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Abstract
Loop tiling is a compiler transformation that tailors an ap-
plication’s working set to fit in a cache hierarchy. On today’s
multicore processors, part of the hierarchy especially the last
level cache (LLC) is shared. The available cache space in
shared cache changes depending on co-run applications. Fur-
thermore on machines with an inclusive cache hierarchy, the
interference in the shared cache can cause evictions in the
private cache, a problem known as the inclusion victims.

This paper presents defensive tiling, a set of compiler
techniques to estimate the effect of cache sharing and then
choose the tile sizes that can provide robust performance
in co-run environments. The goal of the transformation is
to optimize the use of the cache while at the same time
guarding against interference. It is entirely a static technique
and does not require program profiling. The paper shows
how it can be integrated into a production-quality compiler
and evalutes its effect on a set of tililing benchmarks for
both program co-run and solo-run performance, using both
simulation and testing on real systems.

Categories and Subject Descriptors D.3.4 [Processors]:
Compilers

General Terms Performance

Keywords Loop tiling, Multicore, Cache sharing

1. Introduction
Loop tiling is a compiler optimization that reorganizes a loop
nest so it computes on data tiles whose size can be adjusted
to fit in one or more levels of cache. A basic problem in loop
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tiling is the selection of the best tile shape and size. The best
strategy in the past utilizes the most space that does not cause
data conflicts due to limited associativity (for examples in
[5, 10, 18, 25, 32, 38, 39]). However, these methods do not
consider the effect of cache sharing.

Contemporary chip multiprocessor (CMP) has greatly
improved system throughput and power efficiency. An im-
portant characteristic in CMP is cache sharing. In a typical
multi-core processor today, each core may have multiple
levels of caches used exclusively by the core, but a group of
cores would share the last level cache (LLC). Cache sharing
allows a program to use the full LLC space when no one
else is active. However, when running with other programs,
sharing leads to interference. The portion of LLC occupied
by a program’s data can be hard to ascertain. If a program
uses more than its share of cache, its performance can drop.
The problem is especially serious for a tiled program since
it depends on its data tiles residing in cache.

In this paper, we present defensive tiling to safeguard per-
formance in the presence of interference. As a starting point,
we may tile for private cache only. However, the solution is
problematic on machines with an inclusive cache hierarchy,
which includes most processor families from Intel. On these
systems, the action in the shared LLC by one program can
cause eviction in the private cache of another program.

Consider a 2-core toy machine with private L1 and shared
L2. The cache sizes are 2 and 8 blocks respectively. Suppose
we have two programs: one uses just one block a and the
other iterates over 8 other blocks. As block a stays in the
private cache, its copy in the shared cache is not accessed.
As a result of good private-cache locality, a becomes “stale”
in the shared cache. In the meanwhile, program 2 constantly
loads “fresh” data into the shared cache. After every 8 ac-
cesses, program 2 erases the old content of the shared cache
and evicts a. To maintain inclusion, a has to be purged from
program 1’s private cache as it leaves the shared cache. The
next access to a then incurs a cache miss. Following Jaleel
et al. [20], we call such a cache miss an inclusion victim.

The following example shows the co-run traces and the
private-cache misses incurred by program 1. The first miss
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Figure 1: The effect of cache interference on tiled matrix
multiply. For the tile size ranging from 0 to the size of L1
(256KB), the figure shows the private cache miss ratios of
solo execution and of co-run with another program. The best
tile size for the solo run incurs 10 times as many misses
in the co-run execution, showing the dramatic impact of
inclusion victim misses.

is compulsary (c), while the other two are inclusion victims
(v).

misses: c v v

prog. 1: a a a a a a a a a a a a a a a a a ...

prog. 2: p q u v w x y z p q u v w x y z p ...

Inclusion victim has been identified as a major factor
that limits the performance of inclusive cache, particularly
in the case of cache sharing [20]. As an optimization that
improves data locality, loop tiling magnifies the problem. As
a demonstration, we measure the number of inclusion victim
misses in a simulator when running tiled matrix multiply
with the STREAM benchmark [28] and compare it with the
solo-run of the same matrix multiplication.

Figure 1 shows the simulated miss ratios for square tile
sizes up to the size of the private L1 cache (256KB). To ease
the comparison, we link the miss ratios into curves. The best
tile size is given by the lowest point of a curve. Comparing
the two curves, we see that the best tile size differs by a factor
of 10 with and without cache interference. If we use the best
tile size from the solo run in the co-run, the program would
incur 10 times as many cache misses because of interference,
in particular, inclusion victim misses.

