CSC 252: Computer
Organization
Fall 2021: Lecture 13

Processor Architecture:
Pipelining

Instructor: Alan Beadle

Department of Computer Science
University of Rochester

Announcements

A3 due in 8 days
Midterm in 12 days, counts for 25% of final grade

Material from next class may be included on the exam, but
nothing after that

Single-Cycle Microarchitecture

Clock

l

!

PC

Cur.

PC

|

|

Memory

Inst.

T

T

New

New
PC

Data

Data

Addr.

!

Register

File

T

Rd/Wr
Reg. IDs

A

New
Reg.
Valus

}

Flags

Z

S

O

7y

| |
Enable?

Current
Reg.
Values

Enable?

4

New Flag
Values

Cur. Flag
Values

l

next_states = calculate_new_state(current_states);
When clock rises, current_states = next_states;

next_states has to be ready before the close rises

Combinational Logic
Read current_states;

Single-Cycle Microarchitecture

Clock l l l l

Register Flags
PC —» Memory Igile sllo
|
I A A |
Cur.
PLg T Inst. T T T New | Enable? Cur. Flag
I New Rd/Wr Reg. Current Values

Addr. l
‘ Data Reg. IDs Reg.
Npec\;/v Data g‘ Vallus Values New Flag ‘

Enable? l Va'lues

Combinational Logic

Read current_states;
next_states = calculate_new_state(current_states);
When clock rises, current_states = next_states;

next_states has to be ready before the close rises

Key principles:
States are stored in storage units, e.g., Flip-flops (and SRAM and DRAM, later..)

New states are calculated by combination logic.
5

Single-Cycle Microarchitecture: lllustration

Think of it as a state machine

| |
Every cycle, one instruction gets | “"on o F— —
executed. At the end of the H paa
cycle, architecture states get 7S | memory ™
modified. CC
LG Read Write
States (All updated as clock
rises) <3 Register |
. ::> il K-
= PC reg|Ster $rbx = 0x100
= Cond. Code register . AN %
= Data memory FC <

= Register file

Clock

Cycle 1:
Cycle 2:
Cycle 3:
Cycle 4:

Cycle 5:

-

Combinational

logic

47

CC
100

“— Cycle1 —7n— Cycle2 — Cycle3 —¢— Cycle4 —
] | | L
@ @ ® @
0x000: irmovg $0x100,%rbx # %$rbx <-- 0x100
0x00a: irmovg $0x200,%rdx # %$rdx <-- 0x200
0x014: addg %$rdx, $rbx # $rbx <-- 0x300 CC <-- 000
0x01f: rmmovqg %rbx,0 (%$rdx) # M[0x200] <-- 0x300

PC
0x014

Read Write
<I|j Data A
£l> memory | V]

Read Write

ports ports
<:3 Register | 4

file N
? %rbx = 0x100

¢ state set according to second
irmovqg Instruction

e combinational logic starting to
react to state changes

“— Cycle1 —»¢— Cycle2 —*— Cycle3 m— Cycle4 —

Clook [1 [11

A

\® ©) @
Cycle 1: | 0x000: irmovg $0x100,%rbx # %rbx <-- 0x100
Cycle 2: | 0x00a: irmovg $0x200,%rdx # %$rdx <-- 0x200
Cycle 3: | 0x014: addg %rdx, srbx # $rbx <-- 0x300 CC <-- 000
Cycle 4:
Cycle 5:| 0x01f: rmmovg %rbx, 0 (%rdx) # M[0x200] <-- 0x300

-

o

Combinational

logic

47

CC
100

000

Read

4P

Read
ports

~Aar

)

0x016

o

0x014

- e state set according to second
Data p* : : :
irmovqg Instruction
memory N 4
e combinational logic generates
| results for addq instruction
ports
Redi Srbx
egister | 4 |
file K| <~
— 0x300

<

Clock

Cycle 1:
Cycle 2:
Cycle 3:
Cycle 4:

Cycle 5:

Combinational

logic

47

CC
000

«— Cycle1 —

I

«— Cycle2 —

[—

—— Cycle3 — Cycle 4 —

L —

@ ® @

0x000: irmovg $0x100,%rbx # %$rbx <-- 0x100

0x00a: irmovg $0x200,%rdx # %$rdx <-- 0x200

0x014: addg %$rdx, $rbx # $rbx <-- 0x300 CC <-- 000
0x01f: rmmovqg %rbx,0 (%$rdx) # M[0x200] <-- 0x300

74P

Data
memory

AN

Register
file

%rbx = 0x300

A

PC
0x016

~z4r

e state set according to addg
instruction

e combinational logic starting
to react to state changes

Clock

@

“— Cycle1 —n¢— Cycle2 —*— Cycle3 —7— Cycle4

B e I e B ey

\
@ ©®

Cycle 1: | 0x000:

irmovg $0x100, $rbx

$rbx <-- 0x100

Cycle2:| 0x00a:

Cycle 3:
Cycle 4:

Cycle 5:

irmovg $0x200, $rdx

%rdx <-- 0x200

0x014:

0x01f:

addg %rdx, $rbx

rmmovqg %$rbx, 0 ($rdx)

Srbx <-- 0x300 CC <-- 000

M[0x200] <-- 0x300

Data
memory

Register

file
%rbx = 0x300

e state set according to addg
instruction

e combinational logic generates
results for je instruction

10

Processor Microarchitecture

* Pipelined microarchitecture implementation
 Basic Principles

11

Performance Model

Execution time
of a program = # of Dynamic Instructions
(in seconds)

X # of cycles taken to execute an instruction (on average)

/ number of cycles per second

12

Performance Model

Execution time

of a program = # of Dynamic Instructions
(in seconds) CPI

X| # of cycles taken to execute an instruction (on average)

/ number of cycles per second

12

Performance Model

Execution time

of a program = # of Dynamic Instructions
(in seconds) CPI

X| # of cycles taken to execute an instruction (on average)

/ | number of cycles per second Clock Frequency
(1/cycle time)

12

Improving Performance

Execution time
of a program = # of Dynamic Instructions
(in seconds)

X # of cycles taken to execute an instruction (on average)

/ number of cycles per second

+ 1. Reduce the total number of instructions executed (mainly done by
the compiler and/or programmer).

13

Improving Performance

Execution time
of a program = # of Dynamic Instructions
(in seconds)

X # of cycles taken to execute an instruction (on average)

/ number of cycles per second

+ 1. Reduce the total number of instructions executed (mainly done by
the compiler and/or programmer).

2. Increase the clock frequency (reduce the cycle time). Has huge
power implications.

13

Improving Performance

Execution time
of a program = # of Dynamic Instructions
(in seconds)

X # of cycles taken to execute an instruction (on average)

/ number of cycles per second

+ 1. Reduce the total number of instructions executed (mainly done by
the compiler and/or programmer).

2. Increase the clock frequency (reduce the cycle time). Has huge
power implications.

- 3. Reduce the CPI, i.e., execute more instructions in one cycle.

13

Improving Performance

Execution time
of a program = # of Dynamic Instructions
(in seconds)

X # of cycles taken to execute an instruction (on average)

/ number of cycles per second

1. Reduce the total number of instructions executed (mainly done by
the compiler and/or programmer).

2. Increase the clock frequency (reduce the cycle time). Has huge
power implications.

3. Reduce the CPI, i.e., execute more instructions in one cycle.
We will talk about one technique that simultaneously achieves 2 & 3.

13

Limitations of a Single-Cycle CPU

14

Limitations of a Single-Cycle CPU

« Cycle time

14

Limitations of a Single-Cycle CPU

« Cycle time
 Every instruction finishes in one cycle.

14

Limitations of a Single-Cycle CPU

« Cycle time
 Every instruction finishes in one cycle.

* The absolute time takes to execute each instruction varies.
Consider for instance an ADD instruction and a JMP instruction.

14

Limitations of a Single-Cycle CPU

« Cycle time
 Every instruction finishes in one cycle.

* The absolute time takes to execute each instruction varies.
Consider for instance an ADD instruction and a JMP instruction.

 But the cycle time is uniform across instructions, so the cycle time
needs to accommodate the worst case, i.e., the slowest
instruction.

