CSC 252: Computer Organization Fall 2021: Lecture 11

Processor Architecture: Circuits

Instructor: Alan Beadle

Department of Computer Science University of Rochester

Announcements

Assignment 3 out!

Midterm will be 3 weeks from today (Monday 10/25)

- Can include things discussed on Monday 10/18
- Format based on previous exams, new questions
- Open book, unlimited notes, no electronics
- Recommend making your own condensed note sheet (helps with learning, and faster to find things)

So far in 252...

Today: Circuits Basics

- Basics
- Circuits for computations
- Circuits for storing data

Overview of Circuit-Level Design

- Fundamental Hardware Requirements
 - Communication: How to get values from one place to another. Mainly three electrical **wires**.
 - Computation: transistors. Combinational logic.
 - Storage: transistors. Sequential logic.
- Circuit design is often abstracted as logic design

Today: Circuits Basics

- Transistors
- Circuits for computations
- Circuits for storing data

NOR Gate (NOT + OR)

Α	В	С
0	0	1
0	1	0
1	0	0
1	1	0

Basic Logic Gates

NOR

AND

NAND

- Outputs are Boolean functions of inputs
- Respond continuously to changes in inputs with some small delay
- Different gates have different delays (b/c different transistor combinations)

- Outputs are Boolean functions of inputs
- Respond continuously to changes in inputs with some small delay
- Different gates have different delays (b/c different transistor combinations)

- Outputs are Boolean functions of inputs
- Respond continuously to changes in inputs with some small delay
- Different gates have different delays (b/c different transistor combinations)

- Outputs are Boolean functions of inputs
- Respond continuously to changes in inputs with some small delay
- Different gates have different delays (b/c different transistor combinations)

Combinational Circuits

- A Network of Logic Gates
 - Continuously responds to changes on primary inputs
 - Primary outputs become (after some delay) Boolean functions of primary inputs

- What's the delay of this bit equal circuit?
 - Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, and 2-input OR takes 4.7

- What's the delay of this bit equal circuit?
 - Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, and 2-input OR takes 4.7

- What's the delay of this bit equal circuit?
 - Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, and 2-input OR takes 4.7
- The delay of a circuit is determined by its "critical path"
 - The path between an input and the output that the maximum delay
 - Estimating the critical path delay is called static timing analysis

- What's the delay of this bit equal circuit?
 - Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, and 2-input OR takes 4.7
- The delay of a circuit is determined by its "critical path"
 - The path between an input and the output that the maximum delay
 - Estimating the critical path delay is called static timing analysis

64-bit Equality

64-bit Equality

Bit-Level Multiplexor (MUX)

- Control signal s
- Data signals A and B
- Output A when s=1, B when s=0

Bit-Level Multiplexor (MUX)

- Control signal s
- Data signals A and B
- Output A when s=1, B when s=0

bool out = (s&&a) || (!s&&b)
Bit-Level Multiplexor (MUX)

- Control signal s
- Data signals A and B
- Output A when s=1, B when s=0

bool out = (s&&a) || (!s&&b)

- Control signal s; Data signals A, B, C, and D
- Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

- Control signal s; Data signals A, B, C, and D
- Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

- Control signal s; Data signals A, B, C, and D
- Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

- Control signal s; Data signals A, B, C, and D
- Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

- Control signal s; Data signals A, B, C, and D
- Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

• The number of inputs of a gate (fan-in) and the number of outputs of a gate (fan-out) will affect the gate delay.

- The number of inputs of a gate (fan-in) and the number of outputs of a gate (fan-out) will affect the gate delay.
- Think of logic gates as LEGOs, using which you generate the gate level circuit design for complex functionalities.

- The number of inputs of a gate (fan-in) and the number of outputs of a gate (fan-out) will affect the gate delay.
- Think of logic gates as LEGOs, using which you generate the gate level circuit design for complex functionalities.
- A standard cell library is a collection of well defined and appropriately characterized logic gates (delay, operating voltage, etc.) that can be used to implement a digital design.

- The number of inputs of a gate (fan-in) and the number of outputs of a gate (fan-out) will affect the gate delay.
- Think of logic gates as LEGOs, using which you generate the gate level circuit design for complex functionalities.
- A standard cell library is a collection of well defined and appropriately characterized logic gates (delay, operating voltage, etc.) that can be used to implement a digital design.
- The *logic synthesis tool* will automatically generate the "best" gate-level implementation of a piece of logic.

- The number of inputs of a gate (fan-in) and the number of outputs of a gate (fan-out) will affect the gate delay.
- Think of logic gates as LEGOs, using which you generate the gate level circuit design for complex functionalities.
- A standard cell library is a collection of well defined and appropriately characterized logic gates (delay, operating voltage, etc.) that can be used to implement a digital design.
- The *logic synthesis tool* will automatically generate the "best" gate-level implementation of a piece of logic.
- Take a Logic Design or Very Large Scale Integrated-Circuit (VLSI) course if you want to know more about circuit design.
 - Logic design uses the gate-level abstractions
 - VLSI tells you how the gates are implemented at transistor-level

Full (1-bit) Adder

Add two bits and carry-in, produce one-bit sum and carry-out.

Α	В	\mathbf{C}_{in}	S	C _{ou}
				t
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full (1-bit) Adder

Add two bits and carry-in, produce one-bit sum and carry-out.

S = (~A & ~B & C_{in}) | (~A & B & ~C_{in}) (A & ~B & ~C_{in}) (A & B & C_{in}) $C_{ou} = (~A \& B \& C_{in})$ (A & ~B & C_{in}) (A & B & ~C_{in}) (A & B & C_{in})

	Α	В	\mathbf{C}_{in}	S	\mathbf{C}_{ou}
_					t
	0	0	0	0	0
	0	0	1	1	0
	0	1	0	1	0
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	1	0	0	1
	1	1	1	1	1

1-bit Full Adder

Add two bits and carry-in, produce one-bit sum and carry-out.