The figure shows the importance of considering cache in-
terference in loop tiling. On machines with inclusive cache,
it is far from sufficient to tile for the private cache. Defensive
tiling must minimize the number of inclusion victim misses,
a problem we solve in this paper. We call the program opti-
mization defensive tiling.

In the following, Section 2 describes a model of inclusion
victim misses, the compiler technique for defensive tiling, its
integration in the Open64 compiler, and a compiler analysis
of interference. Section 3 evaluates defensive tiling using
the PLUTO [3] benchmarks. The remaining sections discuss
related work and conclude.

2. Defensive Tiling
In this section we describe loop tiling, examine the new
problem of inclusion victim misses and present the tech-
niques that enable defensive tiling.

2.1 Loop Tiling
Figure 2a shows the kernel code of matrix multiplication and
Figure 2b the tiling transformation that we will use as an
example throughout this section, where N = 2048.

for(i = 0; i < N ; i = i+ 1)
for(j = 0; j < N ; j = j + 1)
for(k = 0; k < N ; k = k + 1)
C[i][j] = beta ∗ C[i][j] + alpha ∗A[i][k] ∗B[k][j];

(a) Original code

for(jj = 0; jj < N ; jj = jj +Bj)
for(kk = 0; kk < N ; kk = kk +Bk)
for(i = 0; i < N ; i = i+ 1)
for(j = jj; j < min(jj +Bj , N); j = j + 1)
for(k = kk; k < min(kk +Bk, N); k = k + 1)
C[i][j] = beta ∗ C[i][j] + alpha ∗A[i][k] ∗B[k][j];

(b) Tiled code

Figure 2: Loop tiling in matrix multiplication

The results presented in Figure 1 show the relation be-
tween loop tiling and cache performance. For ease of pre-
sentation, it shows the results for only square tiles (Bj =
Bk = B) for B from 10 to 180, with an increment of 10.
The x-axis shows the 18 data points with the tile size mea-
sured by the reuse distance of B[k][j] in i-loop from about
1KB to 256KB. In this experiment, the machine has private
8-way 256KB L1 and shared 16-way 2MB L2.

When the matrix multiplication is running alone, the L1
miss count goes down as the tile size increases, due to the
greater utilization of the L1 cache. However, the benefit di-
minishes when B grows larger than 160, and the reuse dis-
tance of B[k][j] larger than 200KB. This is due to partly ca-
pacity, not enough L1 space is left for other data, and partly
conflict, interference among data tiles. Such phenomenon is
well known.

When the same matrix multiply is co-running with a
stream benchmark, larger private-cache usage decreases the
number of misses only until B = 50 or reuse distance of
24KB, after which the miss count increases rapidly. The best
tile size occupies less than 10% of the private cache in this
co-run case, in sharp contrast to near 80% in the solo-run



case. The reason is the interference from the peer program
in the shared cache, which we model in the next section.

2.2 Inclusion Interference Modeling
The execution of a tiled program has a regular set of data
being reused: the data tiles. The program computes on them
for a duration before moving to the next set of tiles. In
general, it may access other data blocks that are not reused.
We introduce two metrics to represent this type of cache
usage:

• Reused data, which is the volume of data being reused;
• Active period, which is the duration of the time the same

collection of data is reused.

While a tiled program runs, peer programs bring their
data into the shared cache and evict the data tiles. We model
the interference using the following metric:

• Survival window, which is the time taken for co-run pro-
grams to access the amount of data equal to the size of
the shared cache.

Consider a data tile that fits inside the private cache. Its
copy in shared cache would be evicted by the end of each
survival window and has to be reloaded, incurring inclusion
victim misses in the size of the data tile. The following
example demonstrates the three metrics:

prog. 1: a a b a a c a a d a a e ...

prog. 2: p q u v w x y z p q u v ...

In the first program, the reused datum is a, which we assume
resides in private cache. Their active period is the full exe-
cution. Suppose the shared cache is of size 4. In every three
accesses by each program, the two programs together access
four blocks in the shared cache. Hence, the survival window
is 3-access long. Our model predicts that program 1 incurs a
inclusion victim miss after every 3 accesses.

