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Abstract—Existing methods in the semantic computer vision
community seem unable to deal with the explosion and richness
of modern, open-source and social video content. Although
sophisticated methods such as object detection or bag-of-words
models have been well studied, they typically operate on low level
features and ultimately suffer from either scalability issues or a
lack of semantic meaning. On the other hand, video supervoxel
segmentation has recently been established and applied to large
scale data processing, which potentially serves as an intermediate
representation to high level video semantic extraction. The
supervoxels are rich decompositions of the video content: they
capture object shape and motion well. However, it is not yet
known if the supervoxel segmentation retains the semantics
of the underlying video content. In this paper, we conduct a
systematic study of how well the action and actor semantics are
retained in video supervoxel segmentation. Our study has human
observers watching supervoxel segmentation videos and trying to
discriminate both actor (human or animal) and action (one of
eight everyday actions). We gather and analyze a large set of
640 human perceptions over 96 videos in 3 different supervoxel
scales. Our ultimate findings suggest that a significant amount
of semantics have been well retained in the video supervoxel
segmentation.

I. INTRODUCTION

We are drowning in video content—YouTube, for example,
receives 72 hours of video uploaded every minute. In many
applications, there is so much video content that a sufficient
supply of human observers to manually tag or annotate the
videos is unavailable. Furthermore, it is widely known that
the titles and tags on the social media sites like Flickr and
YouTube are noisy and semantically ambiguous [1]. Automatic
methods are needed to index and catalog the salient content
in these videos in a manner that retains the semantics of the
content to facilitate subsequent search and ontology learning
applications.

However, despite recent advances in computer vision, such
as the deformable parts model for object detection [2], the
scalability as the semantic space grows remains a challenge.
For example, the state of the art methods on the ImageNet
Large Scale Visual Recognition Challenge [3] have accuracies
near 20% [4] and a recent work achieves a mean average
precision of 0.16 on a 100,000 class detection problem [5],
which is the largest such multi-class detection model to date.
To compound this difficulty, these advances are primarily on
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Fig. 1. Example output of the streaming hierarchical supervoxel method
[11]. From left to right columns are frames uniformly sampled from a video.
From top to bottom rows are: the original RGB video, the fine segmentation
(low level in the hierarchy), the medium segmentation (middle level in the
hierarchy), and the coarse segmentation (high level in the hierarchy).

images and not videos. Methods in video analysis, in contrast,
still primarily rely on low-level features [6], such as space-time
interest points [7], histograms of oriented 3D gradients [8],
or trajectories [9]. These low-level methods cannot guarantee
retention of any semantic information and subsequent indices
likewise may struggle to mirror human visual semantics. More
recently, a high-level video feature, called Action Bank [10],
explicitly represents a video by embedding it in a space
spanned by a set, or bank, of different individual actions.
Although some semantic transfer is plausible with this Action
Bank, it is computationally intensive and struggles to scale
with the size of the semantic space; it is also limited in its
ability to deduce viewpoint invariant actions.

In contrast, segmentation of the video into spatiotemporal
regions with homogeneous character, called supervoxels, has
a strong potential to overcome these limitations. Supervoxels
are significantly fewer in number than the original pixels
and frequently surpass the low-level features as well, and yet
they capture strong features such as motion and shape, which
can be used in retention of the semantics of the underlying
video content. Figure 1 shows an example supervoxel seg-
mentation. Furthermore, results in the visual psychophysics



literature demonstrate that higher order processes in human
perception rely on shape [12] and boundaries [13]–[15]. For
instance, during image/video understanding, object boundaries
are interpolated to account for occlusions [13] and deblurred
during motion [15]. However, the degree to which the human
semantics of the video content are retained in the final segmen-
tation is unclear. Ultimately, a better understanding of semantic
retention in video supervoxel segmentation could pave the way
for the future of automatic video understanding methods.

To that end, we conduct a systematic study of how well
the action and actor semantics in moving video are retained
through various supervoxel segmentations. Concretely, we
pose and answer the following five questions:

1) Do the segmentation hierarchies retain enough informa-
tion for the human perceiver to discriminate actor and
action?

2) How does the semantic retention vary with density of
the supervoxels?

