
CSC 252: Computer 
Organization

Fall 2021: Lecture 17

 The Storage Hierarchy, continued

Instructor: Alan Beadle

Department of Computer Science
University of Rochester



Carnegie Mellon

Announcements

Midterm solutions will be posted soon


To view your midterm, come to office hours or make an 

appointment.


Grading errors must be brought up before leaving with your 

exam for integrity reasons.

 

A4 will be out on Wednesday



Carnegie Mellon

NVMEM

Non-volatile memory

 

Higher density than DRAM

 

A bit slower, but DRAM scaling is hitting some limits

 

Server applications demand more memory, NVMEM can 
provide it

 

Just like volatile memory, there are many different ways to 
build it



Carnegie Mellon

NVMEM: Intel Optane

AKA “3D Xpoint” memory

Currently available

Fits in a DIMM slot, looks like a normal RAM stick

Supported by high-end Intel Xeon CPUs (mostly servers)

Can support huge memory capacities compared to DRAM 
(hundreds of gigabytes, up to terabytes)



Carnegie Mellon

NVMEM: Intel Optane

Optane is built using a technique known as “Resistive RAM” 
(ReRAM)

Bits are stored as an electrical resistance in material

An electrical signal can cause the material to become high 
resistance or low resistance, and it doesn’t need to be 
refreshed.



Carnegie Mellon

Using Optane

Although you can just start using it like we have been using 
DRAM, that might not be optimal!

With more memory, software design priorities can change

Also, since it is “persistent”, some data can stay in memory 
instead of a hard drive or SSD

Except we need to design software to do that now! This can 
be tricky



Carnegie Mellon

Using Optane

Although Optane is nonvolatile, the CPU registers and cache 
are still volatile

Cache has been designed so that the programmer doesn’t 
have to worry about it much, but this becomes a problem 
when you actually care if data is in cache or in memory!

This makes it more complicated to know if something is fully 
persisted/saved

Lots of research opportunities



Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

Direct-Mapped Cache

!8

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11



Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

Direct-Mapped Cache

!8

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11



Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

Direct-Mapped Cache

!8

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11



Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
different memory locations that 
are mapped to the same cache 
location?

Direct-Mapped Cache

!8

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11



Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
different memory locations that 
are mapped to the same cache 
location?

• Add a tag field for that purpose

Direct-Mapped Cache

!8

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11



Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
different memory locations that 
are mapped to the same cache 
location?

• Add a tag field for that purpose
• What should the tag field be?

Direct-Mapped Cache

!8

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11



Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
different memory locations that 
are mapped to the same cache 
location?

• Add a tag field for that purpose
• What should the tag field be?
• ADDR[3] and ADDR[2] in this particular 

example

Direct-Mapped Cache

!8

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11



Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
different memory locations that 
are mapped to the same cache 
location?

• Add a tag field for that purpose
• What should the tag field be?
• ADDR[3] and ADDR[2] in this particular 

example

Direct-Mapped Cache

!8

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]



Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
different memory locations that 
are mapped to the same cache 
location?

• Add a tag field for that purpose
• What should the tag field be?
• ADDR[3] and ADDR[2] in this particular 

example

Direct-Mapped Cache

!8

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

Tag



Carnegie Mellon

•Direct-Mapped Cache
• CA = ADDR[1],ADDR[0]
• Always use the lower order address 

bits

•Multiple addresses can be 
mapped to the same location

• E.g., 0010 and 1010

•How do we differentiate between 
different memory locations that 
are mapped to the same cache 
location?

• Add a tag field for that purpose
• What should the tag field be?
• ADDR[3] and ADDR[2] in this particular 

example

Direct-Mapped Cache

!8

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

= Hit?

addr[3:2]

Tag

CPU



Carnegie Mellon

•Limitation: each memory 
location can be mapped to only 
one cache location.

Direct-Mapped Cache

!9

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

= Hit?

addr[3:2]

Tag

CPU



Carnegie Mellon

•Limitation: each memory 
location can be mapped to only 
one cache location.
•This leads to a lot of conflicts.