In general, the following equation shows how to use
the three metrics, the active period ap(p1), the reused data
reuse(p1) of program 1, and the survival window from both
programs sw(p1 + p2), to compute the number of inclusion
victim misses in program 1 iv(p1):

iv(p1) =
ap(p1)

sw(p1 + p2)
∗ reuse(p1) (1)

The model shows that the inclusion victim misses may
happen even without a peer program. In the last example,
program 1 would still miss for a in the private cache (after
every 12 instead of 3 accesses). This suggests that defensive
tiling may improve even the solo-run performance.

The model uses the logical rather than the physical time,
which can introduce imprecsion when computing the joint
survival window. Part of the problem is the mutual interac-
tion between the co-run programs, as studied by Xiang et al.
using a recursive equation and a fixed-point solution [41]. In

this paper, we treat the interaction only qualitatively, in par-
ticular, its important effect in determining the “friendliness”
of defensive tiling as discussed at the end of Section 2.4.

The remaining problem is when we do not know the co-
run peers. In the following solution, we will add a compiler
flag for a user to specify the level of defensivenss in anticipa-
tion of the amount of interference in shared cache. This can
permit an adaptive defense strategy based on online analysis,
but this is beyond the scope of the present paper.

Next we show how to estimate the above three factors
inside a compiler, without profiling the execution of a target
program.

2.3 Compiler Enhancement of Defensiveness
The compiler design for loop tiling can be divided into two
parts. The first is the loop analysis and transformation. The
second is the cost function to select the tiling parameters.
In this work, we choose the Open64 compiler as a basis for
defensive tiling, partly because its optimizer performance is
among the best in production-quality compilers, and its loop
tiling design is highly modular. In Open64, loop tiling is a
component of the loop nest optimization (LNO), which in-
cludes a host of other transformations including loop fusion,
distribution, interchanging and unroll and jam. The strategy
for combining them is described in Wolf et al.[39] Part of the
description (Section 3.2) deals with the problem of tile-size
selection. The description is more intuitive than it is precise.
Our design is based on the current Open64 design, which we
review in detail before describing our extension.

The core of the parameter selection is a cost model which
estimates the execution speed of a loop. The overall cost
model is composed of two parts: a processor model that
estimates the effect of instruction scheduling and register
pressure, and a cache model that estimates the miss counts.

The cache model is parameterized by the tile size. For
example for the ijk loop nest of matrix multiplication in
Figure 2b, the compiler assumes that the inner j,k loops are
tiled with tile sizes Bj and Bk. The cache model is a cost
function that computes the miss count based on Bj and Bk.
The best tile sizes are found through a (binary) search to
be the ones that minimize the cost function. In this way, for
an n-level loop that can be tiled, the compiler finds the tile
sizes with a minimum cost. If some of the loop levels are
permutable, the search will also include loop interchange.

We next describe the formulas used in the cost function
and then add the inclusion-victim miss model. We will show
how to estimate the length of the active period, the amount
of reused data, and the relation with the survival window.
Once we extend the cost function to include cache interfer-
ence, defensive tiling is accomplished by the same search
procedure to find the best tile sizes.

The first step of constructing the cost function is com-
puting the footprint of each loop, that is, the volume of data
touched by one execution of the loop. For matrix multipli-
cation (Figure 2b), the footprint of i, j, and k loop are de-



noted as Fi, Fj and Fk respectively. The formulas are: Fi =
8∗(N∗Bk+Bj∗Bk+N∗Bj), Fj = 8∗(Bk+Bj∗Bk+Bj),
Fk = 8 ∗ (Bk +Bk + 1).

Next the compiler computes the cache requirement of
each loop. The requirement is actually computed for each
iteration. It is the total amount of data used by each iteration,
whether the data is reused between iterations or not. In
addition, it must include complete cache blocks, so it must
consider spatial reuse. If a cache block contains di data
elements, the requirement for loop i of matrix multiply is
as follows. Since each i iteration is a loop j, we denote the
per-iteration cache requirement of loop i as Rj :

Rj = Fj + (di − 1) ∗ Fi − Fj
N − 1

(2)

Part of the required cache space holds the reused data, in
the amount

reusej = Fj −
Fi − Fj
N

(3)

To understand the formula, notice that the footprint numbers
of Fi, Fj are not additive. The loop i hasN instances of loop
j, but Fi is smaller than N ∗ Fj . The difference is due to the
reuse of the data tile, of sizeBj∗Bk in this case. The formula
of reusej formalizes this relation.

Based on the requirement and the data reuse, the number
of cache misses for each i-loop iteration (loop j) is calcu-
lated using Equation 4 as follows.

