
CSC 252: Computer
Organization

Fall 2021: Lecture 14

 Processor Architecture:
Pipeline dependencies

Instructor: Alan Beadle

Department of Computer Science
University of Rochester

Carnegie Mellon

Announcements

A3 due Thursday, let us know about partners and/or slip
days before the due date!

Midterm in one week, counts for 25% of final grade
 Material from today may be included on the exam
 Some review today
 Even more review next class
 15% partial credit for “I don’t know”, but must erase or

cross out anything else on that question

Carnegie Mellon

Pipeline Trade-offs
• Pros: Decrease the total execution time (Increase the “throughput”).

• Cons: Increase the latency of each instruction as new registers are

needed between pipeline stages.

!5

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Combinational
logic

R
e
g

300 ps 20 ps

Clock

Carnegie Mellon

Throughput
• The rate at which the processor can finish executing an

instruction (at the steady state).

!6

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Throughput of this 3-stage
processor is 1 instruction every

120 ps, or 8.3 Giga (billion)
Instructions per Second (GIPS).

Time

A B C
A B C

A B C

Inst 1
Inst 2
Inst 3

A B C
A B C

Inst 4
Inst 5

Carnegie Mellon

Aside: Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput

!7

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS

Carnegie Mellon

Aside: Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput

!7

R
e
g

Clock

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Comb.
logic
A

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS

Carnegie Mellon

Aside: Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput

!7

R
e
g

Clock

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Comb.
logic
A

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Cycle time: 120 ps
Delay: 360 ps

Cycle time: 170 ps

Thrupt: 8.3 GIPS

Carnegie Mellon

Aside: Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput

!7

R
e
g

Clock

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Comb.
logic
A

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Cycle time: 120 ps
Delay: 360 ps

Cycle time: 170 ps

Delay: 510 ps

Thrupt: 8.3 GIPS

Carnegie Mellon

Aside: Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput

!7

R
e
g

Clock

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Comb.
logic
A

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Cycle time: 120 ps
Delay: 360 ps

Cycle time: 170 ps

Delay: 510 ps

Thrupt: 8.3 GIPS

Thrupt: 5.9 GIPS

Carnegie Mellon

Aside: Unbalanced Pipeline
• A pipeline’s delay is limited by the slowest stage. This limits the

cycle time and the throughput

!8

R
e
g

Clock

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

50 ps 20 ps 150 ps 20 ps 100 ps 20 ps

Comb.
logic
A

Time

OP1
OP2
OP3

A B C
A B C

A B C

170 ps

Cycle time: 170 ps

Delay: 510 ps
Thrupt: 5.9 GIPS

Carnegie Mellon

Aside: Mitigating Unbalanced Pipeline
• Solution 1: Further pipeline the slow stages

!9

R
e
g

R
e
g

Comb.
logic

B

R
e
g

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb.
logic
A

Comb.
logic
C

Carnegie Mellon

Aside: Mitigating Unbalanced Pipeline
• Solution 1: Further pipeline the slow stages

• Not always possible. What to do if we can’t further pipeline a stage?

!9

R
e
g

R
e
g

Comb.
logic

B

R
e
g

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb.
logic
A

Comb.
logic
C

Carnegie Mellon

Aside: Mitigating Unbalanced Pipeline
• Solution 1: Further pipeline the slow stages

• Not always possible. What to do if we can’t further pipeline a stage?
• Solution 2: Use multiple copies of the slow component

!9

R
e
g

R
e
g

Comb.
logic

B

R
e
g

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb.
logic
A

Comb.
logic
C

Carnegie Mellon

Aside: Mitigating Unbalanced Pipeline
• Solution 1: Further pipeline the slow stages

• Not always possible. What to do if we can’t further pipeline a stage?
• Solution 2: Use multiple copies of the slow component

!9

R
e
g

R
e
g

Comb.
logic

B

R
e
g

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb.
logic
A

Comb.
logic

B

Comb.
logic
C

Copy 1

Copy 2

Carnegie Mellon

Aside: Mitigating Unbalanced Pipeline
• Solution 1: Further pipeline the slow stages

• Not always possible. What to do if we can’t further pipeline a stage?
• Solution 2: Use multiple copies of the slow component

!9

R
e
g

R
e
g

Comb.
logic

B

R
e
g

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb.
logic
A

Comb.
logic

B

M
U
X

Comb.
logic
C

Copy 1

Copy 2

Carnegie Mellon

Aside: Mitigating Unbalanced Pipeline
• Solution 1: Further pipeline the slow stages