3) How does the semantic retention vary with actor?
4) How does the semantic retention vary with static versus

moving background?
5) How does response time vary with action?
Our study presents novice human observers with supervoxel

segmentation videos (i.e., not RGB color videos but supervoxel
segmentation videos of RGB color videos) and asks them to,
as quickly as possible, determine the actor (human or animal)
and the action (one of eight everyday actions such as walking
and eating). The system records these perceptions as well as
the response time for them and then scores whether or not
they match the ground truth perception; if so, then we consider
that the semantics of the actor/action have been retained in the
supervoxel segmentation. We systematically conduct the study
with a cohort of 20 participants and 96 videos. Ultimately, our
results indicate that a significant amount of semantics have
been retained in the supervoxel segmentation.

The paper is organized as follows. Section II provides
the background on video supervoxel segmentation. Section
III describes the details of the data set acquisition and the
experiment setup. Finally, Section IV presents the results and
our analysis thereof.

II. VIDEO SUPERVOXEL SEGMENTATION

A. Supervoxel Definition

Perceptual grouping of pixels into roughly homogeneous
and more computationally manageable regions, called su-
perpixels, has become a staple of early image processing
[16], [17]. Supervoxels are the video analog to the image
superpixels. Recently, supervoxel segmentation has risen as
a plausible step in early video processing [11], [18]–[20].
Consider the following general mathematical definition of
supervoxels, as given in [20]. Given a 3D lattice Λ3 composed
by voxels (pixels in a video), a supervoxel s is a subset of
the lattice s ⊂ Λ3 such that the union of all supervoxels
comprises the lattice and they are pairwise disjoint:

⋃
i si =

Λ3 ∧ si
⋂
sj = ∅ ∀i, j pairs.

Although the lattice Λ3 itself is indeed a supervoxel segmen-
tation, it is far from a so-called good one [20]. Typical algo-
rithms seek to enforce principles of spatiotemporal grouping—
proximity, similarity and continuation—from classical Gestalt
theory [21], [22], boundary preservation, and parsimony. From
the perspective of machine vision, the main rationale behind
supervoxel oversegmentation is two fold: (1) voxels are not
natural elements but merely a consequence of the discrete
sampling of the digital videos and (2) the number of voxels is
very high, making many sophisticated methods computation-
ally infeasible. Therefore, supervoxels serve as an important
data representation of a video, such that various image/video
features may be computed on the supervoxels, including color
histograms, textons, etc.

B. Streaming Hierarchical Supervoxel Method

We use the state of the art streaming hierarchical supervoxel
method by Xu et al. [11] to generate a supervoxel segmentation
hierarchy S = {S1,S2, . . . ,SH} of an input video V , where
Sh =

⋃
i si, h ∈ {1, 2, . . . ,H} is the supervoxel segmentation

at level h in the hierarchy 1. The method obtains the hierar-
chical segmentation result S by minimizing:

S∗ = argmin
S

E(S|V) , (1)

where the objective criterion E(·|·) is defined by the minimum
spanning tree method in [23]. For example, for the hth level
in the hierarchy, the objective criterion is defined as:

E(Sh|V) = τ
∑
s∈Sh

∑
e∈MST(s)

w(e) +
∑

s,t∈Sh

min
e∈<s,t>

w(e) ,

(2)

where, MST(s) denotes the minimum spanning tree (of voxels
or supervoxels from the previous fine level in the hierarchy)
in the supervoxel s, e is the edge defined by the 3D lattice Λ3,
w(e) is the edge weight, and τ is a parameter that balances the
two parts. The edge weight w(e) captures the color differences
of voxels. By minimizing Equation 1, the algorithm ultimately
outputs a supervoxel segmentation hierarchy of the original
input RGB video.

Figure 1 shows a hierarchical supervoxel segmentation
produced by [11]. The segmentations from top to bottom rows
are sampled from low, middle, and high levels in a supervoxel
segmentation hierarchy, which have fine, medium and coarse
segments respectively. Each supervoxel has a unique color and
we randomly color the output supervoxels in one level with
the constraint that the same color is not shared by different
supervoxels. In general, we allow reuse of colors in different
levels in the segmentation hierarchy, since they are not used
in a single run of experiment in this work.

C. Supervoxels: Rich Decompositions of RGB Videos

Considering the example in Figure 1, we observe that the
hierarchy of the supervoxel segmentation captures different
levels of semantics of the original RGB video. For example,

1The superscript of si is omitted for clarity.