14

Limitations of a Single-Cycle CPU

« Cycle time
 Every instruction finishes in one cycle.

* The absolute time takes to execute each instruction varies.
Consider for instance an ADD instruction and a JMP instruction.

 But the cycle time is uniform across instructions, so the cycle time
needs to accommodate the worst case, i.e., the slowest
instruction.

- How do we shorten the cycle time (increase the frequency)?

14

Limitations of a Single-Cycle CPU

« Cycle time
 Every instruction finishes in one cycle.

* The absolute time takes to execute each instruction varies.
Consider for instance an ADD instruction and a JMP instruction.

 But the cycle time is uniform across instructions, so the cycle time
needs to accommodate the worst case, i.e., the slowest
instruction.

- How do we shorten the cycle time (increase the frequency)?
- CPI

14

Limitations of a Single-Cycle CPU

« Cycle time
 Every instruction finishes in one cycle.

* The absolute time takes to execute each instruction varies.
Consider for instance an ADD instruction and a JMP instruction.

 But the cycle time is uniform across instructions, so the cycle time
needs to accommodate the worst case, i.e., the slowest
instruction.

- How do we shorten the cycle time (increase the frequency)?
- CPI

« The entire hardware is occupied to execute one instruction at a
time. Can’t execute multiple instructions at the same time.

14

Limitations of a Single-Cycle CPU

« Cycle time
 Every instruction finishes in one cycle.

* The absolute time takes to execute each instruction varies.
Consider for instance an ADD instruction and a JMP instruction.

 But the cycle time is uniform across instructions, so the cycle time
needs to accommodate the worst case, i.e., the slowest
instruction.

- How do we shorten the cycle time (increase the frequency)?
- CPI

« The entire hardware is occupied to execute one instruction at a
time. Can’t execute multiple instructions at the same time.

- How do execute multiple instructions in one cycle?

14

A Motivating Example

300 ps 20 ps
Combinational F;
logic g

Clock
« Computation requires total of 300 picoseconds
» Additional 20 picoseconds to save result in register
* Must have clock cycle time of at least 320 ps

Pipeline Diagrams

» Time to finish 3 insts = 960 ps
- Each inst.’s latency is 320 ps

OP1 320

OP2 320

OP3 : 320
Time

« 3 instructions will take 960 ps to finish

 First cycle: Inst 1 takes 300 ps to compute new state,
20 ps to store the new states

» Second cycle: Inst 2 starts; it takes 300 ps to
compute new states, 20 ps to store new states

« And so on...

16

3-Stage Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. R Comb. R Comb. R

logic e logic e logic e

A g B g C g
Clock

* Divide combinational logic into 3 stages of 100 ps each

* Insert registers between stages to store intermediate data between
stages. These are call pipeline registers (ISA-invisible)

e Can begin a new instruction as soon as the previous one finishes
stage A and has stored the intermediate data.

* Begin new operation every 120 ps
* Cycle time can be reduced to 120 ps

17

3-Stage Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
Clock
3-Stage Pipelined
OoP1| A B C
OoP2 A B C
OP3 A B

Time

18

Comparison

 Time to finish 3 insts = 960 ps

Unpipelined . Each inst.’s latency is 320 ps
OP1 320
OP2 320
2
oFs Time 320
3-Stage Pipelined
A B C * Time to finish 3 insets = 120 *
or- 5 =600 ps
OP2 Al B | C o
OP3 A | B | C ut each inst.’s latency

Time

increases: 120 * 3 = 360 ps

19

Benefits of Pipelining

OP1

 Time to finish 3 insts = 960 ps
- Each inst.’s latency is 320 ps

OP2

OP3 Time

1. Reduce the cycle time from 320 ps to 120 ps

2. CPI reduces from 1 to 1/3 (i.e., executing 3 instruction in one cycle)

* Time to finish 3 insets = 120 *

opr1, A | B | C 5 - 600 ps

OP2 A | B | C |

oOP3 A B c - But each inst.’s latency
Time increases: 120 * 3 = 360 ps

20

One Requirement of Pipelining

* The stages need to be using different hardware structures.

