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Learning Image Annotation:
The CITE System

Craig Dillon, Terry Caelli?

In this paper we consider how
more-recent machine learning
techniques can be used in building
adaptive and trainable image
annotation systems that can mimic
human performance. In this case
the annotation is defined with
respect to domain-specific labels
for image regions, hierarchies,
and, in general, cliques that are
of specific importance to the
application domain. To illustrate
these issues, we consider one of our
more recent annotation systems,
the CITE system, where the domain
knowledge consists of hierarchies
of labeled and attributed graphs,
and how it has been used to
annotate outdoor, airport, and
office scenes consisting of different
types of scenarios and information.
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1 Introduction

An image annotation system (IAS) is a methodology, usually embodied
in a set of algorithms, that can take as input thematic image data (in
forms including color, intensity, and/or range information) and produce
some form of labeling or description of the image being viewed with
respect to domain knowledge. Perhaps the two more-recent and well-
known IASs are SCHEMA and SIGMA. In SCHEMA [1] both knowledge
and computation are partitioned at a course-grained semantic level. The
knowledge base contains a set of schemas, each of which is designed to
recognize one particular class of object. This differs from most machine
vision approaches which usually focus on one representation and one
matching strategy.

Each schema has access to a global blackboard that contains the cur-
rent interpretation of the scene, and can post and receive messages to
this global space asynchronously. An instance of the appropriate schema
is generated for each hypothesized instance of the object in the scene.
Each schema instance has access to what are termed knowledge sources.
The knowledge sources, which operate at a number of different lev-
els, provide analysis of the image and resultant image structures. The
knowledge base in SCHEMA is hand coded by a knowledge engineer in a
declarative language that covers the endorsement space, confidence func-
tion, and control strategies for each schema.

The SIGMA system [2] is an image-understanding system designed
for aerial image analysis. It contains three modules for low-level vision,
model selection, and geometric reasoning, as well as a query module
through which the user interacts. These modules are interconnected
such that top-down and bottom-up vision processes are closely inte-
grated. The interpretation within SIGMA is in the form of a part-of hierar-
chy with image features at the leaf nodes and spatial relations describing
the higher-level structure. SIGMA’s knowledge base is object oriented in
the sense that instances of an object are created (instantiated) dynam-
ically from base object classes. Each object has three main knowledge
components: unary properties of the object, relationships with other ob-
jects, and control information to guide the analysis process. The control
structures are triplets of the form (CONDITION, HYPOTHESIS, ACTION).

SIGMA contains a sophisticated low-level vision module that performs
goal-directed image segmentation. A goal in this system is expressed as
a set of constraints and properties that the solution must satisfy, some of
which specify the environment in which the solution is to be found. One
strength of this system is its ability to search the image at a very low
level for expected image features. It has been demonstrated on aerial
images of new housing developments, and robustness to shadows and
poor image contrast has been shown. However, as with SCHEMA, the
knowledge base for SiGMA is hand-coded by an expert, and the system
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Figure 1. Overview of CITE architec-

ture.
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as a whole has not been demonstrated to recognize more than a few
different object classes and is restricted to a specified domain.

2 Proposed Theory and System

CITE differs from SiGMA and SCHEMA in a number of fundamental ways.
Primarily, it uses an incremental learning paradigm with the aim of
tracking the types of labeling that experts utilize when using images
for interpreting what is sensed. This incremental learning is used to
build and improve the knowledge base after each scene has been fully
analyzed as shown in Figure 1, where the numbers beside each func-
tion block represent the approximate order of operation for each oper-
ator. This learning and adaptive perspective is also incorporated in low-
level processes in order to produce image features or regions that corre-
spond to what experts would deem appropriate to describe with specific
domain knowledge. That is, traditional feed-forward segmentation is
augmented with knowledge-driven resegmentation that closes the con-
trol loop on low-level vision processes to match the human annotation
process as close as possible. CITE also extends the conventional knowl-
edge bases (including relational database models) to a fully hierarchical
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Figure 2. Knowledge base graph
example.
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one with, in principal, no depth limitation. Multiple hypotheses are gen-
erated for each scene element, and these are resolved using a hierarchi-
cal extension to relaxation labeling.

