
CSC 252: Computer
Organization

Fall 2021: Lecture 13

 Processor Architecture:
Pipelining

Instructor: Alan Beadle

Department of Computer Science
University of Rochester

Carnegie Mellon

Announcements

A3 due in 8 days

Midterm in 12 days, counts for 25% of final grade

Material from next class may be included on the exam, but
nothing after that

Carnegie Mellon

Combinational Logic

Single-Cycle Microarchitecture

�5

Register
File

Flags
Z S O

PC

Clock

Memory

Inst.
Rd/Wr

Reg. IDs
Current

Reg.
Values

Cur. Flag
ValuesEnable?

New Flag
Values

Cur.
PC

New
PC

New
Reg.
Valus

Enable?

Read current_states;
next_states = calculate_new_state(current_states);

When clock rises, current_states = next_states;

Data
New
Data Addr.

next_states has to be ready before the close rises

Carnegie Mellon

Combinational Logic

Single-Cycle Microarchitecture

�5

Register
File

Flags
Z S O

PC

Clock

Memory

Inst.
Rd/Wr

Reg. IDs
Current

Reg.
Values

Cur. Flag
ValuesEnable?

New Flag
Values

Cur.
PC

New
PC

New
Reg.
Valus

Enable?

Read current_states;
next_states = calculate_new_state(current_states);

When clock rises, current_states = next_states;

Data
New
Data Addr.

next_states has to be ready before the close rises

Key principles:

States are stored in storage units, e.g., Flip-flops (and SRAM and DRAM, later..)

New states are calculated by combination logic.

Carnegie Mellon

Single-Cycle Microarchitecture: Illustration
Think of it as a state machine

Every cycle, one instruction gets

executed. At the end of the
cycle, architecture states get
modified.

States (All updated as clock
rises)

■ PC register
■ Cond. Code register
■ Data memory
■ Register file

�6

Combinational
logic

Data
memory

Register
file

%rbx = 0x100

PC
0x014

CC
100

Read
ports

Write
ports

Read Write

Carnegie Mellon

• state set according to second
irmovq instruction

• combinational logic starting to
react to state changes

�7

 0x014: addq %rdx,%rbx # %rbx <-- 0x300 CC <-- 000

 0x016: je dest # Not taken

 0x01f: rmmovq %rbx,0(%rdx) # M[0x200] <-- 0x300

Cycle 3:

Cycle 4:

Cycle 5:

 0x00a: irmovq $0x200,%rdx # %rdx <-- 0x200Cycle 2:

 0x000: irmovq $0x100,%rbx # %rbx <-- 0x100Cycle 1:

Clock
Cycle 1

① ③ ④②

Cycle 2 Cycle 3 Cycle 4

Combinational
logic

Data
memory

Register
file

%rbx = 0x100

PC
0x014

CC
100

Read
ports

Write
ports

Read Write

Carnegie Mellon

• state set according to second
irmovq instruction

• combinational logic generates
results for addq instruction

�8

Combinational
logic

Data
memory

Register
file

%rbx = 0x100

PC
0x014

CC
100

Read
ports

Write
ports

0x016

000 %rbx
<--
0x300

Read Write

 0x014: addq %rdx,%rbx # %rbx <-- 0x300 CC <-- 000

 0x016: je dest # Not taken

 0x01f: rmmovq %rbx,0(%rdx) # M[0x200] <-- 0x300

Cycle 3:

Cycle 4:

Cycle 5:

 0x00a: irmovq $0x200,%rdx # %rdx <-- 0x200Cycle 2:

 0x000: irmovq $0x100,%rbx # %rbx <-- 0x100Cycle 1:

Clock
Cycle 1

① ③ ④②

Cycle 2 Cycle 3 Cycle 4

Carnegie Mellon

• state set according to addq
instruction

• combinational logic starting
to react to state changes

�9

 0x014: addq %rdx,%rbx # %rbx <-- 0x300 CC <-- 000

 0x016: je dest # Not taken

 0x01f: rmmovq %rbx,0(%rdx) # M[0x200] <-- 0x300

Cycle 3:

Cycle 4:

Cycle 5:

 0x00a: irmovq $0x200,%rdx # %rdx <-- 0x200Cycle 2:

 0x000: irmovq $0x100,%rbx # %rbx <-- 0x100Cycle 1:

Clock
Cycle 1

① ③ ④②

Cycle 2 Cycle 3 Cycle 4

Combinational
logic

Data
memory

Register
file

%rbx = 0x300

PC
0x016

CC
000

Read
ports

Write
ports

Read Write

Carnegie Mellon

• state set according to addq
instruction

• combinational logic generates
results for je instruction

�10

 0x014: addq %rdx,%rbx # %rbx <-- 0x300 CC <-- 000

 0x016: je dest # Not taken

 0x01f: rmmovq %rbx,0(%rdx) # M[0x200] <-- 0x300

Cycle 3:

Cycle 4:

Cycle 5:

 0x00a: irmovq $0x200,%rdx # %rdx <-- 0x200Cycle 2:

 0x000: irmovq $0x100,%rbx # %rbx <-- 0x100Cycle 1:

Clock
Cycle 1

① ③ ④②

Cycle 2 Cycle 3 Cycle 4

Combinational
logic

Data
memory

Register
file

%rbx = 0x300

PC
0x016

CC
000

Read
ports

Write
ports

0x01f

Read Write

Carnegie Mellon

!11

Processor Microarchitecture
• Sequential, single-cycle microarchitecture implementation

• Basic idea

• Hardware implementation

• Pipelined microarchitecture implementation

• Basic Principles

• Difficulties: Control Dependency

• Difficulties: Data Dependency

Carnegie Mellon

�12

Performance Model

of Dynamic Instructions
Execution time
of a program
(in seconds)

X

=

/

of cycles taken to execute an instruction (on average)

number of cycles per second

Carnegie Mellon

�12

Performance Model

of Dynamic Instructions
Execution time
of a program
(in seconds)

X

=

/

of cycles taken to execute an instruction (on average)

number of cycles per second

CPI

Carnegie Mellon

�12

Performance Model

of Dynamic Instructions
Execution time
of a program
(in seconds)

X

=

/

of cycles taken to execute an instruction (on average)

number of cycles per second

CPI

Clock Frequency
(1/cycle time)

Carnegie Mellon

�13

Improving Performance

of Dynamic Instructions
Execution time
of a program
(in seconds)

X

=

/

of cycles taken to execute an instruction (on average)

number of cycles per second

• 1. Reduce the total number of instructions executed (mainly done by
the compiler and/or programmer).

Carnegie Mellon

�13

Improving Performance

of Dynamic Instructions
Execution time
of a program
(in seconds)

X

=

/

of cycles taken to execute an instruction (on average)

number of cycles per second

• 1. Reduce the total number of instructions executed (mainly done by
the compiler and/or programmer).

• 2. Increase the clock frequency (reduce the cycle time). Has huge
power implications.

Carnegie Mellon

�13

Improving Performance

of Dynamic Instructions
Execution time
of a program
(in seconds)

X

=

/

of cycles taken to execute an instruction (on average)

number of cycles per second

• 1. Reduce the total number of instructions executed (mainly done by
the compiler and/or programmer).

• 2. Increase the clock frequency (reduce the cycle time). Has huge
power implications.

• 3. Reduce the CPI, i.e., execute more instructions in one cycle.

Carnegie Mellon

�13

Improving Performance

of Dynamic Instructions
Execution time
of a program
(in seconds)

X

=

/

of cycles taken to execute an instruction (on average)

number of cycles per second

• 1. Reduce the total number of instructions executed (mainly done by
the compiler and/or programmer).

• 2. Increase the clock frequency (reduce the cycle time). Has huge
power implications.

• 3. Reduce the CPI, i.e., execute more instructions in one cycle.
• We will talk about one technique that simultaneously achieves 2 & 3.

Carnegie Mellon

�14

Limitations of a Single-Cycle CPU

Carnegie Mellon

�14

Limitations of a Single-Cycle CPU
• Cycle time

Carnegie Mellon

�14

Limitations of a Single-Cycle CPU
• Cycle time

• Every instruction finishes in one cycle.

Carnegie Mellon

�14

Limitations of a Single-Cycle CPU
• Cycle time

• Every instruction finishes in one cycle.
• The absolute time takes to execute each instruction varies.

Consider for instance an ADD instruction and a JMP instruction.

Carnegie Mellon

�14

Limitations of a Single-Cycle CPU
• Cycle time

• Every instruction finishes in one cycle.
• The absolute time takes to execute each instruction varies.

Consider for instance an ADD instruction and a JMP instruction.
• But the cycle time is uniform across instructions, so the cycle time

needs to accommodate the worst case, i.e., the slowest
instruction.