- That is, Stage A, Stage B, and Stage C need to exercise
different parts of the combination logic.

OP1| A B C
OP2 A B C
OP3 A B

Time

* Time to finish 3 insets = 120 *

5 =600 ps

- But each inst.’s latency

increases: 120 * 3 = 360 ps

21

Another Way to Look At the Microarchitecture

Principles:

» Execute each instruction one at a time, one after another
* EXpress every instruction as series of simple steps

* Dedicated hardware structure for completing each step

* Follow same general flow for each instruction type

Fetch: Read instruction from instruction memory
Decode: Read program registers

Execute: Compute value or address

Memory: Read or write data

Write Back: Write program registers

PC: Update program counter

22

PC

Write back

Memory

Execute

Decode

icode ifun
rA ,rB
valC

newPC

valE ,valM

Data
memory

Addr, Data

aluA, aluB

valA,valB

srcA, srcB P
dstA, dstB Register

file g

Fetch

Instruction PC
memory

increment

Fetch

= Read instruction from instruction memory
Decode

= Read program registers
Execute

= Compute value or address
Memory

= Read or write data

Write Back

= Write program registers
PC

= Update program counter

23

Stage Computation: Arith/Log. Ops

OPq rA, rB

6

fn

rA

rB

OPqgrA, rB

24

Stage Computation: Arith/Log. Ops

OPq rA, rB

6

fn

rA(rB

OPqrA, rB

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

valP < PC+2

Read instruction byte
Read register byte

Compute next PC

24

Stage Computation: Arith/Log. Ops

OPq rA, rB

fn

rA(rB

OPqrA, rB

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

valP < PC+2

Decode

valA < R[rA]
valB < R[rB]

Read instruction byte
Read register byte

Compute next PC
Read operand A
Read operand B

24

Stage Computation: Arith/Log. Ops

OPq rA, rB

fn

rA(rB

OPqgrA, rB

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

valP < PC+2

Decode

valA < R[rA]
valB < R[rB]

Execute

valE < valB OP valA
Set CC

Read instruction byte
Read register byte

Compute next PC

Read operand A

Read operand B

Perform ALU operation

Set condition code register

24

Stage Computation: Arith/Log. Ops

Read instruction byte
Read register byte

Compute next PC

Perform ALU operation
Set condition code register

OPq I‘A, rB fnlrAlrB
OPqgrA, rB
icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valP < PC+2
Decode valA < R[rA] Read operand A
valB < R[rB] Read operand B
valE < valB OP valA
Execute
Set CC
Memory

24

Stage Computation: Arith/Log. Ops

Read instruction byte
Read register byte

Compute next PC

Perform ALU operation

Set condition code register

Write back result

OPq I‘A, rB fnlrAlrB
OPqgrA, rB
icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valP < PC+2
Decode valA < R[rA] Read operand A
valB < R[rB] Read operand B
valE < valB OP valA
Execute
Set CC
Memory
Write R[rB] < valE
back

24

Stage Computation: Arith/Log. Ops

Read instruction byte
Read register byte

Compute next PC

Perform ALU operation

Set condition code register

Write back result

OPq rA, rB fn|rA|rB
OPqgrA, rB
icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valP < PC+2
Decode valA < R[rA] Read operand A
valB < R[rB] Read operand B
valE < valB OP valA
Execute
Set CC
Memory
Write R[rB] < valE
back
PC update |PC < valP Update PC

24

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

25

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]
valC < My[PC+2]
valP < PC+10

Read instruction byte
Read register byte
Read displacement D
Compute next PC

25

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
rA:rB < M,[PC+1]

Fetch
valC < My[PC+2]
valP < PC+10
Decode valA < R[rA]
valB <— R[rB]

Read instruction byte
Read register byte
Read displacement D
Compute next PC
Read operand A
Read operand B

25

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

Fetch

icode:ifun < M,[PC]
rA:rB < M,[PC+1]
valC < My[PC+2]
valP < PC+10

Decode

valA < R[rA]
valB < R[rB]