An initial segmentation (1) of the image causes the unary (part) fea-
ture calculator to compute features for each of the low-level regions (2).
These features are then matched with the knowledge base (3) to provide
initial labeling hypotheses that are represented in the indexing structure
called the scene interpretation. Clique resolving and hierarchical binary
matching then occur on these initial hypotheses (5) using binary fea-
tures calculated from the hierarchical segmentation (4). The higher-level
scene hypotheses are added into the scene interpretation structure, and
hierarchical relaxation labeling begins to resolve the multiple ambigu-
ous labels for each object (6). As the labels begin to resolve, nodes
are individually resegmented (7) using parameters stored in the knowl-
edge base. These resegmentations replace the initial segmentations in
the visual interpretation structure, resulting in a repeat of the unary
and binary feature extraction and matching (stages (2) through (6)).
This cycle continues a number of times until the interpretation becomes
stable. If CITE’s final interpretation is incorrect, the user may chose to
incrementally learn the correct object labeling (8) by selecting the incor-
rectly labeled nodes and the desired knowledge base node. The updated
knowledge base is then available as the next scene is viewed.

The relaxation labeling, knowledge-driven resegmentation, and hi-
erarchical clique resolving and matching provide very tight closed-loop
feedback within CITE. The hierarchical knowledge base provides a rich
scene description that can include contextual, taxonomic, and deep de-
composition information. The use of incremental supervised learning
provides CITE with the ability to increase the descriptive power and
accuracy of its analyses, as well as to add new world knowledge as it
becomes available, rather than requiring the full set of scene objects to
be present during an initial learning phase.

2.1 Knowledge Representation

CITE represents world knowledge as a semi-restricted graph in which
each node represents an object or visual concept that is either a part-of,
a view-of , or a type-of its parent or parents. Figure 2 is a simple example
of such a knowledge base. Within each node is stored information about
the optimal segmentation, feature extraction, and matching algorithms
that are used to recognize this object in an image. CITE represents tax-
onomies using the type-of node. For complex hierarchical world knowl-
edge, taxonomies represent valuable reductions in data complexity.
Deep taxonomies can be built using many levels of type-of node, and
each level offers a different degree of semantic generalization. Because
the knowledge base is built using supervised learning, the taxonomies
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Chi | d-t o- parent
traversal
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Figure 3. Two alternative tree
taxonomies.
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embedded in the knowledge base are context sensitive. Figure 3 illus-
trates two possible “tree” taxonomies—one that could have been con-
structed by a botanist, the other by a forester. The variations in these
contexts result in differing interactions between the unary and binary
learning and the hierarchical relaxation labeling. The taxonomic struc-
ture of the knowledge base is built incrementally during the supervised
learning process from the simple description given for each object.

2.2 Interpretation Modules

CITE contains hierarchically segmented image data in the form of a
semi-restricted (acyclic) graph called the visual interpretation. Multiple
labeling hypotheses can be generated for each node in the visual inter-
pretation, and these are stored in an intermediate structure called the
scene interpretation.

Visual interpretation CITE uses hierarchical segmentation in which
regions are grouped to form larger regions that are grouped to form
even larger regions, and so on. There is only one type of node in the
visual interpretation, called the VI node, which may contain multiple
parents and multiple children. Multiple children represent the grouping
of smaller regions with common properties or labels into a larger region
with a single label. Multiple parents represent the notion of ambiguous
set membership, which is important in solving the clique (grouping)
problem. CITE also uses a process of parallel hypothesis generation to
generate multiple likely solutions (local constraints) and then relaxation
labeling to propagate these hypotheses to maximize global consistency
with respect to the current knowledge base. (See below for details.)

Scene interpretation The scene interpretation (SI) structure is an in-
dexing structure that connects the visual interpretation to the knowledge
base and represents the current scene belief state. Each VI node contains
a weighted list of hypothesis links to SI nodes, and each hypothesis link
is interpreted as being the visual support for the given scene interpreta-
tion node. Multiple SI hypotheses may be connected to a VI node dur-
ing top-down hypothesis of the existence of missing or occluded parts.
Ambiguous clique memberships may also be represented by multiple SI
hypotheses on the given VI node.