Direct-Mapped Cache

!9

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

= Hit?

addr[3:2]

Tag

CPU



Carnegie Mellon

•Limitation: each memory 
location can be mapped to only 
one cache location.
•This leads to a lot of conflicts.
•How do we improve this?

Direct-Mapped Cache

!9

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

= Hit?

addr[3:2]

Tag

CPU



Carnegie Mellon

•Limitation: each memory 
location can be mapped to only 
one cache location.
•This leads to a lot of conflicts.
•How do we improve this?
•Can each memory location have 

the flexibility to be mapped to 
different cache locations?

Direct-Mapped Cache

!9

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

Mem addr

addr[1:0]

00
01
10
11

addr [3:2]

addr [3:2]
addr [3:2]

addr [3:2]

= Hit?

addr[3:2]

Tag

CPU



Carnegie Mellon

Fully Associative Cache

• Every memory location can be mapped to any 
cache line in the cache.

!10

0xEF 1000 0x06 10100xAC 1001 0x70 1101

a

0xEF
0xAC
0x06

0x70

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Content Valid? Tag



Carnegie Mellon

Fully Associative Cache

• Every memory location can be mapped to any 
cache line in the cache.

• Given a request to address A from the CPU, 
detecting cache hit/miss requires:

• Comparing address A with all four tags in 

the cache (a.k.a., associative search)

!10

0xEF 1000 0x06 10100xAC 1001 0x70 1101

a

0xEF
0xAC
0x06

0x70

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Content Valid? Tag



Carnegie Mellon

A Few Terminologies

• A cache line: content + valid bit + tag bits

• Valid bit + tag bits are “overhead”

• Content is what you really want to store

• But we need valid and tag bits to correctly 

access the cache

!11

0xEF 1000 0x06 10100xAC 1001 0x70 1101

a

0xEF
0xAC
0x06

0x70

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Content Valid? Tag



Carnegie Mellon

A Middle Ground: 2-Way Associative Cache

• 4 cache lines are organized into two sets; each 
set has 2 cache lines (i.e., 2 ways)

!12

a

0xEF
0xAC
0x06

0x70

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Set 1

Set 00

1

0xEF 100

0xAC 100

0x06

0x70

101

110

Content Valid? Tag



Carnegie Mellon

A Middle Ground: 2-Way Associative Cache

• 4 cache lines are organized into two sets; each 
set has 2 cache lines (i.e., 2 ways)

• Even address go to first set and odd addresses 
go to the second set

!12

a

0xEF
0xAC
0x06

0x70

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Set 1

Set 00

1

0xEF 100

0xAC 100

0x06

0x70

101

110

Content Valid? Tag



Carnegie Mellon

A Middle Ground: 2-Way Associative Cache

• 4 cache lines are organized into two sets; each 
set has 2 cache lines (i.e., 2 ways)

• Even address go to first set and odd addresses 
go to the second set

• Each address can be mapped to either cache 
line in the same set

• Using the LSB to find the set (i.e., odd vs. 

even)

• Tag now stores the higher 3 bits instead of 

the entire address

!12

a

0xEF
0xAC
0x06

0x70

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Set 1

Set 00

1

0xEF 100

0xAC 100

0x06

0x70

101

110

Content Valid? Tag



Carnegie Mellon

2-Way Associative Cache

!13

a

0xEF
0xAC
0x06

0x70

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Set 1

Set 00

1

0xEF 100

0xAC 100

0x06

0x70

101

110

Content Valid? Tag

• Given a request to address, say 1011, from the 
CPU, detecting cache hit/miss requires:



Carnegie Mellon

2-Way Associative Cache

!13

a

0xEF
0xAC
0x06

0x70

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Set 1

Set 00

1

0xEF 100

0xAC 100

0x06

0x70

101

110

Content Valid? Tag

• Given a request to address, say 1011, from the 
CPU, detecting cache hit/miss requires:
• Using the LSB to index into the cache and 

find the corresponding set, in this case set 1



Carnegie Mellon

2-Way Associative Cache

!13

a

0xEF
0xAC
0x06

0x70

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Set 1

Set 00

1

0xEF 100

0xAC 100

0x06

0x70

101

110

Content Valid? Tag

• Given a request to address, say 1011, from the 
CPU, detecting cache hit/miss requires:
• Using the LSB to index into the cache and 

find the corresponding set, in this case set 1
• Then do an associative search in that set, 

i.e., compare the highest 3 bits 101 with both 
tags in set 1



Carnegie Mellon

2-Way Associative Cache

!13

a

0xEF
0xAC
0x06

0x70

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Set 1

Set 00

1

0xEF 100

0xAC 100

0x06

0x70

101

110

Content Valid? Tag

• Given a request to address, say 1011, from the 
CPU, detecting cache hit/miss requires:
• Using the LSB to index into the cache and 

find the corresponding set, in this case set 1
• Then do an associative search in that set, 

i.e., compare the highest 3 bits 101 with both 
tags in set 1

• Only two comparisons required



Carnegie Mellon

Direct-Mapped (1-way Associative) Cache

• 4 cache lines are organized into four sets

• Each memory localization can only be 

mapped to one set

• Using the 2 LSBs to find the set

• Tag now stores the higher 2 bits

!14

a

0xEF
0xAC
0x06

0x70

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Content Valid? Tag

10

10
10

0xEF

0x06
0xAC

00
01
10
11



Carnegie Mellon

Associative verses Direct Mapped Trade-offs

!15



Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache


• Generally lower hit rate 
• Simpler, Faster

!15



Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache


• Generally lower hit rate 
• Simpler, Faster

!15

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]



Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache


• Generally lower hit rate 
• Simpler, Faster

• Associative cache

• Generally higher hit rate. Better utilization of cache resources 
• Slower and higher power consumption. Why?

!15

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

0
1

101 100
101 100

a
b

c
d

1
1

1
1



Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache


• Generally lower hit rate 
• Simpler, Faster

• Associative cache

• Generally higher hit rate. Better utilization of cache resources 
• Slower and higher power consumption. Why?

!15

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

0
1

101 100
101 100

a
b

c
d

1
1

1
1

addr

addr[0]



Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache


• Generally lower hit rate 
• Simpler, Faster

• Associative cache

• Generally higher hit rate. Better utilization of cache resources 
• Slower and higher power consumption. Why?

!15

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

0
1

101 100
101 100

a
b

c
d

1
1

1
1

addr

addr[0]

=

addr[3:1]

=



Carnegie Mellon

Associative verses Direct Mapped Trade-offs
• Direct-Mapped cache


• Generally lower hit rate 
• Simpler, Faster

• Associative cache

• Generally higher hit rate. Better utilization of cache resources 
• Slower and higher power consumption. Why?

!15

00
01
10
11

10

10
10

10

a
b
c
d

1
1
1
1

addr

addr[1:0] = Hit?

addr[3:2]

0
1

101 100
101 100

a
b

c
d

1
1

1
1

addr

addr[0]

=

addr[3:1]

=

Hit?

Or



Carnegie Mellon

Associative verses Direct Mapped Trade-offs

!16

Miss rate versus cache size on the Integer portion of SPEC CPU2000



Carnegie Mellon

Cache Organization
• Finding a name in a roster

• If the roster is completely unorganized

• Need to compare the name with all the names in the roster

• Same as a fully-associative cache


• If the roster is ordered by last name, and within the same last 
name different first names are unordered

• First find the last name group

• Then compare the first name with all the first names in the 

same group

• Same as a set-associative cache

!17



Carnegie Mellon

Cache Access Summary (So far…)
• Assuming b bits in a memory address

• The b bits are split into two halves:


• Lower s bits used as index to find a set. Total sets S = 2s 
• The higher (b - s) bits are used for the tag 

• Associativity n (i.e., the number of ways in a cache set) is 
independent of the the split between index and tag

!18

tag index

0sb
Memory 
Address



Carnegie Mellon

Locality again
• So far: temporal locality

•What about spatial?

• Idea: Each cache location (cache line) store multiple bytes

!19



Carnegie Mellon

Cache-Line Size of 2

!20

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

addr

= Hit?