Time
RG

B
Se

gm
en

ta
tio

n
Bo

un
da

ry
ST

IP
O

pt
ica

l F
lo

w

Fig. 2. A comparison of different video feature representations. From top to
bottom rows are: the RGB video, the supervoxel segmentation [11], extracted
boundaries of supervoxel segmentation, space-time interest points [7], and
optical flow [24].

one tends to recognize the humans easier from coarser levels in
the hierarchy, since they are captured by fewer supervoxels;
however, the coarser levels lose the detailed content in the
video, such as the woman in the painting hanging on the wall,
which is still captured at the medium level.

Comparing with other features, such as optical flow [24]
and space-time interest points (STIP) [7], which are frequently
used in video analysis [6], the supervoxel segmentation seems
to retain more semantics of the RGB video (in this paper we
seek to quantify how many of these semantics are retained
for one set of actions and actors). Figure 2 shows a visual
comparison among those features. STIP uses the sampled
points as the data representation—this is not the full STIP
representation, which also measures gradient information—
and optical flow is viewed as vectors from voxels.

By only watching the feature videos of STIP and optical
flow, as shown in the bottom two rows of Figure 2, it seems
unlikely that humans could recover the content of a video,
especially when there is little motion in a video. On the other
hand, one can easily recover the content of a video by watching
the supervoxel segmentation video, likely due to the fact that
the supervoxel segmentation retains the shape of the objects
(boundaries of the supervoxel segmentation are also shown
in the third row of Figure 2). Zitnick and Parikh [25] show
that the segmentation boundaries are in general better than
classical edge detection methods, such as canny edge [26], for
automatic image understanding, and they perform as well as
humans using low-level cues. The precise goal of this paper is
to explore exactly how much semantic content, specifically
the actor (human or animal) and the action, is retained in
the supervoxel segmentation. We describe the experiment and
results in the next two sections.

III. EXPERIMENT SETUP

We have set up a systematic experiment to study actor and
action semantics retention in the supervoxel segmentation. By
actor we simply mean human or animal. For action, we include
a set of eight actions: climbing, crawling, eating, flying,
jumping, running, spinning and walking. We have gathered
a complete set of videos (Section III-A) and processed them
through the segmentation algorithm (Section II). Then, we
show the segmentation videos to human observers and request
them to make a forced-choice selection of actor and action
(Section III-C). Finally, we analyze the aggregate results over
the full data cohort and quantify the retention of semantics
(Section IV).

A. Data Set

1) Data Collection: We have collected a data set with
two kinds of actors (humans and animals) performing eight
different actions: climbing, crawling, eating, flying, jumping,
running, spinning and walking. We only include animals that
frequently appear in (North American) daily life, such as dogs,
cats, birds, squirrels and horses. The backgrounds of the videos
fall into two categories: static (relatively static objects such as
ground and buildings with little camera changes) and moving
(moving objects in the background, such as in a traffic or
dramatic camera changes). A complete RGB video data set
consists of 32 videos in total (2 actors × 8 actions × 2
background types = 32). Figure 3 shows a snapshot of the
RGB videos we collected.

Each video is about four seconds long and the actor starts
the action immediately after the video plays. We, however,
show the videos at half-frame-rate when conducting the exper-
iment to allow ample response time for the human participants.
We have attempted to exclude those videos that have ambiguity
with either the actors or the actions, and only use videos
that have a major actor performing one single action. For
example, a disqualified human jumping video usually contains
the running before jumping. But, some ambiguity remains
due to the general complexity of dynamic video. The data
set used in this paper is a complete data set having a single
video for each actor, action and background type tuple. All
videos were downloaded from public “wild” repositories, such
as YouTube.2

For each of the RGB videos, we use the method described in
Section II-B to obtain a supervoxel segmentation hierarchy. We
first use ffmpeg to resize the videos to 320x240 maintaining
the original aspect ratio. Then, we run the gbh stream program
(LIBSVX version 2.03) with the following parameters: c:
0.2, c_reg: 10, min: 20, sigma: 0.4, range: 10,
hie_num: 30. Note that c and c_reg map to τ in Eq. 2
(c is used at the first level and c_reg is used at all other
hierarchy levels).