Each VI node also contains a list of pixels that the node represents in
the original input image. There is no ordering or adjacency limitation
placed on these pixels, which means that a VI node can be used to
represent multiple non-connected regions. This is particularly useful for
representing occluded objects and complex high-level scene elements
whose constituent parts are not necessarily connected in the image. The
final important component of the VI node is that this is a data structure
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where image features are stored when they have been calculated. Unary
(part) features are stored in the VI node and binary (relational) features
are stored in the common parent of the multiple VI nodes between which
they are calculated.

There is only one node type in the scene interpretation (SI) graph,
called an SI node. Like the knowledge base, there must be at least one
child-to-parent and one parent-to-child relationship in every cycle. The
SI graph is unbounded with the exception that there is one node with no
parents as this represents the entire scene. Leaf nodes with no children
represent the lowest level (finest detail) of scene analysis.

Each SI node contains an unweighted list of parents and a weighted
list of children, similar to VI nodes. Each SI node also contains a
weighted list of VI nodes that are interpreted as being the visual support
for that particular scene element. Multiple VI nodes may be connected
to an SI node during top-down hypothesis of the existence of missing or
occluded parts.

Each SI node contains a weighted list of knowledge base (KB) nodes
that represent possible object labelings for that SI node. Each weight
in the KB node list can be seen as a probability, and as a result of the
normalization process these will add to 1.0. Multiple SI-KB labelings
represent an ambiguous classification, and these are resolved through
a process of relaxation labeling.

2.3 Operational Overview: A Simple Example

Consider the example of recognizing a Norfolk Island Pine using the
Botanist knowledge base. A sample image and knowledge base is shown
in Figure 4. When CITE first loads an image, a default top-level VI node is
created. The segmentation initialization process detects that this VI node
has not yet been segmented and begins this process. As no recognition
has occurred yet, CITE uses the top-level KB node to determine the initial
segmenter and its parameterization.

When the segmentation operator has completed, one leaf VI node is
generated for each image region. Figure 5 shows this initial segmenta-
tion and the VI graph at this point. (See Section 2.7 for details of seg-
mentation algorithms.) Note that this initial segmentation has resulted
in an over-segmentation of the image. The objective is to end up with just
two parts, the trunk and the foliage, as described in the knowledge base.
This simple example does not contain ambiguous clique membership;
hence, we have not shown the SI graph, which is identical in structure
to the VI graph for this case.

After the initial segmentation, the unary feature extraction operator
detects unattributed VI nodes and begins calculating the unary features
for these nodes. At the same time, the connected components grouper
constructs a parent VI node representing the collection of VI leaf nodes.
The grouped VI nodes are then processed by the SI-from-VI matching

Figure 4. Norfolk Island Pine image
and Botanist knowledge base.
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Figure 5. Initial segmentation and
corresponding VI graph.

Figure 6. Final labeled segmentation
of the example image.

Figure 7. Text description of exam-  \nor|d[0] (1.000) Consisting of:
ple scene. L tree{11] (1.000) Of Type:
conifer[12] (1.000) Of Type:
niping[6] (1.000) Constructed from:
trunk[9] (0.919)
foliage[10] (0.971)

operator, and the SI graph is started. The basic unary matching then
occurs, matching the VI nodes with the knowledge base and generating
SI hypotheses linking the SI nodes to the knowledge base. When this is
complete the hierarchical knowledge-based matching operator detects
missing levels in the SI graph and fills these in. The VI-from-SI matching
operator then propagates these down to the VI graph.

In conjunction with the SI and VI node construction operators, the
knowledge-driven resegmentation operator scans the SI graph for nodes
that may require resegmentation. This process is discussed in more detail
in Section 2.7; suffice to say at this point that, although CITE believes
the object to be an oak tree, it clearly has too many children and can
be resegmented using the segmentation parameterization stored in the
“Oak” KB node. This resegmentation results in the dismantling of most of
the VI and SI nodes, leaving just the parent object node which it knows
is a “Tree.” Incompatibilities are resolved by the hierarchical relaxation
labeling process, which has not been discussed in this example, but is
dealt with in Section 2.6. As a result of resegmenting with more tree-
specific segmentation parameters, CITE now correctly labels the new
segmentation as the two parts of a “Norfolk Island Pine.” The final
labeled segmentation is shown in Figure 6. CITE can also produce a
text description of the scene, which is listed in Figure 7 and includes
the likelihood or certainty of the derived labels. This example shows the
basic methods by which CITE operates. The most important aspects are
the three interconnected data structures and the range of operators that
create and modify these data structures.
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2.4 Learning Domain Knowledge