Execute

valE < valB + valC

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

25

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]

valC < My[PC+2]

valP < PC+10
Decode valA < R[rA]

valB <— R[rB]

valE < valB + valC
Execute
Memory M;[valE] < valA

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

25

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valC < My[PC+2]
valP < PC+10
Decode valA < R[rA]
valB < R[rB]
valE < valB + valC
Execute
Memory M;[valE] < valA
Write
back

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

25

Stage Computation: rmmovg

rmmovq rA, D(rB) |4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valC < My[PC+2]
valP < PC+10
Decode valA < R[rA]
valB <— R[rB]
valE < valB + valC
Execute
Memory M;[valE] < valA
Write
back
PC update |PC < valP

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

Update PC

25

Stage Computation: Jumps

jXX Dest

* Compute both addresses
* Choose based on setting of condition codes and branch condition

26

Stage Computation: Jumps

jXX Dest

Fetch

icode:ifun < M,[PC]

valC < My[PC+1]
valP < PC+9

* Compute both addresses
* Choose based on setting of condition codes and branch condition

Read instruction byte

Read destination address
Fall through address

26

Stage Computation: Jumps

jXX Dest

Fetch

icode:ifun < M,[PC]

valC < My[PC+1]
valP < PC+9

Decode

* Compute both addresses
* Choose based on setting of condition codes and branch condition

Read instruction byte

Read destination address
Fall through address

26

Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < My[PC+1]
valP < PC+9
Decode
Execute
Cnd < Cond(CC,ifun)

* Compute both addresses
* Choose based on setting of condition codes and branch condition

Read instruction byte

Read destination address
Fall through address

Take branch?

26

Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < My[PC+1]
valP < PC+9
Decode
Execute
Cnd < Cond(CC,ifun)
Memory

* Compute both addresses
* Choose based on setting of condition codes and branch condition

Read instruction byte

Read destination address
Fall through address

Take branch?

26

Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < My[PC+1]
valP < PC+9
Decode
Execute
Cnd < Cond(CC,ifun)
Memory
Write
back

* Compute both addresses

Read instruction byte

Read destination address
Fall through address

Take branch?

* Choose based on setting of condition codes and branch condition

26

Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < My[PC+1]
valP < PC+9
Decode
Execute
Cnd < Cond(CC,ifun)
Memory
Write
back
PC update [PC <- Cnd ? valC : valP

* Compute both addresses

Read instruction byte

Read destination address
Fall through address

Take branch?

Update PC

* Choose based on setting of condition codes and branch condition

26

Pipeline Stages

Fetch

e Select current PC

* Read instruction

« Compute incremented PC
Decode

e Read program registers
Execute

« Operate ALU
Memory

* Read or write data memory
Write Back

« Update register file

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Memory

Execute

aluA, aluB

valA, valB

d_srcA,
d_srcB

Decode

A B
Register™
file -

Write back

Instruction
memory

Fetch

PC
increment

predPC

PC

27

Real-World Pipelines: Car Washes

28

Real-World Pipelines: Car Washes

Sequential

28

Real-World Pipelines: Car Washes

Sequential

Pipelined

HiTH

28

Real-World Pipelines: Car Washes

Sequential

Pipelined

L
''''''
HH

|dea
 Divide process into independent stages
* Move objects through stages in sequence
o At any given times, multiple objects being processed

28

Pipeline lllustration

Fetch

Decode

Execute

Memory

Write
back

29

Pipeline lllustration

Inst0

Fetch

Decode

Execute

Memory

Write
back

29

Pipeline lllustration

Insti

Fetch

Inst0

Decode

Execute

Memory

Write
back

29

Pipeline lllustration

Inst2

Fetch

Insti

Decode

Inst0

Execute

Memory

Write
back

29

Pipeline lllustration

Inst3

Fetch

Inst2

Decode

Insti

Execute

Inst0

Memory

Write
back

29

Pipeline lllustration

Inst4

Fetch

Inst3

Decode

Inst2

Execute

Insti

Memory

Inst0

Write
back

29

Pipeline lllustration

Fetch

Inst4

Decode

Inst3

Execute

Inst2

Memory

Insti

Write
back

29

Pipeline lllustration

Fetch

Decode

Inst4

Execute

Inst3

Memory

Inst2

Write
back

29

Pipeline lllustration

Fetch

Decode

Execute

Inst4

Memory

Inst3

Write
back

29

Pipeline lllustration

Fetch

Decode

Execute

Memory

Inst4

Write
back

29

Another lllustration

239

Clock
OP1
OP2 A B C
OP3 A B C
0 120 240 360 480 640
Time
100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. Comb. R
= logic —> logic F==je
A C g
Clock