We sample three different levels (fine: 8th level, medium:
16th level, coarse: 24th level) from the hierarchy, similar

2Contact the authors if you want a copy of the data set.
3http://www.cse.buffalo.edu/∼jcorso/r/supervoxels/
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Fig. 3. A snapshot of the RGB videos in our data set. The actors in the top two rows are humans and in the bottom two rows are animals. The data set
consists of two kinds of actors, eight actions and two types of background settings, resulting in a total of 32 videos.

as in Figure 1. Therefore, the full set of data we used to
run the semantic retention experiment is the 96 supervoxel
segmentation videos. Note that the audio is disabled, so
that the participants only have the vision perception of the
supervoxel segmentation videos (and never the RGB videos).

2) Data Split: We create a threeway split of the 96 videos
into three sets: alpha, beta and gamma. Since each of the
original 32 videos is represented in three levels of the hierar-
chy, it is imperative to make the threeway split and thereby
avoid one participant seeing the same video twice but on two
different supervoxel hierarchy levels. So, each of alpha, beta
and gamma have the full 32 videos, but on different hierarchy
levels (and uniformly varying over levels in each of the three
splits). Based on the ordering in the database, alpha will start
with one level (say coarse) in the hierarchy, then beta will
have the next (medium) and gamma the third (fine) for one
original RGB video. For the next original RGB video, it will
rotate, so that alpha has the next level (now medium), beta the
next (fine) and gamma will wrap around to the first (coarse)
again. This repeats through all 96 supervoxel videos. Before
the videos are shown to the participant, the order of the videos
is shuffled, so that the participant cannot deduce the contents
based on an ordering of the videos (like human human human
... animal animal animal).

B. Study Cohort

The study cohort is 20 college-age participants. To ensure
generality, we exclude those students who are studying video
segmentation (and hence may have already developed an
eye for semantic content in supervoxel segmentations). Each
participant is shown one split of the videos (alpha, beta or
gamma). And each participant sees a given video only once.
Participants never see the input RGB videos.

Select Action

Select Actor

Fig. 4. A snapshot of the user interface for the experiment.

C. Human User Interface and Instructions

The user interface is web-based. Figure 4 shows a snapshot
of it. The left part of the participant’s screen is the supervoxel
segmentation video and the right part of the participant’s
screen comprises two sets of buttons that allow the user to
choose either human or animal as the actor, and to choose one
of the eight actions. The participant has the option to choose
unknown (the option “Don’t know act or actor” is shown in the
center of the select action area in Figure 4). Such an unknown
option prevents the participant from random selection.

Initially, when the participant starts the experiment, the left
part of the screen is blank and buttons on the right side are
deactivated (grayed out); once the next video in their split
is downloaded locally, it prompts the user with a “ready”
message. As soon as the participant presses the space key,
it starts to show the supervoxel segmentation video and the
interface triggers a timer that records the response time of the
participant. The participant is required to respond by pressing



the space key again as soon as he or she captured enough
information to reach a decision (i.e., knows the actor and
action in the supervoxel video). The amount of time between
these two space key pressing is recorded as one’s response
time. After this second space key is hit, the buttons on the
right side are activated and ready for the participant to select
them. The participant can only watch the video once, which
means once the video reaches the end, the participant is forced
to make a decision (or choose unknown) without the option to
watch it again. In this case, the whole video time is recorded
as one’s response time. This process is repeated for each video
in the split (alpha, beta or gamma) until the end.

Before a participant begins, s/he is instructed briefly as to
the nature of the experiment (trying to recognize the actor
and action in a supervoxel video) and walked through the
user interface. They are instructed that time is recorded and
important; they should hence stop the video as soon as they
know the answer. They are not shown any example supervoxel
video before the experiment starts.

IV. RESULTS AND ANALYSIS

The response of a single video by one participant is defined
as a supervoxel perception: < actor, action, response time >.
In total, we have 640 supervoxel perceptions collected (32
videos in each split × 20 participants). The original RGB
videos are used as the ground truth data to measure the match
of the supervoxel perceptions. We also measure the response
time of the participants for both matched perceptions and un-
matched perceptions. Our analysis is organized systematically
according to five key questions regarding semantic retention.