CITE builds its knowledge base using incremental forms of supervised
learning and essentially involves the system endeavoring to “track” hu-
man labeling over different images as they are viewed by the “expert.” In
this sense, the system recognizes or labels new data with respect to what
is known at any given time. Data that is not consistent with past experi-
ence must be assumed to be a new type of concept or class, or used to
update past knowledge of known classes. For this reason we have termed
the actual learning procedure “explanation-based” involving both in-
duction (generalization) from data and deduction (via relaxation-based
consistency checking) from past hierarchical knowledge about the rela-
tionships between indexed image features and the knowledge base.

Learning and recognizing objects (and more general image struc-
tures) in scenes differs from more-common interpretation problems in
so far as structures do not necessarily occur in fixed positions, orien-
tations, and size, and evidence from partial information is required.
For this reason we have adopted the “recognition by parts” approach
where structures are defined by indexed parts and their relations, and
novel learning/recognition strategies are required in such cases. One
simple solution is to store a graph representation of each structure
such that at recognition time the best possible cross-indexing of parts
can be determined (usually a costly process using graph matching).
More-sophisticated approaches have been proposed to reduce this graph
subisomorphism complexity (such as the CLARET algorithm [3]), for rec-
ognizing objects more as a probabilistic mapping on parts (such as CRG
and its variants [4]), or by connecting common subgraphs as used re-
cently by Messmer and Bunke [5]. In CITE, learning of both object parts
and part relations are incrementally learned according to an attribute
(part: unary, relation: binary) splitting technique called Explanatory
Least Generalization (ELG) which results in a decision tree that deter-
mines which attribute bounds best evidence different models. A brief
description follows.

Unary (part) and binary (relational) learning algorithms First, a
matching strategy is stored in each node of the knowledge base. It may
be different at each node and must be able to perform three operations:
to determine the degree of match or mismatch to a candidate part or
relation, to learn from a new positive example, and to learn from a
new negative example. Such procedures are necessary to determine, in
conjunction with the user, if the current data is novel or not.

The rules are incrementally built from example positive and negative
points and defined by bounds of unary or binary attributes extracted
from the data up to a given event. These bounds form regions of least
generalization in the feature space. The ELG algorithm builds a decision
tree from these least generalizations, and this is used to determine if a
test point (image part) is given a specific object label. Weightings for
these labels are based on a simple distance metric to cluster centers
within these ELG regions. This algorithm has been specifically designed
for efficient incremental learning and rebuilding of a decision tree-based
classifier, as shown in Figure 8.

The use of the decision tree built from the ELG regions (rather than
using the ELG regions directly as rules) reduces this algorithm’s sensitiv-
ity to noise because the decision boundaries are placed in between ELG
regions. The ELG regions themselves are more sensitive to noise because

Learning Image Annotation: The CITE System

96



Figure 8. Learning algorithm flow

chart.

VIDERE 1:2

Current Positive Rules Current Negative Rules

'\D []

l New point to |earn.

1. Each positive rule is extended
to include new point.

2. Extended rules that overlap
negative rules are renoved.

4. Vol unme increase
is calculated for
each rule.

3. If none remain, a
new rule is created.

I:I I:I 5. The smal | est

vol une increase

rule is kept.
they represent least generalizations of the data points they represent.
Perturbations in the ELG regions will result in smaller perturbations in
the decision tree, and data points that fall slightly outside the ELG re-
gion due to noise will most likely still fall within the correct decision
tree region defined by the ELG region.

Matching In general, matching occurs via rule instantiation. The bi-
nary matching algorithm is run similarly to the unary matching algo-
rithm except that the test point is a binary feature table rather than a
single unary feature point. The binary (relational) matching process oc-
curs upon identifying an unmatched parent with multiple children each
of which has at least one initial label hypothesis. Binary matching can
also occur as a result of the clique-resolving algorithm generating possi-
ble groupings of parts.