Carnegie Mellon

Cache-Line Size of 2

!20

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

addr

= Hit?



Carnegie Mellon

Cache-Line Size of 2

• Read 1000

!20

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a

addr

= Hit?

b



Carnegie Mellon

Cache-Line Size of 2

• Read 1000
• Read 1001 (Hit!)

!20

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a

addr

= Hit?

b



Carnegie Mellon

Cache-Line Size of 2

• Read 1000
• Read 1001 (Hit!)
• Read 1010

!20

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a
c

addr

= Hit?

d
b



Carnegie Mellon

Cache-Line Size of 2

• Read 1000
• Read 1001 (Hit!)
• Read 1010
• Read 1011 (Hit!)

!20

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a
c

addr

= Hit?

d
b



Carnegie Mellon

Cache-Line Size of 2

• Read 1000
• Read 1001 (Hit!)
• Read 1010
• Read 1011 (Hit!)
• How to access 

the cache now?

!20

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a
c

addr

??? = Hit?

???

d
b



Carnegie Mellon

Cache-Line Size of 2

• Read 1000

• Read 1001 (Hit!)

• Read 1010

• Read 1011 (Hit!)

!21

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a
c

addr

addr[2:1]

d
b

= Hit?

addr[3]



Carnegie Mellon

Cache-Line Size of 2

• Read 1000

• Read 1001 (Hit!)

• Read 1010

• Read 1011 (Hit!)

!21

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a
c

addr

addr[2:1]

d
b

MUX

= Hit?

addr[3]

To

CPU



Carnegie Mellon

Cache-Line Size of 2

• Read 1000

• Read 1001 (Hit!)

• Read 1010

• Read 1011 (Hit!)

!21

a

a
b
c
d

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MemoryCache

00
01
10
11

a
c

addr

addr[2:1]

d
b

MUX

= Hit?

addr[3]

To

CPU

addr[0]



Carnegie Mellon

Cache Access Summary
• Assuming b bits in a memory address

• The b bits are split into three fields:


• Lower l bits are used for byte offset within a cache line. Cache line 
size L = 2l 

• Next s bits used as index to find a set. Total sets S = 2s 
• The higher (b - l - s) bits are used for the tag 

• Associativity n is independent of the the split between index and tag

!22

tag index

0l+sb
Memory 
Address offset

l



Carnegie Mellon

Handling Reads

!2333



Carnegie Mellon

Handling Reads
• Read miss: Put into cache

!2333



Carnegie Mellon

Handling Reads
• Read miss: Put into cache

• Any reason not to put into cache?

!2333



Carnegie Mellon

Handling Reads
• Read miss: Put into cache

• Any reason not to put into cache?
• What to replace? Depends on the replacement policy. More on 

this later.

!2333



Carnegie Mellon

Handling Reads
• Read miss: Put into cache

• Any reason not to put into cache?
• What to replace? Depends on the replacement policy. More on 

this later.
• Read hit: Nothing special. Enjoy the hit!

!2333



Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens

!24



Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

!24



Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction. Potentially 

saves bandwidth between cache and memory + saves energy
• - Need a bit in the tag store indicating the block is “dirty/modified”

!24



Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction. Potentially 

saves bandwidth between cache and memory + saves energy
• - Need a bit in the tag store indicating the block is “dirty/modified”

!24



Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction. Potentially 

saves bandwidth between cache and memory + saves energy
• - Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through

!24



Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction. Potentially 

saves bandwidth between cache and memory + saves energy
• - Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through
• + Simpler

!24



Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction. Potentially 

saves bandwidth between cache and memory + saves energy
• - Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through
• + Simpler
• + Memory is up to date

!24



Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction. Potentially 

saves bandwidth between cache and memory + saves energy
• - Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through
• + Simpler
• + Memory is up to date
• - More bandwidth intensive; no coalescing of writes

!24



Carnegie Mellon

Handling Writes (Hit)
• Intricacy: data value is modified!
• Implication: value in cache will be different from that in memory!