Carnegie Mellon

�14

Limitations of a Single-Cycle CPU
• Cycle time

• Every instruction finishes in one cycle.
• The absolute time takes to execute each instruction varies.

Consider for instance an ADD instruction and a JMP instruction.
• But the cycle time is uniform across instructions, so the cycle time

needs to accommodate the worst case, i.e., the slowest
instruction.

• How do we shorten the cycle time (increase the frequency)?

Carnegie Mellon

�14

Limitations of a Single-Cycle CPU
• Cycle time

• Every instruction finishes in one cycle.
• The absolute time takes to execute each instruction varies.

Consider for instance an ADD instruction and a JMP instruction.
• But the cycle time is uniform across instructions, so the cycle time

needs to accommodate the worst case, i.e., the slowest
instruction.

• How do we shorten the cycle time (increase the frequency)?
• CPI

Carnegie Mellon

�14

Limitations of a Single-Cycle CPU
• Cycle time

• Every instruction finishes in one cycle.
• The absolute time takes to execute each instruction varies.

Consider for instance an ADD instruction and a JMP instruction.
• But the cycle time is uniform across instructions, so the cycle time

needs to accommodate the worst case, i.e., the slowest
instruction.

• How do we shorten the cycle time (increase the frequency)?
• CPI

• The entire hardware is occupied to execute one instruction at a
time. Can’t execute multiple instructions at the same time.

Carnegie Mellon

�14

Limitations of a Single-Cycle CPU
• Cycle time

• Every instruction finishes in one cycle.
• The absolute time takes to execute each instruction varies.

Consider for instance an ADD instruction and a JMP instruction.
• But the cycle time is uniform across instructions, so the cycle time

needs to accommodate the worst case, i.e., the slowest
instruction.

• How do we shorten the cycle time (increase the frequency)?
• CPI

• The entire hardware is occupied to execute one instruction at a
time. Can’t execute multiple instructions at the same time.

• How do execute multiple instructions in one cycle?

Carnegie Mellon

A Motivating Example

•Computation requires total of 300 picoseconds
• Additional 20 picoseconds to save result in register
•Must have clock cycle time of at least 320 ps

�15

Combinational
logic

R
e
g

300 ps 20 ps

Clock

Carnegie Mellon

Pipeline Diagrams

�16

Time

OP1
OP2
OP3

320
320

320

• 3 instructions will take 960 ps to finish
• First cycle: Inst 1 takes 300 ps to compute new state,

20 ps to store the new states
• Second cycle: Inst 2 starts; it takes 300 ps to

compute new states, 20 ps to store new states
• And so on…

• Time to finish 3 insts = 960 ps

• Each inst.’s latency is 320 ps

Carnegie Mellon

3-Stage Pipelined Version

•Divide combinational logic into 3 stages of 100 ps each
• Insert registers between stages to store intermediate data between

stages. These are call pipeline registers (ISA-invisible)
•Can begin a new instruction as soon as the previous one finishes

stage A and has stored the intermediate data.
• Begin new operation every 120 ps
• Cycle time can be reduced to 120 ps

�17

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Carnegie Mellon

3-Stage Pipelined Version

�18

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Time

A B C
A B C

A B C

OP1
OP2
OP3

3-Stage Pipelined

Carnegie Mellon

Comparison

�19

Time

OP1
OP2
OP3

Time

A B C
A B C

A B C

OP1
OP2
OP3

320
320

320

3-Stage Pipelined

Unpipelined
• Time to finish 3 insts = 960 ps

• Each inst.’s latency is 320 ps

• Time to finish 3 insets = 120 *
5 = 600 ps

• But each inst.’s latency
increases: 120 * 3 = 360 ps

Carnegie Mellon

Benefits of Pipelining

�20

Time

OP1
OP2
OP3

Time

A B C
A B C

A B C

OP1
OP2
OP3

1. Reduce the cycle time from 320 ps to 120 ps
2. CPI reduces from 1 to 1/3 (i.e., executing 3 instruction in one cycle)

• Time to finish 3 insts = 960 ps

• Each inst.’s latency is 320 ps

• Time to finish 3 insets = 120 *
5 = 600 ps

• But each inst.’s latency
increases: 120 * 3 = 360 ps

Carnegie Mellon

One Requirement of Pipelining

�21

Time

A B C
A B C

A B C

OP1
OP2
OP3

• Time to finish 3 insets = 120 *
5 = 600 ps

• But each inst.’s latency
increases: 120 * 3 = 360 ps

• The stages need to be using different hardware structures.