CITE’s recognition process operates at a number of levels. At the local
level, recognition is distributed between four operator classes that cover
unary and binary matching, group hypothesis generation, and relaxation
labeling. At a wider scale, other operators such as the knowledge-driven
resegmentation and hierarchical matching also contribute importantly
to the recognition outcome.
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2.5 Hypothesis Generation

CITE generates classification labels and grouping hypotheses in the vi-
sual and scene interpretation structures based on segmentation results,
unary and binary feature matching, and examination of knowledge base
data structures. Hypotheses exist at many different levels within CITE
and are resolved by a process of hierarchical relaxation labeling and
constraint propagation. By extending traditional relaxation labeling to
operate over a hierarchy, top-down and bottom-up recognition processes
are seamlessly integrated. There are two basic types of hypothesis-
generation procedures. The generation of an SI or a VI node is achieved
by unary hypothesis procedures, and the generation of VI-VI, VI-SI, SI-SI,
and SI-KB hypotheses is performed by binary hypothesis testing proce-
dures. There will be some situations where multiple binary hypotheses
can be generated as a result of a single unary hypothesis. For example, in
clique resolving by connected components a parent VI node is generated
with binary hypotheses to the image regions that are its children. This
can only be sensibly achieved in a single procedure, which can generate
both unary and binary hypotheses.

Generating VI nodes from image data VI nodes generated by the
first segmentation will always end up as leaf nodes added under the top-
level VI node. Nodes generated by subsequent resegmentations will be
attached as leaf nodes at the appropriate point in the hierarchy, which
is typically under the parent VI node from which the resegmentation
occurred.

Generating VI nodes from the VI graph Intermediate parent VI
nodes can be generated directly from the image data and VI graphs
when a connected components operator is activated. Connected com-
ponents grouping is used only during early training when the system is
shown single objects and has not yet learned enough to reliably run the
clique-resolving process. The decision to switch from connected compo-
nents grouping to the clique-resolving grouping is controlled from the
user interface. The algorithm for the connected components grouping is
straightforward and moderately efficient.!

Generating VI nodes from the Sl graph There are two processes that
build VI nodes by examining the SI graph structure. The first is the reseg-
mentation process that will take a VI node and its leaf node children and
apply a new segmentation process to this based on the SI node knowl-
edge base hypothesis. The second is the top-down process of ensuring
that higher-level labeling structures (such as taxonomic expansions) are
reflected in the VI graph. Both of these processes are top-down, one
representing knowledge-driven resegmentation, the other knowledge-
driven image analysis.

Generating SI nodes from the VI graph When grouping occurs in
the VI graph, this structure must also be translated into the SI graph.
Region grouping will occur in the VI graph as a result of connected
components grouping, which is only used during early training, and the
more sophisticated region grouping by clique resolving which is used a
majority of the time.

1. A full discussion of linear time connected components labeling is given in [6].
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Generating Sl nodes from the KB graph Here, the knowledge base is
examined looking for missing nodes to insert into the SI graph. This is
a top-down process that expands the SI graph to include taxonomy and
view information relating to already hypothesized objects.

Binary hypothesis generation by basic unary matching The basic
unary matching operator generates SI-KB hypotheses for leaf VI nodes
by matching them to KB nodes. Matches are made based on a ranking
and threshold system, and candidates are taken from a pruned set of
KB nodes based on higher-level matching. Although this algorithm runs
on the VI graph, it creates SI-KB hypotheses that are stored in the scene
interpretation graph.

Resolving clique membership One important factor in categorizing
object recognition and scene understanding systems is their ability to iso-
late and identify multiple touching or overlapping objects. The process
of grouping parts or image features into objects or scene elements is
called the clique membership or parts clique problem.

Connectivity is a common constraint used to reduce the complexity of
the clique membership problem in conventional object recognition sys-
tems. In this situation, the connectivity constraint simply states that any
object or scene element in the image will be constructed from connected
regions. This constraint is useful for physically constructed objects, but
it is too strong for higher-level scene elements, such as those found in
the airport scenes we have explored. Note that object recognition sys-
tems that are restricted to single isolated objects do not address the
clique membership problem. CITE uses an image-based connected com-
ponents algorithm on the presentation of the initial image. After this, the
knowledge-driven clique resolving is used.

