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Announcements

A3 due in 8 days

 

Midterm in 12 days, counts for 25% of final grade

 

Material from next class may be included on the exam, but 
nothing after that
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Combinational Logic

Single-Cycle Microarchitecture
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Combinational Logic

Single-Cycle Microarchitecture
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Key principles:

States are stored in storage units, e.g., Flip-flops (and SRAM and DRAM, later..)


New states are calculated by combination logic.
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Single-Cycle Microarchitecture: Illustration
Think of it as a state machine

Every cycle, one instruction gets 

executed. At the end of the 
cycle, architecture states get 
modified.


States (All updated as clock 
rises)


■ PC register 
■ Cond. Code register 
■ Data memory 
■ Register file
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• state set according to second 
irmovq instruction 

• combinational logic starting to 
react to state changes
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 0x014:   addq %rdx,%rbx      # %rbx <-- 0x300 CC <-- 000

 0x016:   je dest             # Not taken

 0x01f:   rmmovq %rbx,0(%rdx) # M[0x200] <-- 0x300

Cycle 3:

Cycle 4:
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• state set according to second 
irmovq instruction 

• combinational logic generates 
results for addq instruction
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• state set according to addq 
instruction 

• combinational logic starting 
to react to state changes
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• state set according to addq 
instruction 

• combinational logic generates 
results for je instruction
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Processor Microarchitecture
• Sequential, single-cycle microarchitecture implementation


• Basic idea

• Hardware implementation


• Pipelined microarchitecture implementation

• Basic Principles

• Difficulties: Control Dependency

• Difficulties: Data Dependency
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Performance Model
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Improving Performance
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of a program 
(in seconds)
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number of cycles per second

• 1. Reduce the total number of instructions executed (mainly done by 
the compiler and/or programmer).
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Improving Performance

# of Dynamic Instructions
Execution time 
of a program 
(in seconds)

X

=

/

# of cycles taken to execute an instruction (on average)

number of cycles per second

• 1. Reduce the total number of instructions executed (mainly done by 
the compiler and/or programmer).

• 2. Increase the clock frequency (reduce the cycle time). Has huge 
power implications.

• 3. Reduce the CPI, i.e., execute more instructions in one cycle.
• We will talk about one technique that simultaneously achieves 2 & 3.
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A Motivating Example

•Computation requires total of 300 picoseconds 
• Additional 20 picoseconds to save result in register 
•Must have clock cycle time of at least 320 ps
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Pipeline Diagrams
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Time

OP1
OP2
OP3

320
320

320

• 3 instructions will take 960 ps to finish 
• First cycle: Inst 1 takes 300 ps to compute new state, 

20 ps to store the new states 
• Second cycle: Inst 2 starts; it takes 300 ps to 

compute new states, 20 ps to store new states 
• And so on…

• Time to finish 3 insts = 960 ps

• Each inst.’s latency is 320 ps
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3-Stage Pipelined Version

•Divide combinational logic into 3 stages of 100 ps each 
• Insert registers between stages to store intermediate data between 

stages. These are call pipeline registers (ISA-invisible) 
•Can begin a new instruction as soon as the previous one finishes 

stage A and has stored the intermediate data. 
• Begin new operation every 120 ps 
• Cycle time can be reduced to 120 ps

�17

R 
e 
g

Clock

Comb. 
logic 

A

R 
e 
g

Comb. 
logic 

B

R 
e 
g

Comb. 
logic 

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps



Carnegie Mellon

3-Stage Pipelined Version
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Comparison

�19

Time
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Time

A B C
A B C

A B C
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OP3
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320

3-Stage Pipelined

Unpipelined
• Time to finish 3 insts = 960 ps

• Each inst.’s latency is 320 ps

• Time to finish 3 insets = 120 * 
5 = 600 ps


• But each inst.’s latency 
increases: 120 * 3 = 360 ps
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Benefits of Pipelining
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Time
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OP2
OP3

Time

A B C
A B C

A B C

OP1
OP2
OP3

1. Reduce the cycle time from 320 ps to 120 ps 
2. CPI reduces from 1 to 1/3 (i.e., executing 3 instruction in one cycle)

• Time to finish 3 insts = 960 ps

• Each inst.’s latency is 320 ps

• Time to finish 3 insets = 120 * 
5 = 600 ps


• But each inst.’s latency 
increases: 120 * 3 = 360 ps
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One Requirement of Pipelining
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Time

A B C
A B C

A B C

OP1
OP2
OP3

• Time to finish 3 insets = 120 * 
5 = 600 ps


• But each inst.’s latency 
increases: 120 * 3 = 360 ps

• The stages need to be using different hardware structures.