• That is, Stage A, Stage B, and Stage C need to exercise

different parts of the combination logic.

Carnegie Mellon

Principles:

• Execute each instruction one at a time, one after another
• Express every instruction as series of simple steps
• Dedicated hardware structure for completing each step
• Follow same general flow for each instruction type

Fetch: Read instruction from instruction memory
Decode: Read program registers
Execute: Compute value or address
Memory: Read or write data
Write Back: Write program registers
PC: Update program counter

�22

Another Way to Look At the Microarchitecture

Carnegie Mellon

Fetch
■ Read instruction from instruction memory
Decode
■ Read program registers
Execute
■ Compute value or address
Memory
■ Read or write data
Write Back
■ Write program registers
PC
■ Update program counter

�23

Instruction
memory

Instruction
memory

PC
increment

PC
increment

CCCC
ALUALU

Data
memory

Data
memory

Fetch

Decode

Execute

Memory

Write back

icode, ifun
rA , rB

valC

Register
file

Register
file

A B
M

E

Register
file

Register
file

A B
M

E

PC

valP

srcA, srcB
dstA, dstB

valA, valB

aluA, aluB

Cnd

valE

Addr, Data

valM

PC
valE , valM

newPC

Carnegie Mellon

Stage Computation: Arith/Log. Ops

�24

OPq rA, rB

OPq rA, rB 6 fn rA rB

Carnegie Mellon

Stage Computation: Arith/Log. Ops

�24

OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

OPq rA, rB 6 fn rA rB

Carnegie Mellon

Stage Computation: Arith/Log. Ops

�24

OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

OPq rA, rB 6 fn rA rB

Carnegie Mellon

Stage Computation: Arith/Log. Ops

�24

OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB OP valA
Set CC

Execute Perform ALU operation
Set condition code register

OPq rA, rB 6 fn rA rB

Carnegie Mellon

Stage Computation: Arith/Log. Ops

�24

OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB OP valA
Set CC

Execute Perform ALU operation
Set condition code register

 Memory

OPq rA, rB 6 fn rA rB

Carnegie Mellon

Stage Computation: Arith/Log. Ops

�24

OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB OP valA
Set CC

Execute Perform ALU operation
Set condition code register

 Memory
R[rB] ← valE

Write
back

Write back result

OPq rA, rB 6 fn rA rB

Carnegie Mellon

Stage Computation: Arith/Log. Ops

�24

OPq rA, rB
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]

valP ← PC+2

Fetch

Read instruction byte
Read register byte

Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB OP valA
Set CC

Execute Perform ALU operation
Set condition code register

 Memory
R[rB] ← valE

Write
back

Write back result

PC ← valPPC update Update PC

OPq rA, rB 6 fn rA rB

Carnegie Mellon

Stage Computation: rmmovq

�25

rmmovq rA, D(rB)

rmmovq rA, D(rB) 4 0 rA rB D

Carnegie Mellon

Stage Computation: rmmovq

�25

rmmovq rA, D(rB)
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
valC ← M8[PC+2]
valP ← PC+10

Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

rmmovq rA, D(rB) 4 0 rA rB D

Carnegie Mellon

Stage Computation: rmmovq

�25

rmmovq rA, D(rB)
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
valC ← M8[PC+2]
valP ← PC+10

Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

rmmovq rA, D(rB) 4 0 rA rB D

Carnegie Mellon

Stage Computation: rmmovq

�25

rmmovq rA, D(rB)
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
valC ← M8[PC+2]
valP ← PC+10

Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB + valCExecute Compute effective address

rmmovq rA, D(rB) 4 0 rA rB D

Carnegie Mellon

Stage Computation: rmmovq

�25

rmmovq rA, D(rB)
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
valC ← M8[PC+2]
valP ← PC+10

Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB + valCExecute Compute effective address

 M8[valE] ← valAMemory Write value to memory

rmmovq rA, D(rB) 4 0 rA rB D

Carnegie Mellon

Stage Computation: rmmovq

�25

rmmovq rA, D(rB)
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
valC ← M8[PC+2]
valP ← PC+10

Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB + valCExecute Compute effective address

