...01 [100

v| [tag | [0[1]2]3]4]|5[6]7]| |[v] | tag | [0]1]2]3]4]5]6]7

v] [tag] [o]1]2[3]4]5]6]7]| |[v] [tag] [o]1]2]3]4]5]6]7]| —Tind set

v| [tag | [0[1[2]3]4]|5[6]7]| |[v] | tag | [0]1]2]3]4]5]6]7

v| [tag | [0[1[2]3]4]|5[6]7]| |[v] | tag | [0]1]2]3]4]5]6]7

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache line size 8 bytes Address of short int:

tbits | 0...01 [100

10

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache line size 8 bytes Address of short int:

tbits | 0...01 [100

compare both

10

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache line size 8 bytes Address of short int:

tbits | 0...01 [100

compare both

valid? Hmatch: yes = hit

v| | tag | [0]1]2]3]4]|5]6]|7]| |[v] [tag | [0]1]2][3]4]5]6]7|] —

10

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache line size 8 bytes Address of short int:

tbits | 0...01 [100

compare both

valid? Hmatch: yes = hit

v| | tag | [0]1]2]3]4]|5]6]|7]| |[v] [tag | [0]1]2][3]4]5]6]7|] —

Offset within a line

10

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache line size 8 bytes Address of short int:

tbits | 0...01 [100

compare both

valid? +match: yes = hit

v| | tag | [0]1]2]3]4]|5]6]7]| [|v] | tag | [0]1]2]3]4]5]6]7|| —

Offset within a line

short int (2 Bytes) is here

1

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache line size 8 bytes Address of short int:

tbits | 0...01 [100

compare both

valid? +match: yes = hit

v| | tag | [0]1]2]3]4]|5]6]7]| [|v] | tag | [0]1]2]3]4]5]6]7|| —

Offset within a line

short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU),

1

2-Way Set Associative Cache Simulation

t=2 s=1 Db=1
XX X X

4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set

Address trace (reads, one byte per read):

0 0000,],
1 0001,],
7 0111,],
8 1000,],
0 0000,)]
v Tag Line
Set0 |0 |? ? 0

Seti1 |0 0

2-Way Set Associative Cache Simulation

t=2 s=1 b=t _ .
XX X X 4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set
Address trace (reads, one byte per read):
0 (0000,], miss
1 0001,],
8 1000,],
0 (0000,
v Tag Line
Set0 |0 |? ? 0
Set1 |0 0)

12

2-Way Set Associative Cache Simulation

t=2 s=1 b=t _ .
XX X X 4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set
Address trace (reads, one byte per read):
0 (0000,], miss
1 0001,],
8 1000,],
0 (0000,
v Tag Line
Set0|1 |00 [M[O-1] 0
Set1 |0 0)

12

2-Way Set Associative Cache Simulation

t=2 s=1 b=t _ .
XX X X 4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set
Address trace (reads, one byte per read):
0 (0000,], miss
1 0001,], hit
8 1000,],
0 (0000,
v Tag Line
Set0|1 |00 [M[O-1] 0
Set1 |0 0)

12

2-Way Set Associative Cache Simulation

t=2 s=1 b=t _ .
XX X X 4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set
Address trace (reads, one byte per read):
0 (0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,],
0 (0000,
v Tag Line
Set0|1 |00 [M[O-1] 0
Set1 |0 0)

12

2-Way Set Associative Cache Simulation

t=2 s=1 b=t _ .
XX X X 4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set
Address trace (reads, one byte per read):
0 (0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,],
0 0000,)]
v Tag Line
Set0|1 |00 [M[O-1] 0
Set1|1 |01 [M[6-7] 0

12

2-Way Set Associative Cache Simulation

t=2 s=1 b=t _ .
XX X X 4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set
Address trace (reads, one byte per read):
0 (0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 (0000,
v Tag Line
Set0|1 |00 [M[O-1] 0
Set1|1 |01 [M[6-7] 0

12

2-Way Set Associative Cache Simulation

t=2 s=1 b=t _ .
XX X X 4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set
Address trace (reads, one byte per read):
0 (0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 (0000,
v Tag Line
Set0|1 |00 [M[O-1] 1 10 |MI[8-9]
Set1|1 |01 [M[6-7] 0

12

2-Way Set Associative Cache Simulation

t=2 s=1 b=t _ .
XX X X 4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set
Address trace (reads, one byte per read):
0 (0000,], miss
1 0001,], hit
7 0111,], miss
8 1000,], miss
0 (0000, hit
v Tag Line
Set0|1 |00 [M[O-1] 1 10 |MI[8-9]
Set1|1 |01 [M[6-7] 0

12

Today

* Processes and Signals: running multiple programs concurrently
* Processes

13

Processes

e Definition: A process is an instance of a running
program.