• When do we write the modified data in a cache to the next level?
• Write through: At the time the write happens
• Write back: When the cache line is evicted

• Write-back
• + Can consolidate multiple writes to the same block before eviction. Potentially 

saves bandwidth between cache and memory + saves energy
• - Need a bit in the tag store indicating the block is “dirty/modified”

• Write-through
• + Simpler
• + Memory is up to date
• - More bandwidth intensive; no coalescing of writes
• - Requires transfer of the whole cache line (although only one byte might have 

been modified)
!24



Carnegie Mellon

Handling Writes (Miss)
• Do we allocate a cache line on a write miss?

• Write-allocate: Allocate on write miss
• Non-Write-Allocate: No-allocate on write miss

• Allocate on write miss

!25



Carnegie Mellon

Handling Writes (Miss)
• Do we allocate a cache line on a write miss?

• Write-allocate: Allocate on write miss
• Non-Write-Allocate: No-allocate on write miss

• Allocate on write miss
• + Can consolidate writes instead of writing each of them 

individually to memory

!25



Carnegie Mellon

Handling Writes (Miss)
• Do we allocate a cache line on a write miss?

• Write-allocate: Allocate on write miss
• Non-Write-Allocate: No-allocate on write miss

• Allocate on write miss
• + Can consolidate writes instead of writing each of them 

individually to memory
• + Simpler because write misses can be treated the same way 

as read misses

!25



Carnegie Mellon

Handling Writes (Miss)
• Do we allocate a cache line on a write miss?

• Write-allocate: Allocate on write miss
• Non-Write-Allocate: No-allocate on write miss

• Allocate on write miss
• + Can consolidate writes instead of writing each of them 

individually to memory
• + Simpler because write misses can be treated the same way 

as read misses

• Non-allocate
• + Conserves cache space if locality of writes is low (potentially 

better cache hit rate)

!25



Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

!26



Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

• Unified:

!26



Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

• Unified:
• + Dynamic sharing of cache space: no overprovisioning that might 

happen with static partitioning (i.e., split Inst and Data caches)

!26



Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

• Unified:
• + Dynamic sharing of cache space: no overprovisioning that might 

happen with static partitioning (i.e., split Inst and Data caches)
• - Instructions and data can thrash each other (i.e., no guaranteed 

space for either)

!26



Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

• Unified:
• + Dynamic sharing of cache space: no overprovisioning that might 

happen with static partitioning (i.e., split Inst and Data caches)
• - Instructions and data can thrash each other (i.e., no guaranteed 

space for either)
• - Inst and Data are accessed in different places in the pipeline. 

Where do we place the unified cache for fast access?

!26



Carnegie Mellon

Instruction vs. Data Caches
• Separate or Unified?

• Unified:
• + Dynamic sharing of cache space: no overprovisioning that might 

happen with static partitioning (i.e., split Inst and Data caches)
• - Instructions and data can thrash each other (i.e., no guaranteed 

space for either)
• - Inst and Data are accessed in different places in the pipeline. 

Where do we place the unified cache for fast access?

• First level caches are almost always split 
• Mainly for the last reason above

• Second and higher levels are almost always unified

!26



Carnegie Mellon

General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic 
• Too large and cache slows down execution (high latency)

!2743

CPU Cache 
$ Memory



Carnegie Mellon

General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic 
• Too large and cache slows down execution (high latency)

•Make multiple levels of cache

• Small L1 backed up by larger L2 
• Today’s processors typically have 3 cache levels

!2743

CPU Cache 
$ Memory



Carnegie Mellon

General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic 
• Too large and cache slows down execution (high latency)

•Make multiple levels of cache

• Small L1 backed up by larger L2 
• Today’s processors typically have 3 cache levels

!2743

CPU Cache 
$ MemoryCache 

$



Carnegie Mellon

General Rule: Bigger == Slower

• How big should the cache be?

• Too small and too much memory traffic 
• Too large and cache slows down execution (high latency)

•Make multiple levels of cache

• Small L1 backed up by larger L2 
• Today’s processors typically have 3 cache levels

!2743

CPU Cache 
$ MemoryCache 

$
Level 1 
(L1 $)

Level 2  
(L2 $)



Carnegie Mellon

A Real Intel Processor

!28



Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?