• That is, Stage A, Stage B, and Stage C need to exercise 

different parts of the combination logic.
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Principles:

• Execute each instruction one at a time, one after another 
• Express every instruction as series of simple steps 
• Dedicated hardware structure for completing each step 
• Follow same general flow for each instruction type 

Fetch: Read instruction from instruction memory 
Decode: Read program registers 
Execute: Compute value or address 
Memory: Read or write data 
Write Back: Write program registers 
PC: Update program counter

�22

Another Way to Look At the Microarchitecture
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Fetch 
■ Read instruction from instruction memory 
Decode 
■ Read program registers 
Execute 
■ Compute value or address 
Memory 
■ Read or write data 
Write Back 
■ Write program registers 
PC 
■ Update program counter

�23

Instruction
memory

Instruction
memory

PC
increment

PC
increment

CCCC
ALUALU

Data
memory

Data
memory

Fetch

Decode

Execute

Memory

Write back

icode, ifun
rA , rB

valC

Register
file

Register
file

A B
M

E

Register
file

Register
file

A B
M

E

PC

valP

srcA, srcB
dstA, dstB

valA, valB

aluA, aluB

Cnd

valE

Addr, Data

valM

PC
valE , valM

newPC



Carnegie Mellon

Stage Computation: Arith/Log. Ops

�24

OPq rA, rB

OPq rA, rB 6 fn rA rB



Carnegie Mellon

Stage Computation: Arith/Log. Ops

�24

OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
 
valP ← PC+2

Fetch

Read instruction byte
Read register byte
 
Compute next PC

OPq rA, rB 6 fn rA rB



Carnegie Mellon

Stage Computation: Arith/Log. Ops

�24

OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
 
valP ← PC+2

Fetch

Read instruction byte
Read register byte
 
Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

OPq rA, rB 6 fn rA rB



Carnegie Mellon

Stage Computation: Arith/Log. Ops

�24

OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
 
valP ← PC+2

Fetch

Read instruction byte
Read register byte
 
Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB OP valA
Set CC

Execute Perform ALU operation
Set condition code register

OPq rA, rB 6 fn rA rB



Carnegie Mellon
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Stage Computation: Arith/Log. Ops
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Stage Computation: Arith/Log. Ops
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OPq rA, rB
icode:ifun ← M1[PC]
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Stage Computation: rmmovq
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Stage Computation: rmmovq
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Stage Computation: rmmovq
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Stage Computation: Jumps
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Stage Computation: Jumps

• Compute both addresses

• Choose based on setting of condition codes and branch condition
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jXX Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Fall through address

Decode

Cnd ← Cond(CC,ifun)
Execute

Take branch?
  Memory   

 
Write
back  

PC ← Cnd ? valC : valPPC update Update PC
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Pipeline Stages
Fetch

• Select current PC 
• Read instruction 
• Compute incremented PC 

Decode

• Read program registers 

Execute

• Operate ALU 

Memory

• Read or write data memory 

Write Back

• Update register file

�27
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Real-World Pipelines: Car Washes

Idea

• Divide process into independent stages 
• Move objects through stages in sequence 
• At any given times, multiple objects being processed

�28

Sequential Pipelined
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Pipeline Illustration
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Another Illustration
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Making the Pipeline Really Work
• Control Dependencies


• What is it? 
• Software mitigation: Inserting Nops 
• Software mitigation: Delay Slots 

• Data Dependencies

• What is it? 
• Software mitigation: Inserting Nops

�34
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Control Dependency
• Definition: Outcome of instruction A determines whether or not 

instruction B should be executed or not. 
• Jump instruction example below: 

• jne L1 determines whether irmovq $1, %rax should be 
executed 

• But jne doesn’t know its outcome until after its Execute stage

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target
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Delay Slots
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Have to make sure do_C doesn’t 
depend on do_A and do_B!!!
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the sub instruction?
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Resolving Control Dependencies
• Software Mechanisms


• Adding NOPs: requires compiler to insert nops, which also take 
memory space — not a good idea 

• Delay slot: insert instructions that do not depend on the effect 
of the preceding instruction. These instructions will execute 
even if the preceding branch is taken — old RISC approach 

• Hardware mechanisms

• Stalling (Think of it as hardware automatically inserting nops) 
• Branch Prediction 
• Return Address Stack

!38