* One of the most profound ideas in computer science
« Not the same as “program” or “processor”

14

Processes

e Definition: A process is an instance of a running
program.

* One of the most profound ideas in computer science
« Not the same as “program” or “processor”

e Process provides each program with two key
abstractions:

14

Processes

e Definition: A process is an instance of a running
program.

* One of the most profound ideas in computer science
« Not the same as “program” or “processor”

e Process provides each program with two key
abstractions:

» “Owns” the CPU

CPU

Registers

14

Processes

e Definition: A process is an instance of a running
program.

* One of the most profound ideas in computer science
« Not the same as “program” or “processor”

e Process provides each program with two key
abstractions:

» “Owns” the CPU
« Each program seems to have exclusive use of the CPU

CPU

Registers

14

Processes

e Definition: A process is an instance of a running
program.

* One of the most profound ideas in computer science
« Not the same as “program” or “processor”

e Process provides each program with two key
abstractions:

» “Owns” the CPU
« Each program seems to have exclusive use of the CPU
* Done by the OS kernel through “context switching”

CPU

Registers

14

Processes

e Definition: A process is an instance of a running
program.

* One of the most profound ideas in computer science
« Not the same as “program” or “processor”

e Process provides each program with two key
abstractions:

* “Owns” the CPU
« Each program seems to have exclusive use of the CPU
* Done by the OS kernel through “context switching”

» Private address space

CPU

Registers

14

Processes

e Definition: A process is an instance of a running
program.
* One of the most profound ideas in computer science
« Not the same as “program” or “processor”

e Process provides each program with two key
abstractions:

» “Owns” the CPU
« Each program seems to have exclusive use of the CPU

* Done by the OS kernel through “context switching”
» Private address space

Memory

Stack

Heap

Data

Code

CPU

Registers

14

Processes

e Definition: A process is an instance of a running
program.
* One of the most profound ideas in computer science
« Not the same as “program” or “processor”

e Process provides each program with two key
abstractions:

» “Owns” the CPU

« Each program seems to have exclusive use of the CPU
* Done by the OS kernel through “context switching”
» Private address space

« Each program seems to have exclusive use of main
memory.

Memory

Stack

Heap

Data

Code

CPU

Registers

14

Processes

e Definition: A process is an instance of a running
program.

* One of the most profound ideas in computer science
« Not the same as “program” or “processor”

e Process provides each program with two key
abstractions:

» “Owns” the CPU
« Each program seems to have exclusive use of the CPU

* Done by the OS kernel through “context switching”
» Private address space

« Each program seems to have exclusive use of main
memory.

« Provided by OS through “virtual memory”

Memory

Stack

Heap

Data

Code

CPU

Registers

14

Multiprocessing: The lllusion

Memory

Memory

Memory

Stack

Stack

Stack

Heap

Heap

Heap

Data

Data

Data

Code

Code

Code

CPU

CPU

CPU

Registers

Registers

Registers

* Computer runs many processes simultaneously
« Applications for one or more users

 Web browsers, email clients, editors, ...

« Background tasks
« Monitoring network & I/0O devices

15

Multiprocessing Example

X/ Xterm

Processes: 123 total, 5 running, 9 stuck, 109 sleeping, 611 threads

Load Avg: 1,03, 1,13, 1,14 CPU usage: 3,272 user, 5,15% sys, 91,562 idle
SharedLibs: 576K resident, OB data, OB linkedit,

MemRegions: 27358 total, 1127M resident, 35M private, 434M shared,
PhysMem: 1039M wired, 1974M active, 1062M inactive, 4076M used, 18M free,

YM: 280G vsize, 1091M framework vsize, 23075213(1) pageins, 5843367(0) pageouts,

MNetworks: packets: 41046228/11GC in, B6083096/77G out,
Disks: 17874391/349C read, 12847373/5940 written,