The clique membership problem is solved in CITE using interaction
among a number of different processes. Operating on the VI graph,
the SEGMENTGROUPCLIQUE process generates sets of possible VI parent
nodes, each of which represents a possible clique. Intermediate SI nodes
are then generated by the MATCHSIFROMVI process operating on the SI
graph. These generated nodes then interact with the normal relaxation
labeling update processes until stable hypothesis weights are achieved.

The clique membership process SEGMENTGROUPCLIQUE operates on
groups of VI nodes that have SI hypotheses, which cover KB nodes
with different parents. This situation is better understood by examining
Figure 9. The VI node on which the algorithm is being run is indicated
as the “current vi.” This VI node has a number of children, each of which
has an SI hypothesis. The SI nodes each have hypotheses linking them
to the knowledge base. One can see in Figure 9 that children of objects
labeled “A,” “B,” and “C” have each been hypothesized.

The objective of the clique membership process is to produce possible
groupings of VI nodes based on their common KB parent hypotheses.
This is done by indexing the VI nodes against the children of each
node in the parent KB node list (denoted “kbplist” in Figure 9). A full
set of possible matching child VI nodes is constructed by enumerating
these index sets. The typical result is a small number of possible cliques
that match each KB parent node. Following this, the clique membership
process generates all of what now becomes an intermediate layer of VI
nodes, each one representing part of a possible decomposition of the
original set of VI nodes (the children of the “current vi” node).

VIDERE 1:2 Learning Image Annotation: The CITE System 99



Figure 9. Illustration of variables for
clique membership algorithm.

VIDERE 1:2

A
Know edge c
Base
“‘ \ nkb
' kbplist={A B, C - {B}
Scene ‘

Ve Sip

Interpretation

Vi sual _
Interpretation

An important consequence of this approach to solving the clique
membership problem is that it is achieved though local computations
only. Once created, each clique is treated independently of the oth-
ers. Multiple parent hypotheses in the VI graph are resolved through
relaxation labeling processes. Note that the local nature of this clique
membership resolving algorithm is local with respect to the knowledge
base, not with respect to the image. The relaxation labeling for clique
resolution occurs only on knowledge-based structures, not on image-
based structures. This is an important knowledge-based constraint that

is based on the structure of the knowledge base, and not on the structure
of the viewed image.

Hypothesis generation by KB matching When groups exist in the SI
graph, they need to be matched against the knowledge base to deter-
mine the most likely object labeling. This involves examining the unary
matching strengths in addition to executing the binary matching strat-
egy. CITE uses unary (part) matching to prune the possible parent ob-
ject labelings. In this, possible parent labelings are pruned by the child
matches, and the degree of match that is finally loaded into the parent
SI node hypothesis combines unary and binary matching strengths.

2.6 Relaxation Labeling with
Hierarchical Constraints

There are typically multiple labeling and grouping hypotheses gener-
ated by CITE for any image region or set of image regions. These mul-
tiple hypotheses are resolved by a process of relaxation labeling and
constraint propagation. Relaxation labeling is a method for resolving
multiple hypothesis labelings with respect to a compatibility function
describing the compatibility between pairwise labelings. This method is
essentially gradient descent and consequently cannot guarantee a glob-
ally optimal solution [7]. However, the iterative nature of the relaxation
labeling process and its ability to propagate local constraints through
the interaction of compatible or incompatible labels are ideal for the pur-

poses of CITE. The following is one formulation for traditional relaxation
labeling.
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Let B be a set of objects {b1, ..., b,}, and A be a set of labels {1, ..., m}.
For each object b; we can obtain an initial label probability vector P? =
(p?l,...,p?m), where 0§p?j§1, fori=1...nand j=1...m, and
ij?jzl,forizl...n.