CMj =
Fi
N

+(α∗ Ri
ecsz

+β ∗ |Ri − ecsz|
+

ecsz
)∗ reusej (4)

where ecsz is the effective cache size. The effective cache
size is a fraction of the actual size to take into account of the
fact that cache is not fully associative. The discount is based
on an empirical formula involving the cache size, cache line
size and the cache associativity.
α and β are factors used to model program induced cache

conflict and capacity misses. The former penalizes if the
cache requirement is close to the cache size. The second
penalizes if the requirement exceeds the cache size (the term
is 0 ifRi ≤ ecsz). They are computed as a fraction by which
the data reuse is not realized as cache reuse.

Now we are ready to introduce the cache interference
model. Assuming each iteration of loop i is a loop j, the
amount of data reused in private cache is reusej and the
length of the active period is the duration of loop i. The evic-
tion frequency is the ratio of the active period to the survival
window. Both terms are time and difficult to estimate inside
the compiler. Instead, we convert the time ratio into the data
ratio. In particular, we assume it is proportional to ratio of
the footprint of loop i to a fraction of the shared cache size.
The formula is given by Equation 5 as follows:

IVj =
Fi
scsz
γ

∗ reusej (5)

We should note the distinction between ecsz, which is
the effective size of the private cache, and scsz, which is
the size of the shared cache. γ is a number greater than
1. It represents the defensiveness. The larger is the num-
ber, the shorter is the survival window. Ideally, the defen-
siveness is tuned based on the co-run cache interference.
In implementation, we control γ using a compiler option
“-LNO:blocking defensiveness”. We will experimentally
study the effect of γ in Section 3.

The revised formula for the miss estimate, CM ′j is then

CM ′j = CMj + IVj (6)

Given this cost function, defensive tiling continues by search-
ing for the tile sizes that minimize CM ′j , employing loop
iterchange and other loop nest transformations as before [39].

In the above description we have used the matrix multi-
plication as an example. The main assumption is that loop j
is one iteration of loop i. The i, j distinction helps to clarify
when we describe the formulas that use both the metrics for
the loop and the metrics for one of its iterations. The formu-
las for a generic loop i are the same except that we replace
the metrics for loop j with those for an iteration of loop i.

2.4 Compiler Analysis of “Friendliness”
A program’s role in cache interference is two sided. On the
one side, it is affected by the interference from others. Jiang
et al. called it the sensitivity [21]. Defensive tiling is to min-
imize the sensitivity. The other side is the program’s inter-
ference to others. It has been called politeness and friendli-
ness [22] and niceness [35]. Various notions of friendliness
have been estimated using on-line measurements (e.g. [52]),
profiling (e.g. [42, 43] in linear and real time), and simula-
tion and modeling [34, 40].

In this section, we describe as far as we know the first
compiler analysis that estimates the friendliness. The analy-
sis is not used for defensive tiling. Still, through the analysis
we can see the impact of defensive tiling on others and iden-
tify any conflict between optimizing for defensiveness and
in the future, optimizing for friendliness.

We start with reuse distance, which has been shown
amenable to static analysis through dependence analysis [6,
7] and reuse distance equations [2]. Given a loop nest, the
reuse distance histogram shows the distribution of reuse dis-
tances. For an execution of matrix multiply, the top graph
in Figure 3 shows that one third of references have a reuse
distance of 24B, 2.4KB and 178KB respectively.

Compiler analysis produces a histogram parameterized
by the loop trip counts. For tiled matrix multiply in Fig-
ure 2b, the reuse distances for different references are given
in Table 1. The per-loop histogram is the aggregate of the
per-reference histograms.

The second step computes the (capacity) miss ratio curve
from reuse distance. Assuming that rd(c) percentage refer-
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Figure 3: Deriving the fill time (friendliness) using the reuse
distance.

ences have a reuse distance c, the miss ratiomr(c), including
both capacity and compulsary misses, is:

mr(c) = Σ∞i=c+1rd(i) (7)

The reuse distance is∞ if it is the first access to a data block.
As an example, the middle graph in Figure 3 shows the miss
rate curve for the reuse distance shown in the upper graph.