A. Do the segmentation hierarchies retain enough information
for the human perceiver to discriminate actor and action?

1) Actor discrimination: Table I shows a confusion matrix
of the actor discrimination. As high as 86% of the supervoxel
perception correctly identifies the human actors, 78% for the
animal actors, and in average 82% for actors in general. We
also note that participants tend to choose the unknown option
when they are less confident of the supervoxel segmentation.
There is only a small portion of unmatched perceptions 3% and
5% that mistake human as animal or vice versa. This is hence
strong evidence showing that the supervoxel segmentation
indeed has the ability to retain the actor semantics from the
original RGB videos. We suspect this binary discrimination
performance is so high because the data cohort includes videos
with one dominant actor and the human participant is able
to localize this actor with the supervoxel motion information
and then use the supervoxel shape information to determine
human or animal. We suspect the reason why the supervoxel
perception of animal actors is less than that of human actors
is because the animals in the data set vary more broadly in
relative location and orientation than the humans do.

2) Action discrimination: Table II shows a confusion ma-
trix of the action discrimination. The top three scoring actions
are climbing (90%), running (79%), and eating (76%), while
the bottom three ones are walking (57%), jumping (57%), and

TABLE I
CONFUSION MATRIX FOR ACTOR DISCRIMINATION.

0 0 0

0.11 0.86 0.03

0.17 0.05 0.78

unknown

human

animal

un hu an

TABLE II
CONFUSION MATRIX FOR ACTION DISCRIMINATION.

0 0 0 0 0 0 0 0 0

0.11 0.57 0.12 0.12 0 0.01 0.01 0.04 0

0.15 0.06 0.65 0.03 0 0 0.01 0.04 0.06

0.01 0.07 0.07 0.79 0.04 0 0 0.01 0

0.19 0.01 0.04 0.09 0.57 0 0 0.01 0.09

0.19 0 0 0 0 0.76 0.04 0 0.01

0.06 0.01 0 0 0.03 0 0.90 0 0

0.20 0.03 0 0.06 0.01 0 0.01 0.69 0

0.19 0.03 0.01 0 0.01 0.01 0.03 0.03 0.70

unknown

walking

spinning

running

jumping

eating

climbing

crawling

flying

un wl sp rn jm ea cl cr fl

spinning (65%). On average, 70.4% of supervoxel perceptions
correctly match the actions. Of the lower performing actions,
only walking has been easily confused with the other actions
(12% to spinning and 12% to running, which may be due to
semantic ambiguity—see the example of the human walking
in the spinning wheel in Figure 9); jumping and spinning
have more unknowns (19% and 15% respectively) rather than
being confused with other actions. An interesting point to
observe is that running and climbing are perceived unknown
significantly fewer than the other six actions. We suspect this
is due to the dominant unidirectional motion of these two
actions. Overall, this is more strong evidence that suggests the
supervoxel segmentation can well retain the action semantics
from the original RGB videos.

B. How does the semantic retention vary with density of the
supervoxels?

Following the discussion of supervoxel hierarchy in Section
II-C, we seek to understand how the supervoxel size influences
retention of action and actor semantics. Recall that we sampled
three levels from the supervoxel hierarchy to obtain fine,
medium and coarse level supervoxel segmentations. Figure 5
shows the overall performance of the supervoxel perception
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Fig. 5. The performance of supervoxel semantic retention of actor and action
on three levels from the supervoxel segmentation hierarchy: fine, medium and
coarse. The percentages on top are computed when both the actor and action
of supervoxel perception are correctly matched to ground truth. The middle
and bottom rows are the response time figures when the supervoxel perception
is correctly matched and incorrectly matched respectively.

on different levels. The percentage of correctly matched su-
pervoxel perceptions increases when the size of supervoxels
grows, suggesting that coarse segmentations more readily
retain the semantics of the action and that even coarser seg-
mentations could perform better (i.e., the perfect segmentation
of the actor performing the action would likely perform best).
A second plausible explanation is that for actor and action
discrimination the finer details in the other levels are unlikely
to be needed.

We also show study of the response time in Figure 5.
Here, we plot the density of responses (horizontal axis is
time, at half-frame-rate; vertical axis is density). The blue
bars are a simple histogram and the red curve is a Gaus-
sian kernel density estimate. For correct action matches, the
response distributions are nearly equivalent, and are heavily
weighted toward the shorter end of the plot, indicating that
if the participant knows the answer then typically knows it
quickly. However, for the incorrect matches, we see different
patterns, the fine videos are peaked at about eight seconds,
which is the maximum length for most videos, indicating the
participant watched the whole video and still got the wrong
action perception. For fine videos, one expects this due to the
great number of supervoxels being perceived, which introduces
more noise. The medium and coarse scales are more uniformly
distributed (although the coarse scale also has a peak at eight
seconds), indicating that sometimes the perception was simply
wrong. This may either be due to intrinsic limitation of the
supervoxels to retain some action semantics or due to the
ambiguities of the specific videos in the data set, which,
although we did try to avoid, are present in some few cases.
Further study on this point is needed to better understand the
source of the error.