 M8[valE] ← valAMemory Write value to memory

Write
back

rmmovq rA, D(rB) 4 0 rA rB D

Carnegie Mellon

Stage Computation: rmmovq

�25

rmmovq rA, D(rB)
icode:ifun ← M1[PC]
rA:rB ← M1[PC+1]
valC ← M8[PC+2]
valP ← PC+10

Fetch

Read instruction byte
Read register byte
Read displacement D
Compute next PC

valA ← R[rA]
valB ← R[rB]

Decode Read operand A
Read operand B

valE ← valB + valCExecute Compute effective address

 M8[valE] ← valAMemory Write value to memory

Write
back

PC ← valPPC update Update PC

rmmovq rA, D(rB) 4 0 rA rB D

Carnegie Mellon

Stage Computation: Jumps

• Compute both addresses

• Choose based on setting of condition codes and branch condition

�26

jXX Dest

Carnegie Mellon

Stage Computation: Jumps

• Compute both addresses

• Choose based on setting of condition codes and branch condition

�26

jXX Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Fall through address

Carnegie Mellon

Stage Computation: Jumps

• Compute both addresses

• Choose based on setting of condition codes and branch condition

�26

jXX Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Fall through address

Decode

Carnegie Mellon

Stage Computation: Jumps

• Compute both addresses

• Choose based on setting of condition codes and branch condition

�26

jXX Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Fall through address

Decode

Cnd ← Cond(CC,ifun)
Execute

Take branch?

Carnegie Mellon

Stage Computation: Jumps

• Compute both addresses

• Choose based on setting of condition codes and branch condition

�26

jXX Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Fall through address

Decode

Cnd ← Cond(CC,ifun)
Execute

Take branch?
 Memory

Carnegie Mellon

Stage Computation: Jumps

• Compute both addresses

• Choose based on setting of condition codes and branch condition

�26

jXX Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Fall through address

Decode

Cnd ← Cond(CC,ifun)
Execute

Take branch?
 Memory

Write
back

Carnegie Mellon

Stage Computation: Jumps

• Compute both addresses

• Choose based on setting of condition codes and branch condition

�26

jXX Dest
icode:ifun ← M1[PC]

valC ← M8[PC+1]
valP ← PC+9

Fetch

Read instruction byte

Read destination address
Fall through address

Decode

Cnd ← Cond(CC,ifun)
Execute

Take branch?
 Memory

Write
back

PC ← Cnd ? valC : valPPC update Update PC

Carnegie Mellon

Pipeline Stages
Fetch

• Select current PC
• Read instruction
• Compute incremented PC

Decode

• Read program registers

Execute

• Operate ALU

Memory

• Read or write data memory

Write Back

• Update register file

�27

Carnegie Mellon

Real-World Pipelines: Car Washes

�28

Carnegie Mellon

Real-World Pipelines: Car Washes

�28

Sequential

Carnegie Mellon

Real-World Pipelines: Car Washes

�28

Sequential Pipelined

Carnegie Mellon

Real-World Pipelines: Car Washes

Idea

• Divide process into independent stages
• Move objects through stages in sequence
• At any given times, multiple objects being processed

�28

Sequential Pipelined

Carnegie Mellon

Pipeline Illustration

�29

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Carnegie Mellon

Pipeline Illustration

�29

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst0

Carnegie Mellon

Pipeline Illustration

�29

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst0Inst1

Carnegie Mellon

Pipeline Illustration

�29

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst0Inst1Inst2

Carnegie Mellon

Pipeline Illustration

�29

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst0Inst1Inst2Inst3

Carnegie Mellon

Pipeline Illustration

�29

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst0Inst1Inst2Inst3Inst4

Carnegie Mellon

Pipeline Illustration

�29

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst1Inst2Inst3Inst4

Carnegie Mellon

Pipeline Illustration

�29

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst2Inst3Inst4

Carnegie Mellon

Pipeline Illustration

�29

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst3Inst4

Carnegie Mellon

Pipeline Illustration

�29

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Inst4

Carnegie Mellon

Another Illustration

�30

Time

OP1
OP2
OP3

A B C
A B C

A B C

0 120 240 360 480 640

Clock

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

239

Carnegie Mellon

Time

OP1
OP2
OP3

A B C
A B C

A B C

0 120 240 360 480 640

Clock

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

241

Another Illustration

�31

Carnegie Mellon

Time

OP1
OP2
OP3

A B C
A B C

A B C

0 120 240 360 480 640

Clock

R
e
g

R
e
g

R
e
g

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb.
logic

A

Comb.
logic

B

Comb.
logic

C

Clock

300

Another Illustration

�32

Carnegie Mellon

Time

OP1
OP2
OP3

A B C
A B C

A B C

0 120 240 360 480 640

Clock

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

359

Another Illustration

�33

Carnegie Mellon

Making the Pipeline Really Work
• Control Dependencies

• What is it?
• Software mitigation: Inserting Nops
• Software mitigation: Delay Slots