• Not always possible. What to do if we can’t further pipeline a stage?
• Solution 2: Use multiple copies of the slow component

!9

R
e
g

R
e
g

Comb.
logic

B

R
e
g

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb.
logic
A

Comb.
logic

B

M
U
X

R
e
g

Comb.
logic
C

Copy 1

Copy 2

Carnegie Mellon

Aside: Mitigating Unbalanced Pipeline
• Solution 1: Further pipeline the slow stages

• Not always possible. What to do if we can’t further pipeline a stage?
• Solution 2: Use multiple copies of the slow component

!9

R
e
g

R
e
g

Comb.
logic

B

R
e
g

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb.
logic
A

Comb.
logic

B

M
U
X

R
e
g

What
Logic?

Comb.
logic
C

Copy 1

Copy 2

Carnegie Mellon

Aside: Mitigating Unbalanced Pipeline
• Solution 1: Further pipeline the slow stages

• Not always possible. What to do if we can’t further pipeline a stage?
• Solution 2: Use multiple copies of the slow component

!9

R
e
g

R
e
g

Comb.
logic

B

R
e
g

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb.
logic
A

Comb.
logic

B

M
U
X

R
e
g

What
Logic?

What logic do you need there?

Hint: it needs to control the clock signals of the
two registers and the select signal of the MUX.

Comb.
logic
C

Copy 1

Copy 2

Carnegie Mellon

Aside: Mitigating Unbalanced Pipeline
• Solution 1: Further pipeline the slow stages

• Not always possible. What to do if we can’t further pipeline a stage?
• Solution 2: Use multiple copies of the slow component

!9

R
e
g

R
e
g

Comb.
logic

B

R
e
g

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb.
logic
A

Comb.
logic

B

M
U
X

R
e
g

What
Logic?

Clock

What logic do you need there?

Hint: it needs to control the clock signals of the
two registers and the select signal of the MUX.

select

Comb.
logic
C

Copy 1

Copy 2

Carnegie Mellon

Aside: Mitigating Unbalanced Pipeline
• Data sent to copy 1 in odd cycles and to copy 2 in even cycles.

!10

R
e
g

R
e
g

Comb.
logic

B

R
e
g

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb.
logic
A

Comb.
logic

B

M
U
X

R
e
g

What
Logic?

Clock

select

Comb.
logic
C

Copy 1

Copy 2

Carnegie Mellon

Aside: Mitigating Unbalanced Pipeline
• Data sent to copy 1 in odd cycles and to copy 2 in even cycles.
• This is called 2-way interleaving. Effectively the same as pipelining

Comb. logic B into two sub-stages.

!10

R
e
g

R
e
g

Comb.
logic

B

R
e
g

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb.
logic
A

Comb.
logic

B

M
U
X

R
e
g

What
Logic?

Clock

select

Comb.
logic
C

Copy 1

Copy 2

Carnegie Mellon

Aside: Mitigating Unbalanced Pipeline
• Data sent to copy 1 in odd cycles and to copy 2 in even cycles.
• This is called 2-way interleaving. Effectively the same as pipelining

Comb. logic B into two sub-stages.
• The cycle time is reduced to 70 ps (as opposed to 120 ps) at the cost

of extra hardware.

!10

R
e
g

R
e
g

Comb.
logic

B

R
e
g

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps

Comb.
logic
A

Comb.
logic

B

M
U
X

R
e
g

What
Logic?