11:47:07

PID COMMAND #CPU TIME #TH #l/0 #PORT #MREG RPRVT RSHRD RSIZE VPRVT VSIZE
99217- Microsoft Of 0,0 02:28,34 4 1 202 418 2IM 244 21M BBM 763M

93051 usbmuxd 0,0 00:04,10 3 1 47 B6 436K 216K 480K BOM 2422M
93006 iTunesHelper 0,0 00:01,23 2 1 5 78 728K 3124K 1124K 43M 2429M
84286 bash 0,0 00:00,11 1 0 20 24 224K 732K 484K 17M 2378M
84285 xterm 0,0 00:00,83 1 0 32 73 B9EK 872K 632K 9728K 2382M
95933~ Microsoft Ex 0,3 21:58,97 10 3 360 954 16M B5M 46M 114M 1057M
94751 sleep 0,0 00:00,00 1 0 17 20 92k 212K 360K 9632K 2370M
94739 launchdadd 0,0 00:00,00 2 1 33 50 488K 220Kk 173BK 48M 2409M
94737 top 6,5 00:02,53 171 0 30 23 1416K 216K 2124K 17M 2378M
94713 automountd 0,0 00:00,02 7 1 53 B4 BBOK 216K 2184K 5H3M 2413M
94701 ocspd 0,0 00:00,05 4 1 61 54 1268K 2644K 3132K 5HOM 2426M
94661 Grab 0.6 00:02,75 6 3 222+ 383+ 15M+ 2BM+ 40M+ YOM+ 2006M+
94653 cookied 0,0 00:00,15 2 1 40 61 3316K 224K 4088K 42M 2411M
L2040 o] P T .. B e B | 4 o 04 o Tutu e P I D T Kx1 P I. Ral ¥ | A0kl o420k

* Running program “top” on Unit/Linux
« System has 123 processes, 5 of which are active
« |dentified by Process ID (PID)

16

Multiprocessing lllustration

Memory
Process 1 Process 2 Process N
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code

CPU

Registers

Multiprocessing lllustration

e Memory

. Process1 : Process 2 Process N
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code

CPU

Registers

Multiprocessing lllustration

e Memory

. Process1 : Process 2 Process N
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved

registers

CPU

Registers

Multiprocessing lllustration

.....Memory__

Process1 : Process?2 ' Process N
Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved

registers
CPU

Registers

Process 1

Stack

Heap

Data

Code

Saved

registers

e e EEEE s s RS s E s s AR s S e e e E e ...

Process 2

Stack
Heap
Data
Code

Saved
registers

*

CPU

Registers

Multiprocessing lllustration

Process N

Stack

Heap

Data

Code

17

Process 1

Stack

Heap

Data

Code

Saved

registers

Multiprocessing lllustration

Memory

Process 2

Stack
Heap
Data
Code

Saved
registers

Process N

Stack

Heap

Data

Code

CPU

Registers

17

Multiprocessing lllustration

Memory s ,

Process 1 Process 2 . Process N :
Stack Stack Stack
Heap Heap i |__Heap :
Data Data Data
Code Code Code
Saved Saved Saved
registers registers + |registers |
| CPU |[:

Registers

Process 1

Stack

Heap

Data

Code

Saved

registers

e e EEEE s s RS s E s s AR s S e e e E e ...

Process 2

Stack
Heap
Data
Code

Saved
registers

CPU

Registers

Multiprocessing lllustration

Process N

Stack

Heap

Data

Code

Saved
registers

17

Process 1

Stack

Heap

Data

Code

Saved

registers

e e EEEE s s RS s E s s AR s S e e e E e ...

Process 2

Stack
Heap
Data
Code

Saved
registers

v

CPU

Registers

Multiprocessing lllustration

Process N

Stack

Heap

Data

Code

Saved
registers

17

Multiprocessing lllustration

.....Memory__
Process1 : Process?2 ' Process N
Stack ' Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
registers registers registers
Context switch
CPU
o managed by the OS.
- Not controllable by

programmers.