• Data Dependencies

• What is it?
• Software mitigation: Inserting Nops

�34

Carnegie Mellon

!35

Control Dependency
• Definition: Outcome of instruction A determines whether or not

instruction B should be executed or not.
• Jump instruction example below:

• jne L1 determines whether irmovq $1, %rax should be
executed

• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

Carnegie Mellon

!35

Control Dependency

1

F

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

Carnegie Mellon

!35

Control Dependency

1

F

2

D
F

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

Carnegie Mellon

!35

Control Dependency

1

F

2

D
F

3

E
D

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

Carnegie Mellon

!35

Control Dependency

1

F

2

D
F

3

E
D
F

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

Carnegie Mellon

!35

Control Dependency

1

F

2

D
F

3

E
D
F

4

M
E
D

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

Carnegie Mellon

 nop

!35

Control Dependency

1

F

2

D
F

3

E
D
F

4

M
E
D
F

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

Carnegie Mellon

 nop

!35

Control Dependency

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

Carnegie Mellon

 nop

!35

Control Dependency

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

Carnegie Mellon

 nop

!35

Control Dependency

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

6

W
M
E
DD

7

W
M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM

Carnegie Mellon

Delay Slots

�36

 nop

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

 xorg %rax, %rax
jne L1

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

6

W
M
E
DD

7

W
M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM

Can we make use of
the 2 wasted slots?

Carnegie Mellon

Delay Slots

�36

 nop

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

 xorg %rax, %rax
jne L1

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

6

W
M
E
DD

7

W
M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM

Can we make use of
the 2 wasted slots?

if (cond) {
 do_A();
} else {
 do_B();
}
do_C();

Carnegie Mellon

Delay Slots

�36

 nop

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

 xorg %rax, %rax
jne L1

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

6

W
M
E
DD

7

W
M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM

Can we make use of
the 2 wasted slots?

if (cond) {
 do_A();
} else {
 do_B();
}
do_C();

Have to make sure do_C doesn’t
depend on do_A and do_B!!!

Carnegie Mellon

Delay Slots

�37

 nop

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

 xorg %rax, %rax
jne L1

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

6

W
M
E
DD

7

W
M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM

Can we make use of
the 2 wasted slots?

do_C();
if (cond) {
 do_A();
} else {
 do_B();
}

A less obvious
example

Carnegie Mellon

Delay Slots

�37

 nop

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

 xorg %rax, %rax
jne L1

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

6

W
M
E
DD

7

W
M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM

Can we make use of
the 2 wasted slots?

do_C();
if (cond) {
 do_A();
} else {
 do_B();
}

add A, B
or C, D
sub E, F
jle 0x200
add A, C

A less obvious
example

Carnegie Mellon

Delay Slots

�37

 nop

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

 xorg %rax, %rax
jne L1

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

6

W
M
E
DD

7

W
M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM

Can we make use of
the 2 wasted slots?

do_C();
if (cond) {
 do_A();
} else {
 do_B();
}

add A, B
or C, D
sub E, F
jle 0x200
add A, C

A less obvious
example

add A, B
sub E, F
jle 0x200
or C, D
add A, C

Carnegie Mellon

Delay Slots

�37

 nop

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

 xorg %rax, %rax
jne L1

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

6

W
M
E
DD

7

W
M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM

Can we make use of
the 2 wasted slots?

do_C();
if (cond) {
 do_A();
} else {
 do_B();
}

add A, B
or C, D
sub E, F
jle 0x200
add A, C

A less obvious
example

add A, B
sub E, F
jle 0x200
or C, D
add A, C

Why don’t we move
the sub instruction?

Carnegie Mellon

Resolving Control Dependencies
• Software Mechanisms

• Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

• Delay slot: insert instructions that do not depend on the effect
of the preceding instruction. These instructions will execute
even if the preceding branch is taken — old RISC approach

• Hardware mechanisms

• Stalling (Think of it as hardware automatically inserting nops)
• Branch Prediction
• Return Address Stack

!38