The third step computes the average inter-miss time,
which is the execution time divided by the miss count. For

Loop Array Reuse distance (in bytes)
k C[i][j] 8 ∗ 3
j A[i][k] 8 ∗ 1 + 8 ∗Bk + 8 ∗Bk
i B[k][j] 8 ∗Bj + 8 ∗Bk + 8 ∗Bk ∗Bj
kk C[i][j] 8 ∗N ∗Bj + 8 ∗N ∗Bk + 8 ∗Bk ∗Bj
jj A[i][k] 8 ∗N ∗Bj + 8 ∗N ∗N + 8 ∗N ∗Bj

Table 1: Parameterized reuse distance for tiled matrix multi-
ply in Figure 2b

static analysis, we use the logical time measured by the num-
ber of data accesses (between misses).

im(c) =
1

mr(c)
(8)

The fourth step computes the fill time vt(v), the time
taken for a program to access data in the amount of v. The fill
time is the residence time of a data block in fully-associative
LRU cache of size v, if it is not reused after the initial access.
It is also the average length of time the program takes to fill
up an empty cache.

The fill time and inter-miss time are related in the follow-
ing way. First we let a program run for vt(c) time and access
c data blocks. Then we let the program continue to run un-
til it touches a new data block. This is the time vt(c + 1).
The interval from time vt(c) to time vt(c+ 1) is the average
time before the next capacity or compulsory miss, that is, the
inter-miss time im(c). Therefore, the lifetime vt(c+ 1) can
be computed:

vt(c+ 1) = im(c) + vt(c) (9)

Using the same relation to compute vt(c), vt(c− 1), . . . and
observing im(0) = vt(1)− vt(0) = 1, we have

vt(c) = Σc−1i=1 im(i) + 1 (10)

The friendliness of a program is given by its lifetime
function vt(c), which is the average time it fills the cache
of size c with newly accessed data and evicts the data from
peer programs that have not been used in the last vt(c) time
period. In other words, the data access of this program leads
to the survival window of vt(c) in size-c cache for the data
from the peer programs.

Combining the preceding equations, we have the (static)
model of the survival window sw as computed from the
reuse distance.

sw(c) = lf(c) = Σc−1i=0 im(i) = Σc−1i=0

1

Σ∞j=ird(j)
(11)

Consider the extreme cases as a sanity check. The least
friendly program loads a new data block at each access,
so rd(∞) = 1. The survival window it gives to others is
sw(c) = c. The friendliest program uses a single data block,



so rd(1) ≈ 1. The survival window is sw(1) = 1 and
sw(c) = ∞ for c > 1. A real program is somewhere in
between these two extremes. Tiled programs have few long
distance reuses. As a result, they are among the friendliest
programs. Figure 3 shows the lifetime of matrix multiply
increases rapidly with the cache size, making it an amicable
player in shared cache.

The “friendliness” analysis presented in this section
helps to understand the use of defensive tiling. First, dif-
ferent levels of defensiveness are needed depending on how
friendly the co-run programs are. We can now quantify this
friendliess. In the evaluation, we will test self co-run and
co-run with the streaming benchmark and see the effect of
friendliness.

Second, the aggregate interference from multiple peer
programs can be computed by combining the data growth in
their lifetime functions. Given two programs A,B, the com-
bined lifetime lfA+B(c) is such that lfA(cA) = lfB(cB) =
lfA+B(c) and cA+cB = c. The window of survival shortens
with every additional program in the mix.

Third, the fill time for tiled programs can be parameter-
ized by the tile sizes just as the reuse distance is. Since tiling
reduces the reuse distance, it increases the fill time. As a
result, it makes a program friendlier. On the other hand, be-
cause defensive tiling uses smaller tile sizes, it does not re-
duce the reuse distance as aggressively. On the surface, we
may see that by being defensive, a program becomes less
polite.

The interference is a coupled phenomenon. A normally
tiled program actually incurs more misses in a co-run than a
defensive program does. Since its inter-miss time is actually
shorter, so is its actual fill time. With the model of friendli-
ness presented in this section, we now see the second benefit
of defensive tiling: it improves both the defensivenss and the
friendliness of the tiled program, if the amount of inclusion
victim misses is significant. Like defensive driving, it makes
the shared environment safer both for itself and for others.

3. Evaluation
Implementation The defensive tiling is implemented in
the LNO component in Open64 5.0. The Loop Nest Op-
timizer in Open64 combines a set of loop transformations
such as loop fusion, loop interchange, loop tiling, and un-
roll and jam [39]. We use -O3 to compile the test programs.
We tile loops only for the private cache and do not consider
tiling for TLB.