Clock

select

Comb.
logic
C

Copy 1

Copy 2

Carnegie Mellon

Pipeline Stages
Fetch

• Use PC to read instruction
• Compute new PC for non-

jump instructions
Decode

• Read program registers

Execute

• Operate ALU
• Compute new PC for jump

instructions
Memory

• Read or write data memory

Write Back

• Update register file

�11

Carnegie Mellon

 nop

!12

Control Dependency

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

6

W
M
E
DD

7

W
M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM

Carnegie Mellon

Better Pipelining
Fetch

• Use PC to read instruction
• Compute new PC for non-

jump instructions
Decode

• Read program registers
• Compute new PC for jump

instructions
Execute

• Operate ALU

Memory

• Read or write data memory

Write Back

• Update register file

�13

Carnegie Mellon

Better Pipelining
Fetch

• Use PC to read instruction
• Compute new PC for non-

jump instructions
Decode

• Read program registers
• Compute new PC for jump

instructions
Execute

• Operate ALU

Memory

• Read or write data memory

Write Back

• Update register file

�13

Another
ALU

Carnegie Mellon

 nop

!14

Saving One Cycle

1

F

2

D
F

3

E
D

4

M
E

F

5

M
W

D
FF

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

6

W
E
DD

7

M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM WW

Carnegie Mellon

Resolving Control Dependencies
• Software Mechanisms

• Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

• Delay slot: insert instructions that do not depend on the effect
of the preceding instruction. These instructions will execute
even if the preceding branch is taken — old RISC approach

• Hardware mechanisms

• Stalling (Think of it as hardware automatically inserting nops)
• Branch Prediction
• Return Address Stack

!15

Carnegie Mellon

!16

Branch Prediction

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

6

W
DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM WW

Idea: instead of waiting, why not just guess the direction of jump?

Also takes a guess of
the jump direction

Carnegie Mellon

!16

Branch Prediction

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

6

W
DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM WW

Idea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling

Also takes a guess of
the jump direction

Carnegie Mellon

!16

Branch Prediction

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

6

W
DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM WW

Idea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Also takes a guess of
the jump direction

Carnegie Mellon

Branch Prediction
Idea: instead of waiting, why not just guess the direction of jump?

If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Static Prediction

• Always Taken
• Always Not-taken

Dynamic Prediction

• Dynamically predict taken/not-taken for each specific jump instruction

�17

Carnegie Mellon

Static Prediction

!18

Carnegie Mellon

Static Prediction

!18

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.
• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.

Carnegie Mellon

 cmpq %rsi,%rdi
 jle .corner_case
 <do_A>
.corner_case:
 <do_B>
 ret

Static Prediction

!18

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.
• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.

Carnegie Mellon

 cmpq %rsi,%rdi
 jle .corner_case
 <do_A>
.corner_case:
 <do_B>
 ret

Static Prediction

!18

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.
• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.

Mostly not taken

Carnegie Mellon

 <before>
.L1: <body>
 cmpq B, A
 jl .L1
 <after>

 cmpq %rsi,%rdi
 jle .corner_case
 <do_A>
.corner_case:
 <do_B>
 ret

Static Prediction

!18

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.
• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.

Mostly not taken

Carnegie Mellon

 <before>
.L1: <body>
 cmpq B, A
 jl .L1
 <after>

 cmpq %rsi,%rdi
 jle .corner_case
 <do_A>
.corner_case:
 <do_B>
 ret

Static Prediction

!18

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.
• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.

Mostly not taken

Mostly taken

Carnegie Mellon

 <before>
.L1: <body>
 cmpq B, A
 jl .L1
 <after>

 cmpq %rsi,%rdi
 jle .corner_case
 <do_A>
.corner_case:
 <do_B>
 ret

Static Prediction

!18

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.
• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.
Strategy:

• Forward jumps (i.e., if-else): always predict not-taken
• Backward jumps (i.e., loop): always predict taken

Mostly not taken

Mostly taken

Carnegie Mellon

Static Prediction

!19

Knowing branch prediction strategy helps us write faster code

• Any difference between the following two code snippets?
• What if you know that hardware uses the always non-taken

branch prediction?

if (cond) {
 do_A()
} else {
 do_B()
}

if (!cond) {
 do_B()
} else {
 do_A()
}

Carnegie Mellon

Dynamic Prediction
• Simplest idea:

• If last time taken, predict taken; if last time not-taken, predict
not-taken

• Called 1-bit branch predictor
• Works nicely for loops

!20

Carnegie Mellon

Dynamic Prediction
• Simplest idea:

• If last time taken, predict taken; if last time not-taken, predict
not-taken

• Called 1-bit branch predictor
• Works nicely for loops

!20

for (i=0; i <5; i++) {…}

Carnegie Mellon

Dynamic Prediction
• Simplest idea:

• If last time taken, predict taken; if last time not-taken, predict
not-taken

• Called 1-bit branch predictor
• Works nicely for loops

!20

for (i=0; i <5; i++) {…}

Iteration #1 0 1 2 3 4

Predicted Outcome N T T T T

Actual Outcome T T T T N

Carnegie Mellon

Dynamic Prediction
• Simplest idea:

• If last time taken, predict taken; if last time not-taken, predict
not-taken

• Called 1-bit branch predictor
• Works nicely for loops

!20

for (i=0; i <5; i++) {…}

Iteration #1 0 1 2 3 4

Predicted Outcome N T T T T

Actual Outcome T T T T N

Carnegie Mellon

Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict
• Might be too quick. Thus 2-bit branch prediction: we have to

mispredict twice in a row before changing our mind

!21

Carnegie Mellon

Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict
• Might be too quick. Thus 2-bit branch prediction: we have to

mispredict twice in a row before changing our mind

!21

for (i=0; i <5; i++) {…}

Predict with 1-bit N T T T T

Actual Outcome T T T T N

Predict with 2-bit N N T T T

Carnegie Mellon

Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict
• Might be too quick. Thus 2-bit branch prediction: we have to

mispredict twice in a row before changing our mind

!21

for (i=0; i <5; i++) {…}

Predict with 1-bit N T T T T

Actual Outcome T T T T N

Predict with 2-bit N N T T T

N T T T T

T T T T N

T T T T T

Carnegie Mellon

Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict
• Might be too quick. Thus 2-bit branch prediction: we have to

mispredict twice in a row before changing our mind

!21

for (i=0; i <5; i++) {…}

Predict with 1-bit N T T T T

Actual Outcome T T T T N

Predict with 2-bit N N T T T

N T T T T

T T T T N

T T T T T

N T T T T

T T T T N

T T T T T

Carnegie Mellon

Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict
• Might be too quick. Thus 2-bit branch prediction: we have to

mispredict twice in a row before changing our mind

!21

for (i=0; i <5; i++) {…}

Predict with 1-bit N T T T T

Actual Outcome T T T T N

Predict with 2-bit N N T T T

N T T T T

T T T T N

T T T T T

N T T T T

T T T T N

T T T T T

N T T T T

T T T T N

T T T T T

Carnegie Mellon

More Advanced Dynamic Prediction
• Look for past histories across instructions
• Branches are often correlated

• Direction of one branch determines another

!22

x = 0
if (cond1) x = 3
if (cond2) y = 19
if (x <= 0) z = 13

cond1 branch not-
taken means (x <=0)
branch taken

Carnegie Mellon

What Happens If We Mispredict?

�23

Cancel instructions when mispredicted

• Assuming we detect branch not-taken in execute stage
• On following cycle, replace instructions in execute and

decode by bubbles
• No side effects have occurred yet

Carnegie Mellon

Today: Making the Pipeline Really Work
• Control Dependencies

• Inserting Nops
• Stalling
• Delay Slots
• Branch Prediction

• Data Dependencies

• Inserting Nops
• Stalling
• Out-of-order execution

�24

Carnegie Mellon

Data Dependencies

�25

1 irmovq $50, %rax

2 addq %rax, %rbx

3 mrmovq 100(%rbx), %rdx

Carnegie Mellon

Data Dependencies

�25

1 irmovq $50, %rax

2 addq %rax, %rbx

3 mrmovq 100(%rbx), %rdx

Carnegie Mellon

Data Dependencies

�25

1 irmovq $50, %rax

2 addq %rax, %rbx

3 mrmovq 100(%rbx), %rdx

Carnegie Mellon

Data Dependencies

• Result from one instruction used as operand for another
• Read-after-write (RAW) dependency

• Very common in actual programs
• Must make sure our pipeline handles these properly

• Get correct results
• Minimize performance impact

�25

1 irmovq $50, %rax

2 addq %rax, %rbx

3 mrmovq 100(%rbx), %rdx

Carnegie Mellon

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

!26

A Subtle Data Dependency
• Jump instruction example below:

• jne L1 determines whether irmovq $1, %rax should be executed
• But jne doesn’t know its outcome until after its Execute stage.

Why?

 xorg %rax, %rax
 jne L1 # Not taken

Carnegie Mellon

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

!26

A Subtle Data Dependency
• Jump instruction example below:

• jne L1 determines whether irmovq $1, %rax should be executed
• But jne doesn’t know its outcome until after its Execute stage.

Why?
• There is a data dependency between xorg and jne. The “data” is the

status flags.

 xorg %rax, %rax
 jne L1 # Not taken

Carnegie Mellon

Data Dependencies in Single-Cycle Machines

In Single-Cycle Implementation:

• Each operation starts only after the previous operation finishes.

Dependency always satisfied.