17

Multiprocessing: The Multi-Core Case

Memory

Stack Stack Stack

Heap Heap Heap

Data Data . m Data

Code Code Code

Saved Saved Saved
registers reqgisters reqgisters

* Multicore processors

CPU CPU » Multiple CPUs on single chip

Registers Registers . Share main memory (and some of the

caches)
« Each can execute a separate process

« Scheduling of processors onto
cores done by kernel

18

Concurrent Processes

* Each process is a logical control flow.

e Two processes run concurrently (are concurrent) if their flows
overlap in time

* Otherwise, they are sequential

19

Concurrent Processes

* Each process is a logical control flow.

e Two processes run concurrently (are concurrent) if their flows
overlap in time

* Otherwise, they are sequential
* Examples (running on single core):

Process A Process B Process C

Time

19

Concurrent Processes

* Each process is a logical control flow.

e Two processes run concurrently (are concurrent) if their flows
overlap in time

* Otherwise, they are sequential

* Examples (running on single core):
e« Concurrent: A& B,A&C

Process A Process B Process C

Time

19

Concurrent Processes

* Each process is a logical control flow.

e Two processes run concurrently (are concurrent) if their flows
overlap in time

* Otherwise, they are sequential

* Examples (running on single core):
e« Concurrent: A& B,A&C
e Sequential: B & C

Process A Process B Process C

Time

19

User View of Concurrent Processes

* Control flows for concurrent processes are physically disjoint in
time

* However, we can think of concurrent processes as running in
parallel with each other

Process A Process B Process C

Time

20

Context Switching

* Processes are managed by a shared chunk of memory-resident
OS code called the kernel
« Important: the kernel is not a separate process, but rather runs as
part of some existing process.

* Control flow passes from one process to another via a context
switch

Process A Process B

I
|
I
I
|
I user code
I

kernel code } context switch

Time user code

kernel code } context switch

user code

<

21

Today

* Processes and Signals: running multiple programs concurrently

* Process Control

22

Obtaining Process IDs

epid t getpid(void)
« Returns PID of current process

®*pid t getppid(void)
« Returns PID of parent process

23

Creating and Terminating Processes

From a programmer’s perspective, we can think of a process as
being in one of three states

* Running

« Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

* Stopped

e Process execution is suspended and will not be scheduled until
further notice (through something call signals)

* Terminated
e Process is stopped permanently

24

Terminating Processes

* Process becomes terminated for one of three reasons:
 Receiving a signal whose default action is to terminate
« Returning from the main routine
« Calling the exit function

e vold exit (int status)
o Terminates with an exit status of status

« Convention: normal return status is 0, nonzero on error

« Another way to explicitly set the exit status is to return an integer
value from the main routine

® oxit Is called once but never returns.

25

Creating Processes

* Parent process creates a new running child process by calling
fork

e nt fork(void)
« Returns 0 to the child process, child’s PID to parent process
 Child is almost identical to parent:

« Child get an identical (but separate) copy of the parent’s (virtual)
address space (i.e., same stack copies, code, etc.)

« Child gets identical copies of the parent’s open file descriptors
« Child has a different PID than the parent

e fork is interesting (and often confusing) because
it is called once but returns twice

26

fork Example

int main()

{

pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) { /x Child x/
printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent x/
printf("parent: x=%d\n", —--x);
exit(0);

fork.c

linux> ./fork
parent: x=0
child : x=2

27

fork Example

int main()

{

pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) { /x Child x/
printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent x/
printf("parent: x=%d\n", —--x);
exit(0);

fork.c

linux> ./fork
parent: x=0
child : x=2

e Call once, return twice

27

fork Example

int main() * Call once, return twice

{ : . e Concurrent execution
pid_t pid; ’ . .
int x = 1; e Can’t predict execution

order of parent and child

pid = Fork();

if (pid == 0) { /x Child x/
printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent x/
printf("parent: x=%d\n", —--x);
exit(0);

} fork.c

linux> ./fork
parent: x=0
child : x=2

27

fork Example

int main()

{

pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) { /x Child x/
printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent x/
printf("parent: x=%d\n", —--x);
exit(0);

fork.c

linux> ./fork
parent: x=0
child : x=2

e Call once, return twice

e Concurrent execution

e Can’t predict execution
order of parent and child

e Duplicate but separate
address space

¢ X has a value of 1 when fork
returns in parent and child

e Subsequent changes to x
are independent

27

fork Example

int main()