Test Suite We have compiled all 25 benchmarks dis-
tributed with the PLUTO compiler [3]. 5 programs are not
included because Open64 can not tile the imperfectly nested
loops in them, for example, the one in dsyrk. 2 more pro-
grams cannot be tiled for other reasons. Another 13 are ex-
cluded because they do not show a significant problem of
inclusion victim misses, that is, their solo-run and co-run
miss counts do not differ much. A common reason seems to

be that the amount of data reuse is relatively small. For in-
stance, the mvt benchmark is a matrix-vector multiplication
kernel in which the reuse only happens on the vector data.
According to the model in Section 2.3, when the reused data
are few, the number of inclusion victim misses is low relative
to the number of misses caused by the matrix data. Indeed
when measured in simulation, the number of L1 misses in-
creases by less than 0.1% from the solo- to the co-run. After
removing these programs, we have 5 remaining programs
which have significant data reuse in private cache and for
which Open64 can perform the tiling transformation.

Next we evaluate defensive tiling first on a cache simula-
tor to measure the miss ratio and on real hardware to measure
the performance.

3.1 The Effect on Cache
For simulation, we have extended the basic cache simulator
in Intel Pin tool [27] to simulate a multi-level CMP cache.
The simulator is designed similar to CMP$im[19] (CMP$im
is not publicly available). One difference is that our simula-
tor does not include an L1 cache as they did, because the L1
cache does not significantly affect the interference between
L2 and L3, which we model using our simulator. L1 has a
performance impact, which we will include when testing on
a real system. Other than L1, we use the same cache con-
figuration used by Jaleel et al.: 2-core CMP, each has 8-way
256KB unified private cache, and both share inclusive 16-
way 2MB unified cache [20].

Our CMP simulator is Pin-based and trace-driven. The
simulator reads the same binaries as those running on the
real machine. Then Pin will instrument binaries and run the
cache simulation. The cache sharing is implemented through
process shared memory. With the cache simulator, we can
measure the total number of misses in the private cache. For
this experiment, we set the cache parameters in the Open64
compiler according to the simulated cache configuration:
private 256KB cache and shared 2MB cache.

We test the 5 PLUTO benchmarks in solo-run and in co-
run with a STREAM benchmark on the neighboring core.
We test five versions of each program: original Open64 tiling
and defensive tiling with the defensiveness level (γ) set to
1, 2, 4 and 8. Figures 4a and 4b show the relative number
of private cache misses. The former is for the 5 versions
when the program co-runs with STREAM, and the latter
for the 5 program versions when the program runs alone.
In each program, the number of misses is normalized to that
of the default Open64 tiling, so the first bar in each group in
Figure 4b is always 1.

The default tiling is vulnerable to program co-run. We
see in Figure 4a that the number of private cache misses (the
first bar in each group) increases by 321% to 449% in the
first four programs, corcol, covcol, dct, matmul, and 26% in
the last program tce. Inclusion victim is the culprit as it is
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Figure 4: Private cache miss comparison between the orignal
Open64 loop tiling and the defensive tiling for single run and
co-run cases.

the only way the STREAM benchmark can affect the private
cache of the tiled program.

Defensive tiling reduces the number of misses by as much
as 45% for corcol and matmul, 37% for covcol, over 29% for
dct, and less than 5% for tce. For the first four programs, the
defensiveness (“-LNO:blocking defensiveness”) of 2 gives
consistently good cache performance. The best performance
is seen when the defensiveness is either 2 or 4.

The effect of defensive tiling on solo runs is shown in
Figure 4b. As tiling become more defensive, there is a steady
increase in the number of cache misses. This is expected
since being more aggressive means choosing smaller tile
sizes.

Being too aggressive may be counter productive. In cor-
col, the defensiveness of 4 and 8 cause so much loss in cache
reuse that the inclusion victim has a negligible impact. As a
result, defensive tiling (at the highest two defensiveness lev-
els) does not improve the program co-run results. At level

2, however, defensive tiling is not overly conservative and
shows over 45% reduction in the co-run miss count.

Defensive tiling does not improve tce significantly (5%).
Open64 default tiling causes 26% more private cache misses
in the co-run, which is far less significant than in the other
four benchmarks but it is not negligible. The loops in tce all
have 5 levels. Further tuning may be needed because of the
program complexity and the narrow room for improvement.