�27

Clock

Combinational
logic

R
e
g

Time

OP1
OP2
OP3

Carnegie Mellon

Data Dependencies in Pipeline Machines

Data Hazards happen when:
• Result does not feed back around in time for next operation

�28

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

Time

OP1
OP2
OP3

A B C
A B C

A B C
OP4 A B C

Carnegie Mellon

Data Dependencies in Pipeline Machines

Data Hazards happen when:
• Result does not feed back around in time for next operation

�28

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

Time

OP1
OP2
OP3

A B C
A B C

A B C
OP4 A B C

Carnegie Mellon

Data Dependencies: No Nop

�29

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Remember registers get
updated in the Write-back stage

Carnegie Mellon

Data Dependencies: No Nop

�29

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

addq reads wrong %rdx and %rax

Remember registers get
updated in the Write-back stage

Carnegie Mellon

Data Dependencies: 1 Nop

�30

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M
W0x00a: irmovq $3,%rax F D E M

W

0x014: nop F D E M WF D E M W
0x015: addq %rdx,%rax F D E M WF D E M W
0x017: halt F D E M WF D E M W

addq still reads wrong %rdx and %rax

Carnegie Mellon

Data Dependencies: 2 Nop’s

�31

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: addq %rdx,%rax F D E M WF D E M W
0x018: halt F D E M WF D E M W

10

addq reads the correct %rdx,
but %rax still wrong

Carnegie Mellon

Data Dependencies: 3 Nop’s

�32

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: nop F D E M WF D E M W
0x017: addq %rdx,%rax F D E M WF D E M W

10 11

0x019: halt F D E M WF D E M W

addq reads the correct %rdx
and %rax

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�33

Can we have the hardware automatically generates a nop?
• Why is it good for the hardware to do so anyways?

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�33

Can we have the hardware automatically generates a nop?
• Why is it good for the hardware to do so anyways?

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst0

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�33

Can we have the hardware automatically generates a nop?
• Why is it good for the hardware to do so anyways?

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst0Inst1

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�33

Can we have the hardware automatically generates a nop?
• Why is it good for the hardware to do so anyways?

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst0Inst1Inst2

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�33

Can we have the hardware automatically generates a nop?
• Why is it good for the hardware to do so anyways?

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst0Inst1Inst2Inst3

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�33

Can we have the hardware automatically generates a nop?
• Why is it good for the hardware to do so anyways?

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst0Inst1Inst2Inst3

Stall

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�33

Can we have the hardware automatically generates a nop?
• Why is it good for the hardware to do so anyways?

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst0Inst1Inst2Inst3 bubble
(nop)

Stall

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�33

Can we have the hardware automatically generates a nop?
• Why is it good for the hardware to do so anyways?

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst0Inst1Inst2Inst3 bubble
(nop)

StallStall

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�33

Can we have the hardware automatically generates a nop?
• Why is it good for the hardware to do so anyways?

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst1Inst2Inst3 bubble
(nop)

bubble
(nop)

StallStall

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�33

Can we have the hardware automatically generates a nop?
• Why is it good for the hardware to do so anyways?

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst2Inst3 bubble
(nop)

bubble
(nop)Inst4

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�33

Can we have the hardware automatically generates a nop?
• Why is it good for the hardware to do so anyways?

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst2Inst3 bubble
(nop)Inst4

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�33

Can we have the hardware automatically generates a nop?
• Why is it good for the hardware to do so anyways?

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst2Inst3Inst4

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

�34

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

�34

Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

�34

Rising
clock
Rising
clock! ! Output = y

yy
Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

�34

Rising
clock
Rising
clock! ! Output = y

yy
Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Output = xInput = y

stall
= 1

bubble
= 0

xxStall

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

�34

Rising
clock
Rising
clock! ! Output = y

yy

Rising
clock
Rising
clock! ! Output = x

xx

Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Output = xInput = y

stall
= 1

bubble
= 0

xxStall

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

�34

Rising
clock
Rising
clock! ! Output = y

yy

Rising
clock
Rising
clock! ! Output = x

xx

Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Output = xInput = y

stall
= 1

bubble
= 0

xxStall

xx
Output = xInput = y

stall
= 0

bubble
= 1

Bubble

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

�34

Rising
clock
Rising
clock! ! Output = y

yy

Rising
clock
Rising
clock! ! Output = x

xx

n
o
p

Rising
clock
Rising
clock! ! Output = nop

Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Output = xInput = y

stall
= 1

bubble
= 0

xxStall

xx
Output = xInput = y

stall
= 0

bubble
= 1

Bubble

Carnegie Mellon

Detecting Stall Condition

�35

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M W
0x00a: irmovq $3,%rax F D E M W
0x014: nop F D E M W

 bubble

F
E M W

0x016: addq %rdx,%rax D D E M W
0x018: halt F D E M W

10

F

F D E M W0x015: nop

11

• Using a “scoreboard”. Each register has a bit.
• Every instruction that writes to a register sets the bit.
• Every instruction that reads a register would have to check the bit first.