30

Another lllustration

241

Clock

OP1
OP2 A B

C
OP3 B C
0 120 240 360 480 640
Time

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. Comb. R
= logic =I>el=y logic logic =I>e
A g B C g

Clo

ck

31

Another lllustration

300
Clock | B
OP1 _
OP2 A 3 C
OP3 B C
IO 1|20 2|40 3|60 4180 6|»4O
Time

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Com. R Comb. : R
= logic =eF=1 logi — e
A g B g

Clock

32

Another lllustration

359
Clock | B
OP1 _
OP2 A B C
OP3 A B C
Io 1I20 2|4o 3|60 4180 é4o

Time

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. R Comb.
= logic —D e —> logic
A g B

Clock

33

Making the Pipeline Really Work

e Control Dependencies
e What is it?
» Software mitigation: Inserting Nops
» Software mitigation: Delay Slots

34

Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

X0rg %srax, Ssrax

jne L1 # Not taken

irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target

irmovg $3, %rax # Target + 1

35

Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

]

X0rg %rax, srax F
jne L1 # Not taken
irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target
irmovg $3, %rax # Target + 1

Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

1 2

X0rg %rax, srax F D

jne L1 # Not taken F

irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target

irmovg $3, %rax # Target + 1

35

Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

1 2 3
X0rg %srax, srax F D | E
jne L1 # Not taken F D

irmovg $1, %rax # Fall Through
L1 irmovg $4, S%rcx # Target
irmovg $3, %rax # Target + 1

35

Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:
e Jne L1 determines whether irmovg $1, %rax should be

executed

« But yne doesn’t know its outcome until after its Execute stage

X0rg %srax, Ssrax

jne L1

nop

irmovg $1, %rax
L1 irmovg $4, S%rcx

irmovg $3, %rax

1 2 3

F|D|E

Not taken F D
F

Fall Through
Target
Target + 1

35

Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be

executed

« But yne doesn’t know its outcome until after its Execute stage

X0rg %srax, Ssrax

jne L1

nop

irmovg $1, %rax
L1 irmovg $4, S%rcx

irmovg $3, %rax

1 2 3 4

F D E M

Not taken F| | D E
F D

Fall Through
Target
Target + 1

35

Control Dependency

e Definition: Outcome of instruction A determines whether or not

instruction B should be executed or not.

o Jump instruction example below:

L1

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

1 2 3 4
X0rg %srax, Ssrax F D E M
jne L1 # Not taken F D|E
nop F D
nop F
irmovg $1, %rax # Fall Through
irmovg $4, %rcx # Target

irmovg $3, %rax # Target + 1

35

Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

1 2 3 4 5

X0rg %srax, srax F' D E M W
jne L1 # Not taken F D E M
nop F D E
nop F D
irmovg $1, %rax # Fall Through F

L1 irmovg $4, S%rcx # Target
irmovg $3, %rax # Target + 1

35

Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

1 2 3 4 5

X0rg %srax, srax F' D E M W
jne L1 # Not taken F D E M
nop F D\ E
nop F \D
irmovg $1, %rax # Fall Through

L1 irmovg $4, S%rcx # Target
irmovg $3, %rax # Target + 1

35

Control Dependency

e Definition: Outcome of instruction A determines whether or not

instruction B should be executed or not.
o Jump instruction example below:

« jne L1 determines whether irmovg $1,

executed

« But yne doesn’t know its outcome until after its Execute stage

]

Srax should be

2

3

4

5

X0rg %srax, Ssrax F

D

6

jne L1 # Not taken

nop

nop

irmovg $1, %rax
L1 irmovg $4, S%rcx

irmovg $3, %rax

Fall Through
Target
Target + 1

F

7

m O m

8

m O/ mZ

omZ S

9

mom=Z s

<

Mmoo mZZ S

om=zZ =

35

Delay Slots

XO0rg %Srax, srax

==

L1l irmovg $4, %r
irmovg $3, %rax

1

F

N, Can we make use of
the 2 wasted slots?