3.2 The Effect on Performance
We now test defensive tiling on a real machine. Intel Xeon
E5520 Nehalem processor has four cores. Each has 32KB L1
and 256KB L2 cache. While the L2 cache is non-inclusive
(wrt L1), the four cores share an inclusive 8MB L3 cache.
We should note that the the processor model in the Open64
compiler is not tuned for Intel x86. For default tiling, we
have specified a different shared cache size (8MB) than in
the simulation (2MB), but the compiler still produces the
same code as it did for the simulated machine, because the
size of private cache in both cases is 256KB.

Co-run with STREAM With the four cores in the Nehalem
processor, we can test the co-run performance for up to 3
STREAM benchmarks. Figure 5 shows four graphs, each for
a level of defensiveness. In each graph, five programs are
shown. Each has four bars showing the normalized perfor-
mance of the solo run and the three co-runs with STREAM.

Overall we see improvements in most cases by defen-
sive tiling. Two programs, dct,matmul, show double-digit
percentage improvements in almost all co-run cases and
all defensiveness levels. For dct, the improvement increases
from 4% in the solo run to near 40% when co-run with 3
STREAM programs. matmul shows similar variation. The
improvements are especially high when the pressure in the
shared cache is high.

The corcol benchmark does not benefit as much from
the defensive tiling when the defensiveness level is 1 and
2, which suggests that the active period of the tiled data
is rather long. When the defensiveness is set to 4 as in
Figure 5c, the improvements become significant, as much
as 1.17x.

The covcol benchmark shows similar variation when we
vary the defensiveness level. At the lowest level, defensive
tiling causes similar degradation in all co-run tests. Greater
defensiveness helps to restore the performance. When the
defensiveness level is set to 4 and 8, the speedup for the solo-
run is greater than 1.2x. The co-run improvements, however,
are lower. The other unexpected result is the 1.18x speedup
for tce in Figure 5d. We do not yet have an explanation for
these two results. For tce, we do not expect to see significant
improvements based on our simulation, which is the case
except for the 1.18x speedup.

Symmetric Co-runs We have tested each PLUTO bench-
mark running with one, two, or three of its own replicas.
Figure 6 shows the result for the solo- and co-run tests when
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Figure 5: Speedup of defensive tiling over Open64 default tiling as measured on Intel Nehalem. Each benchmark co-runs with
1 to 3 STREAM benchmarks. The four graphs show defensive tiling with γ = 1, 2, 4, 8.

the defensiveness level is set to 4. The baseline is the default
tiling in the solo run and in 2 to 4 symmetric co-runs. The
first bar in each group shows the same speedup as those in
Figure 5c.

All tests show improvements, although most are small
and lower than the solo-run improvement. The results for
other defensiveness levels are similar, thus we omit them for
brevity.

Defensive tiling seems not effective since in all programs
the lead over the default tiling is narrowed, often signif-
icantly. For explanation we need to examine the friendli-
ness as defined and discussed in Section 2.4. The tiled pro-
grams have excellent locality, so they are among the friendli-
est peers and do not yield much room for improvement
by defensive tiling. More importantly, as discussed at the
end of Section 2.4, in these tests the default tiling produces
friendlier code than defensive tiling. Hence the default tiling
co-runs better and regains some of the losses we see in the
solo-run test.

The Defensiveness of Cache Oblivious Algorithms Cache
oblivious algorithms recursively divide the computation [12].
For example, a matrix multiplication can be broken into
eight sub-matrix multiplications, and the subproblems can
be further divided until a threshold size is reached. The re-
cursion in effect tiles the computation for all possible cache
levels. Yi et al. [49] developed a compiler transformation to
convert loop nests into a recursive form. Our test suite and
theirs have one overlap—the matrix multiply.

Figure 7 shows the performance comparison between
cache oblivious algorithms and the default Open64 tiling in
the solo- and co-run tests with 1 to 3 STREAM benchmarks.
The numbers are reported for different threshold sizes from
as small as 16 to as large as 256. When the termination size
is 16 and 32, the recursive version shows 20% and over 40%
improvements in the high cache-contention cases (2 and 3
streaming peers). The largest improvement exceeds that of
defensive tiling. Open64 shows better performance in other
cases. The results suggest that although the recursive version
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Figure 7: Speedup of cache oblivious matrix multiplica-
tion by Yi et al. [49] over default tiling.

has a higher overhead in the solo run, there can be signifi-
cant benefits gained from being defensive. While a detailed
analysis is beyond the scope of the paper, we note that the
higher improvements in small threshold sizes are consistent
with our model and technique of defensive tiling, which also
seek to reduce the size of data reuse.