• If the bit is set, then generate a bubble
• Otherwise, free to go!!

Carnegie Mellon

Data Forwarding
Naïve Pipeline

• Register isn’t written until completion of write-back stage
• Source operands read from register file in decode stage
• The decode stage can’t start until the write-back stage finishes

Observation

• Value generated in execute or memory stage

Trick

• Pass value directly from generating instruction to decode stage
• Needs to be available at end of decode stage

�36

Carnegie Mellon

Data Forwarding Example

• irmovq writes %rax to the register file at the end of the write-back
stage

• But the value of %rax is already available at the beginning of the write-
back stage

• Forward %rax to the decode stage of addq.

�37

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: addq %rdx,%rax F D E M WF D E M W
0x018: halt F D E M WF D E M W

10

Carnegie Mellon

Data Forwarding Example

• irmovq writes %rax to the register file at the end of the write-back
stage

• But the value of %rax is already available at the beginning of the write-
back stage

• Forward %rax to the decode stage of addq.

�37

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: addq %rdx,%rax F D E M WF D E M W
0x018: halt F D E M WF D E M W

10

Carnegie Mellon

Data Forwarding Example #2

Register %rdx
• Forward from the memory stage

Register %rax
• Forward from the execute stage

�38

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Carnegie Mellon

Data Forwarding Example #2

Register %rdx
• Forward from the memory stage

Register %rax
• Forward from the execute stage

�38

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Carnegie Mellon

Data Forwarding Example #2

Register %rdx
• Forward from the memory stage

Register %rax
• Forward from the execute stage

�38

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Carnegie Mellon

Out-of-order Execution

!39

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r7 = r5 + r1

…

Long-latency instruction.
Forces the pipeline to stall.

r0 = r1 + r2
r3 = MEM[r0]
r7 = r5 + r1

…
r4 = r3 + r6

• Compiler could do this, but has limitations

• Generally done in hardware

Carnegie Mellon

Out-of-order Execution

!39

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r7 = r5 + r1

…

Long-latency instruction.
Forces the pipeline to stall.

r0 = r1 + r2
r3 = MEM[r0]
r7 = r5 + r1

…
r4 = r3 + r6

• Compiler could do this, but has limitations

• Generally done in hardware

Carnegie Mellon

Out-of-order Execution

!40

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r6 = r5 + r1

…

Carnegie Mellon

Out-of-order Execution

!40

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r6 = r5 + r1

…

r0 = r1 + r2
r3 = MEM[r0]
r6 = r5 + r1

…
r4 = r3 + r6

Is this correct?

Carnegie Mellon

Out-of-order Execution

!40

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r6 = r5 + r1

…

r0 = r1 + r2
r3 = MEM[r0]
r6 = r5 + r1

…
r4 = r3 + r6

Is this correct?

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r4 = r5 + r1

…

Carnegie Mellon

Out-of-order Execution

!40

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r6 = r5 + r1

…

r0 = r1 + r2
r3 = MEM[r0]
r6 = r5 + r1

…
r4 = r3 + r6

Is this correct?

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r4 = r5 + r1

…

r0 = r1 + r2
r3 = MEM[r0]
r4 = r5 + r1

…
r4 = r3 + r6

Is this correct?

Carnegie Mellon

Out-of-order Execution

!40

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r6 = r5 + r1

…

r0 = r1 + r2
r3 = MEM[r0]
r6 = r5 + r1

…
r4 = r3 + r6

Is this correct?

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r4 = r5 + r1

…

r0 = r1 + r2
r3 = MEM[r0]
r4 = r5 + r1

…
r4 = r3 + r6

Is this correct?

“Tomasolu Algorithm” is the algorithm that is most
widely implemented in modern hardware to get out-of-

order execution right.