C_{ou} = (~A & B & C_{in}) | (A & ~B & C_{in}) | (A & B & ~C_{in}) | (A & B & C_{in})

1-bit Full Adder

Add two bits and carry-in, produce one-bit sum and carry-out.

A

C_{ou} = (~A & B & C_{in}) | (A & ~B & C_{in}) | (A & B & ~C_{in}) | (A & B & C_{in})

В

1-bit Full Adder

Add two bits and carry-in, produce one-bit sum and carry-out.

В

Four-bit Adder

Four-bit Adder

- Ripple-carry Adder
 - Simple, but performance linear to bit width

Four-bit Adder

- Ripple-carry Adder
 - Simple, but performance linear to bit width
- Carry look-ahead adder (CLA)
 - Generate all carriers simultaneously

Arithmetic Logic Unit

- An ALU performs multiple kinds of computations.
- The actual computation depends on the selection signal s.
- Also sets the condition codes (status flags)
- For instance:
 - X + Y when s == 00
 - X Y when s == 01
 - X & Y when s == 10
 - X ^ Y when s == 11
- How can this ALU be implemented?

Arithmetic Logic Unit

- Implement 4 different circuits, one for each operation.
- Then use a MUX to select the results

Today: Circuits Basics

- Transistors
- Circuits for computations
- Circuits for storing data

- Assembly programs set architecture (processor) states.
 - Register File
 - Status Flags
 - Memory
 - Program Counter

- Assembly programs set architecture (processor) states.
 - Register File
 - Status Flags
 - Memory
 - Program Counter
- Every state is essentially some bits that are stored/loaded.

- Assembly programs set architecture (processor) states.
 - Register File
 - Status Flags
 - Memory
 - Program Counter
- Every state is essentially some bits that are stored/loaded.
- Think of the program execution as an FSM.

- Assembly programs set architecture (processor) states.
 - Register File
 - Status Flags
 - Memory
 - Program Counter
- Every state is essentially some bits that are stored/loaded.
- Think of the program execution as an FSM.
- The hardware must provide mechanisms to load and store bits.

- Assembly programs set architecture (processor) states.
 - Register File
 - Status Flags
 - Memory
 - Program Counter
- Every state is essentially some bits that are stored/loaded.
- Think of the program execution as an FSM.
- The hardware must provide mechanisms to load and store bits.
- There are many different ways to store bits. They have trade-offs.

Build a 1-Bit Storage

- What I would like:
 - D is the data I want to store (0 or 1)
 - C is the control signal
 - When C is 1, Q becomes D (i.e., storing the data)
 - When C is 0, Q doesn't change with D (data stored)

Bistable Element

Q+ *continuously* outputs q.

Storing and Accessing 1 Bit

q = 0 or 1

Storing and Accessing 1 Bit

Bistable Element

q = 0 or 1

Bistable Element

q = 0 or 1

Bistable Element

q = 0 or 1

Setting Q+ to 1

Setting Q+ to 1

Setting Q+ to 1

Setting Q+ to 0

Setting Q+ to 1

Setting Q+ to 0

Setting Q+ to 1

Setting Q+ to 0

Bistable Element

q = 0 or 1

Setting Q+ to 1

Setting Q+ to 0

Q+ value unchanged i.e., stored!

Bistable Element

q = 0 or 1

Setting Q+ to 1

Setting Q+ to 0

Q+ value unchanged i.e., stored!

Bistable Element

q = 0 or 1

If R and S are different, Q+ is the same as S

If R and S are different, Q+ is the same as S

If R and S are different, Q+ is the same as S

If R and S are different, Q+ is the same as S

Q+ will continuously change as d changes

If R and S are different, Q+ is the same as S

Storing Data (Latching)

Q+ will continuously change as d changes

If R and S are different, Q+ is the same as S

Storing Data (Latching)

Q+ will continuously change as d changes

If R and S are different, Q+ is the same as S

Storing Data (Latching)

Q+ will continuously change as d changes

Q+ doesn't change with d

If R and S are different, Q+ is the same as S

Storing Data (Latching)

Holding Data

Q+ will continuously change as d changes

Q+ doesn't change with d

If R and S are different, Q+ is the same as S

Storing Data (Latching)

Holding Data

Q+ will continuously change as d changes

Q+ doesn't change with d

Latching

Latching

Latching

Latching

Latching

Latching

Latching

Latching

Changing D

When you want to store d, you have to first set C to 1, and then set d

Latching

- When you want to store d, you have to first set C to 1, and then set d
- There is a propagation delay of the combinational circuit from D to Q+ and Q-. So hold C for a while until the signal is fully propagated

Latching

- When you want to store d, you have to first set C to 1, and then set d
- There is a propagation delay of the combinational circuit from D to Q+ and Q-. So hold C for a while until the signal is fully propagated
- Then set C to 0. Value latched depends on value of D as C goes to 0

Latching

- When you want to store d, you have to first set C to 1, and then set d
- There is a propagation delay of the combinational circuit from D to Q+ and Q-. So hold C for a while until the signal is fully propagated
- Then set C to 0. Value latched depends on value of D as C goes to 0
- D-latch is *transparent* when **C** is 1

Latching

- When you want to store d, you have to first set C to 1, and then set d
- There is a propagation delay of the combinational circuit from D to Q+ and Q-. So hold C for a while until the signal is fully propagated
- Then set C to 0. Value latched depends on value of D as C goes to 0
- D-latch is *transparent* when **C** is 1
- D-latch is "*level-triggered*" b/c **Q** changes as the voltage level of **C** rises.