4. Related Work
Peer-Aware Program Optimization QoS-Compile from
Tang et al. [35] is the first compiler solution to mitigate
memory hierarchy contention for independent co-located
programs on multicore processors. The optimization first re-
quires a profiling pass to identify contentious code regions.
Once the high-interference regions of a program are found
through profiling and modeling, the compiler will pad non-
memory instructions and insert intermittent sleep in those
regions to throttle back the program’s memory request rate.
The two transformations are done at the binary level.

Defensive tiling differs in several aspects. First, it im-
proves the performance of the transformed code, instead of
slowing it down to make its peer run faster. Second, it is a
static technique at the loop level and does not require any
profiling information. The static notions of defensiveness
and friendliness are new, so is the model of cache inclusion
victim misses. However, defensive tiling is limited to cer-
tain kinds of applications, while QoS-Compile is generally
applicable.

Single-level Tiling For a single-level cache, loop tiling has
been used to reduce capacity miss [5, 18, 25, 38]. Temam et
al. [11, 37] showed that the number of conflict misses in
numerical code can be modeled and data locality optimiza-
tions should consider conflict misses. Coleman and McKin-
ley [10] developed a Tile Size Selection algorithm which
eliminates self-interference misses and minimizes cross-
interference misses. Ghosh et al. [13] proposed Cache Miss
Equations which consider both loop structure and data lay-

out, including loop tiling and array padding. Hsu and Kre-
mer [16] gave several algorithms to combine tile selection
and array padding. Huang et al. combined loop tiling with
data tiling and showed robust performance by a single tile
size for different problem sizes [17].

Multi-level Tiling Open64 uses a combined model to unify
several loop optimizations including loop tiling [39]. Unified
transformations have been studied with unimodular trans-
formation to maximize reuse [46], in data shackling using
high-dimensional optimization [24], and for multiple loop
nests, through loop fusion enabled by loop tiling and array
copying [47]. For a two-level cache, Open64 performs loop
tiling for the L1 cache first, and then continues to transform
inter-tile loops for the L2 cache if it is profitable. Mitchell et
al. [29] proposed global multi-level cost functions to guide
the choice of optimal tile size and shape. Rivera and Tseng
explored the impact of multi-level caches on data locality
transformations [33]. For loop tiling, they pointed out that
simply targeting the L1 cache often gives near best per-
formance. Renganarayana and Rajopadhye [31] formalized
the tile selection problem as Geometric Programming, and
multi-level tiling could be solved recursively.

Auto-tuning of Loop Tiling Rather than static tile selec-
tion, auto-tuning searches through different versions of com-
piled code at the installation time and find the best choice
for the host machine. It is known as iterative compilation.
Compiler models and heuristics were used to guide auto-
tuning. Kisuki et al. [23] implemented an iterative compi-
lation system which finds good tile sizes and unrolling fac-
tors in a trimmed optimization space. Chen et al. [8] in-
cluded more optimizations such as unroll-and-jam [4] and
prefetching. They also considered optimizing across multi-
ple cache levels. More recent work includes a general type
of parameterization using linear inequalities in PTile [1], dy-
namic tile-size variation [36], and programmable control in
POET to tune not just tiling but others such as unroll-and-



jam and parallelization through scripted transformations and
script reuse [48]. Hall et al. called the scripts transformation
recipes [14].

Tiling for Parallel Programs Loop tiling can be used to
reduce the communication overhead between processors[15,
26, 30, 44]. Xue gave a book-length treatment [45]. On
multicore processors, Zhang et al. tiled multi-threaded code
for shared cache [50], and Chen et al. [9] applied tiling to
pipeline MapReduce applications. Recently, Zhou et al. [51]
showed hierarchical overlapped tiling can reduce communi-
cation overhead without introducing much redundant com-
putation and can be used to transform OpenCL programs.
The nature of parallel-loop tiling is collaborative rather than
defensive. The transformation in one task knows the access
pattern of other threads. Defensive tiling deals with unknown
peers that share cache. The specific problem of inclusion vic-
tim has not been considered in prior compiler analysis.

5. Summary
This paper has presented compiler analysis of friendliness
and defensiveness of loop-based programs. Based on these
analyses, it has developed an entirely static framework for
peer-aware program optimization. The framework has been
implemented in a production-quality compiler, and has been
shown to significantly reduce slowdowns caused by inclu-
sion victim misses on today’s multicore machines.
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