{

pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) { /x Child x/
printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent x/
printf("parent: x=%d\n", —--x);
exit(0);

fork.c

linux> ./fork
parent: x=0
child : x=2

e Call once, return twice

e Concurrent execution

e Can’t predict execution
order of parent and child

e Duplicate but separate
address space

¢ X has a value of 1 when fork
returns in parent and child

e Subsequent changes to x
are independent

e Shared open files

¢ stdout is the same in both
parent and child

27

Process Address Space

Loaded from
the executable
file

0x400000

0

Kernel space

User stack
(created at runtime)

T

l

Memory-mapped region for
shared libraries

T

<

Run-time heap
(created by malloc)

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Unused

<l

Memory
invisible to
user code

srsp
(stack
pointer)

brk

Program
Counter

28

Process Address Space

Loaded from
the executable
file

0x400000

0

Kernel space

User stack
(created at runtime)

T

l

Memory-mapped region for
shared libraries

T

<

Run-time heap
(created by malloc)

Read/write data segment

Unused

o

Memory
invisible to
user code

srsp
(stack
pointer)

brk

Program
Counter

28

What Happens at fork () ?

Code Segment
int main()
{
pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) {
/* Child x/
X++; // 2
exit(0);

}

/*x Parent x/
x-—; // 0
exit(0);

What Happens at fork () ?

Parent Address Space

Stack
x=1

Code Segment
int main()
{
pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) {
/* Child x/
X++; // 2
exit(0);

}

/*x Parent x/
x-—; // 0
exit(0);

What Happens at fork () ?

Parent Address Space

Stack
Xx=1

Code Segment
int main()
{
pid_t pid;
Parent Uit = Ly
Process .
Program ﬁ pld =.F0rk();
Counter if (pld_== 0) {
/* Child x/
X++; // 2
exit(0);
¥

/*x Parent x/
x-—; // 0
exit(0);

What Happens at fork () ?

Parent
Process

Parent Address Space

Stack
x=1

Code Segment
int main()
{
pid_t pid;
int x = 1;

Program —— pid = Fork();

Counter

if (pid == 0) {
/* Child x/
X++; // 2
exit(0);

}

/*x Parent x/
x-—; // 0
exit(0);

Child Address Space

Stack
x=1

Code Segment
int main()
{
pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) {
/* Child x/
X++; // 2
exit(0);

}

/* Parent x/
x—; // 0
exit(0);

29

What Happens at fork () ?

Parent
Process

Parent Address Space

Stack
Xx=1

Code Segment
int main()
{
pid_t pid;
int x = 1;

Program —— pid = Fork();

Counter

if (pid == 0) {
/* Child x/
X++; // 2
exit(0);

}

/*x Parent x/
x-—; // 0
exit(0);

Child Address Space

Stack
Xx=1

Code Segment
int main()
{
pid_t pid;
int x = 1;

if (pid == 0) {
/% Child x/
X++; // 2
exit(0);

}

/* Parent x/
x—; // 0
exit(0);

pid = Fork(); «——

Child

Process
Program
Counter

29

Creating Processes

e Parent process creates a new child process by calling fork
e Child get an identical (but separate) copy of the parent’s (virtual)
address space (i.e., same stack copies, code, etc.)
® int fork(void)
e Returns 0 to the child process
e Returns child’s PID to the parent process

30

Process Graph Example

int main()

{
pid_t pid;
int x = 1;
child: x=2]
pid = Fork(); pr?ﬁff . Child
if (pid == 0) { /x Child x/
printf("child : x=%d\n", ++x); xX== Lparentr x=0
o -® ¢ Parent

ex1t(0); main fork printf exit

}

/* Parent x/
printf("parent: x=%d\n", —--x);
exit(0);

} fork.c

31

Interpreting Process Graphs

* QOriginal graph:

child: x=2
o "0,
printf exit
x==1 parent: x=0
.T g :._
main fork printf exit

e Abstracted graph:

L :5 :%
(= @ >
a (o]

n.e

32

Interpreting Process Graphs

* QOriginal graph:

child: x=2
r@— @
printf exit
x==1 Lparent: x=0
o @ < J
main fork printf exit
e Abstracted graph: Feasible execution ordering:
A A0
e
o — L g J @ a b e C f d
a C d

32

Interpreting Process Graphs

* QOriginal graph:

child: x=2
r@— @
printf exit
x==1 Lparent: x=0
o @ < J
main fork printf exit
e Abstracted graph: Feasible execution ordering:
A A0
e
o — L g J @ a b e C f d
a C d

Infeasible execution ordering:
Y 7N
a b f c e d

32