Fall Through
Target

Target + 1

m| O m

mo mZ

W

M | W

E MW

Dl E M W

F D E| M| W
F I D E M
F| D E

36

Delay Slots

1 2 3 4 5 6 7 8 9
XO0rg %Srax, srax F D E M W
Jae L1 I F D E M W
’ ™, Can we make use of F 1D E MW
the 2 wasted slots?
F D E M W
1 T O g™ # Fall Through F D E M W
L1 irmovg $4, %rcx # Target F D E M
irmovg $3, %rax # Target + 1 F D E
1f (cond) {
do_A();
} else {
do_B() 7
}
do C();

36

Delay Slots

1 2 3 4 5 6 7 8 9

XOrg %rax, %srax F D E M W
! ™ Can we make use of " :::) E '\é \|</|V W
the 2 wasted slots?
F/ D E M| W
fffffffff o ST .2 # Fall Through F/' D E M W
L1 irmovg $4, %rcx # Target F D E M
irmovg $3, %rax # Target + 1 F D E

if (cond) {

do_A();
Have to make sure do C doesn’t \ elge {
dependon do Aand do B!!!
do_B() 7
}
do C();

36

Delay Slots

1

XO0rg %Srax, srax F

N, Can we make use of
the 2 wasted slots?

Fall Through
CxX # Target

Target + 1

L1 dirmovg $4;<%

do C() ;
_ if (cond) {
A less obvious
example do A();
} else {
do_B() 7
}

m| O m

Mmoo mZ

W
M | W
E MW
Dl E M W
F D E| M| W
F I D E M
F | D | E

37

Delay Slots

XO0rg %Srax, srax

= =y 1 o .
/// ~

L1 dirmovg $4,<%

do C() ;
_ if (cond)
A less obvious
example do A();
} else {
do_B() 7
}

™, Can we make use of
the 2 wasted slots?

{

Fall Through
CxX # Target

Target + 1

i 2 3 4 5 6 7 8 9
F D E M W
F D E | M | W
F D E | M W
F D E M W
F D E M W
F D E M
F D E
add A, B
or C, D
sub E, F
Jle 0x200
add A, C

37

Delay Slots

1 2 3 4 5 6 7 8
XO0rg %Srax, srax F D E M W
e Ll }}“"Can we make use of — :3 E '\é VI\X W
the 2 wasted slots?
F D E M| W
Ottt # Fall Through F D E M| W
L1 irmovg $4, %rcx # Target F D E M
irmovg $3, %rax # Target + 1 F D
do C(); add A, B add A, B
_ if (cond) { or C, D sub E, F
A less obvious ,
examp'e dO_A(); sub E, F jle 0x200
} else { Jle 0x200 or C, D
do B(); add A, C add A, C
}

37

Delay Slots

1 2 3 4 5 6 7 8 9

XO0rg %Srax, srax F D E M W
AT ! \ Can we make use of — :::) E '\é K/IV W
the 2 wasted slots?
F D E M| W
~~~~~~~~ <7 K - # Fall Through F/ D E M W
L1 irmovg $4, %rcx # Target F D E M
irmovg $3, %rax # Target + 1 F| D|E
do C(); add A, B add A, B
_ if (cond) { or C, D sub E, F
A less obvious ,
examp'e dO_A(); sub E, F jle 0x200
} else { Jle 0x200 or C, D
do B(); add A, C add A, C
J Why don’t we move

the sub instruction?

37



Resolving Control Dependencies

o Software Mechanisms

« Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

* Delay slot: insert instructions that do not depend on the effect
of the preceding instruction. These instructions will execute
even if the preceding branch is taken — old RISC approach

* Hardware mechanisms
o Stalling (Think of it as hardware automatically inserting nops)
e Branch Prediction
e Return Address Stack

38