C. How does the semantic retention vary with actor?

We stratify the accuracy of the matches according to the
actor performing the action. Figure 6 shows the overall per-

Human!
75.0%!

Animal!
65.9%!

Fig. 6. Performance comparison between human actors and animal actors.
The percentages on top are computed when both the actor and action of su-
pervoxel perception are correctly matched to ground truth. The response time
plots include both correctly and incorrectly matched supervoxel perceptions.

Static!
77.2%!

Moving!
63.8%!

Fig. 7. Performance comparison between static background and moving
background. The percentages on top are computed when both the actor and
action of supervoxel perception are correctly matched to ground truth. The
response time plots include both correctly and incorrectly matched supervoxel
perceptions.

formance by human actors and animal actors. In general,
supervoxel perception of human actors has higher match than
that of animal actors. For speed, the response time of human
actors has only one peak at around three seconds, while that
of animal actors has multiple peaks, which may be due to
the greater variation in appearance of animals in the data set
than of humans. Moreover, human activity is easier to perceive
than animal as studied by Pinto and Shiffrar [27]. Considering
the result in Table I, the result in Figure 6 also suggests a
correlation between knowing the actor and recognizing the
action correctly.

D. How does the semantic retention vary with static versus
moving background?

Figure 7 shows the overall performance of the supervoxel
perception match for static background and moving back-
ground. Supervoxel perception has higher match and shorter
response time in the case of static background, as expected (the
dominant actor is more easily picked out by the participant).
The relatively “flat” curve in moving background suggests the
response time for a single video highly depends on the specific
background within that video.

E. How does response time vary with action?

Figure 8 shows the response time for the eight different
actions. From the trend of the red curves in the figure, running
and crawling get the shortest response time while the flying



Climbing Crawling Eating Flying

Jumping Running Spinning Walking

Fig. 8. Response time of eight different actions for both correctly and
incorrectly matched perceptions.

action takes longest. Bimodality in crawling is likely due to the
very simple human baby crawling video (short response time)
and very challenging cat preying video (long response time;
see Figure 9 for the example). The more general messages
behind these results are that those unusual actions such as
human flying take more time to get a response, and that those
actions whose semantics have been strongly retained (resulting
in higher match statistics, Table II) are generally responded to
more quickly than those whose semantics have less well been
retained.

F. Easy, moderate and hard videos

Finally, in Figure 9, we show montages of interesting
videos, some with high action semantic retention and others
with moderate or low retention. These top cases have distinct
shape and motion properties that are readily transferred to the
supervoxels; in the case of the running dog, the lateral motion
is very strong. In the bottom left of retention examples, we see
a cat crawling toward prey, but the cat is off-center from the
camera and the participants likely dismiss this small off-center
motion as noise for most of the video resulting in incorrect
and slow responses. On the bottom right, we see a human
walking in the spinning wheel. The human is walking; the
wheel is spinning. There is likely semantic ambiguity here
and further study is needed to understand the level and impact
of the ambiguity.

V. CONCLUSION

In this paper, we explore the degree to which actor and ac-
tion semantics are retained in video supervoxel segmentation.
We design and conduct a systematic study to answer a set of
questions related to this semantic retention. Our experiment
results indicate strong retention of actor and action semantics:
supervoxel perception achieves 82% accuracy on actor and
70% on action. The overall finding suggests that supervoxel
segmentation is a rich decomposition of the video content,
compressing the signal significantly while retaining enough
semantic information to remain discriminative.

The actor and action perception experiment we have re-
ported is in a closed-world setting. In the future, we will ex-
plore the open world problem: how much semantic information
is retained in supervoxel segmentation. We will let participants

use lingual description to describe the supervoxel perception
(such as one can recover the woman in the painting hanging
on the wall in Figure 1). We will then compare this human
perception to a machine perception using our recent video-to-
text engine [28]. We will also collect a larger number of videos
and conduct experiments with more participants to overcome
the limitation of 20 participants and 32 input videos.
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