!29



Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!

!29



Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

!29



Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:

!29



Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first

!29



Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first
• If all are valid, consult the replacement policy

!29



Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first
• If all are valid, consult the replacement policy
• Randomly pick one???

!29



Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first
• If all are valid, consult the replacement policy
• Randomly pick one???
• Ideally: Replace the cache line that’s least likely going to be 

used again

!29



Carnegie Mellon

Eviction/Replacement Policy

•Which cache line should be replaced?
• Direct mapped? Only one place!
• Associative caches? Multiple places!

• For associative cache:
• Any invalid cache line first
• If all are valid, consult the replacement policy
• Randomly pick one???
• Ideally: Replace the cache line that’s least likely going to be 

used again
• Approximation: Least recently used (LRU)

!29



Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:


• What do you need to implement LRU perfectly? One bit?

!30

0 1Cache Lines

LRU index (1-bit)



Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:


• What do you need to implement LRU perfectly? One bit?

!30

0 1Cache Lines

LRU index (1-bit)

Address stream:

• Hit on 0

• Hit on 1

• Miss, evict 0



Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:


• What do you need to implement LRU perfectly? One bit?

!30

0 1Cache Lines

LRU index (1-bit) 1

Address stream:

• Hit on 0

• Hit on 1

• Miss, evict 0



Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:


• What do you need to implement LRU perfectly? One bit?

!30

0 1Cache Lines

LRU index (1-bit) 10

Address stream:

• Hit on 0

• Hit on 1

• Miss, evict 0



Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:


• What do you need to implement LRU perfectly? One bit?

!30

0 1Cache Lines

LRU index (1-bit) 10

Address stream:

• Hit on 0

• Hit on 1

• Miss, evict 0



Carnegie Mellon

Implementing LRU
• Idea: Evict the least recently accessed block

• Challenge: Need to keep track of access ordering of blocks

• Question: 2-way set associative cache:


• What do you need to implement LRU perfectly? One bit?

!30

0 1Cache Lines

LRU index (1-bit) 10

Address stream:

• Hit on 0

• Hit on 1

• Miss, evict 0

1



Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache: 

!31

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1



Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache: 

• What do you need to implement LRU perfectly? Will the same 
mechanism work?

!31

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1



Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache: 

• What do you need to implement LRU perfectly? Will the same 
mechanism work?

!31

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1



Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache: 

• What do you need to implement LRU perfectly? Will the same 
mechanism work?

!31

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1



Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache: 

• What do you need to implement LRU perfectly? Will the same 
mechanism work?

!31

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1



Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache: 

• What do you need to implement LRU perfectly? Will the same 
mechanism work?

!31

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1



Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache: 

• What do you need to implement LRU perfectly? Will the same 
mechanism work?

!31

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1How to update the 

LRU index now???



Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache: 

• What do you need to implement LRU perfectly? Will the same 
mechanism work?

• Essentially have to track the ordering of all cache lines

!31

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1How to update the 

LRU index now???



Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache: 

• What do you need to implement LRU perfectly? Will the same 
mechanism work?

• Essentially have to track the ordering of all cache lines
• What are the hardware structures needed?

!31

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1How to update the 

LRU index now???



Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache: 

• What do you need to implement LRU perfectly? Will the same 
mechanism work?

• Essentially have to track the ordering of all cache lines
• What are the hardware structures needed?
• In reality, true LRU is never implemented. Too complex.

!31

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1How to update the 

LRU index now???



Carnegie Mellon

Implementing LRU
• Question: 4-way set associative cache: 

• What do you need to implement LRU perfectly? Will the same 
mechanism work?

• Essentially have to track the ordering of all cache lines
• What are the hardware structures needed?
• In reality, true LRU is never implemented. Too complex.
• “Pseudo-LRU” is usually used in real processors.

!31

0 1 2 3Cache Lines
LRU index (2 bits) 1

Address stream:

• Hit on 0

• Hit on 2

• Hit on 3

• Miss, evict 1How to update the 

LRU index now???