Each initial probability vector is interpreted as the prior probability
distribution of labels for that object, and can be computed from the
initial unary and binary matching. The compatibility constraints can
be described as a n x n block matrix R, where each R;; is a m x m
matrix of non-negative, real-valued compatibility coefficients, denoted
rij(1..m, 1..m). The coefficient r;; (A, ) is a measure of the compatibility
between object b; being labeled A and object b; being labeled . These
coefficients are typically determined heuristically from analysis of object
and part relationships, and may be restricted to the values 0 and 1 in the
simplest cases. The relaxation labeling algorithm iteratively updates the
probability vectors P using a normalized weighted sum equation:

t+1 — plt)»qlt)\ (1)

ir m

rot
Z Pinip
pu=1

where the denominator is the normalization factor and
n

ah =Y rij(, wpl,. 2

j=1pu=1

The objective is to end up with a unique label for each object. De-
pending on the compatibility coefficients r;;(A, u), it is not possible to
guarantee convergence. In this form of relaxation labeling, the number
of objects is constant and the number of iterations, ¢, is the same for each
object. However, CITE contains hierarchical knowledge and can gener-
ate and remove image regions dynamically. Static hierarchical relaxation
labeling has been discussed briefly in the literature [8], but not consid-
ered further. The relaxation labeling in CITE is different for each of the
categories of relationships that require labeling resolution, and is formu-
lated in a more condensed form that is robust to the dynamic state of
the hierarchical labelings. For example, the SI-KB labelings are updated
according to the level of support given by the SI children and SI parents,
as follows:

DSK SpS SK
PSK = (1 - ape) Z PSP}, Z P

AeSl.C SeKjC
3)
tape Y PSPS Y PE.
res? seK;’

The initial hypothesis value is set by the unary and/or binary match-
ing from the operator which created the given SI-KB hypothesis. The
update ratio of parent and child support («.) reveals some asymmetry
in the update procedure in terms of the relative importance of children
and parents. This is necessary because, in general, there are fewer par-
ents of an SI node than children.

In Equation 3, the double summations represent the summing over
what are termed compatibility cycles between the scene interpretation
and knowledge base graphs. The compatibility cycle is a cycle compris-
ing four hypotheses and is computed through the parent and child chain
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(right half of Equation 3). There are only three terms, rather than four,
in each half of the update equation because the parent-child knowledge
base link has a set hypothesis weight of 1.0. An extension to the knowl-
edge base facilitating partial belief in the knowledge structure could be
achieved by including a non-unity term into this equation.

2.7 The Segmentation Cycle

In CITE, segmentation is a controlled process in which the current ex-
pectation of scene content is used to determine which segmentation
algorithm and parameterization is to be used. This is achieved by stor-
ing in each knowledge base node a list of those segmentation procedures
and parameterizations that have been the most effective at segmenting
the object or scene element represented by that node. Image segmen-
tation may occur on any arbitrary subset of the image, and it is not
uncommon for CITE to be executing half a dozen different segmenta-
tions at once. By closing the loop on segmentation, CITE is able to apply
multiple segmentation algorithms and parametrizations to different re-
gions of the image based on ongoing hypotheses of scene content. This
provides the overall system with greater robustness to noise and distor-
tion, and permits a much broader range of objects and scene elements
to be recognized using the one methodology.

Segmentation and resegmentation occur continuously in CITE. Every
node in the visual interpretation graph has a segmentation stack that con-
tains the segmenter currently being executed on that part of the image
represented by that node. Segmenters are added to the segmentation
stack by bottom-up and top-down processes. The segmenters are exe-
cuted effectively at random and will take varying amounts of time to
compute depending on the algorithm being run and the size and com-
plexity of the region.

Once an initial segmentation has been completed and hypotheses
created, CITE tests these hypotheses to determine if subregion reseg-
mentation is possible and appropriate. If the SI node currently being
considered for resegmentation has multiple KB hypotheses and the best
of these is significantly better than the others, then this node is con-
sidered for resegmentation according to the dictates of the KB node hy-
pothesized. CITE accesses the knowledge base to determine the best seg-
menter to run on the region, and this is then loaded into the segmenter
stack of the region’s VI node. An SI node with a single KB hypothesis
does not require resegmentation.

To determine the best segmenter to use at each resegmentation stage,
CITE accesses the most likely KB parent node. If this KB node has a
segmenter, this is used. If it does not, the system recursively looks back
up through the knowledge base to obtain the next closest node that does
contain a segmenter. Once located, the segmenter is compared to those
already run on the region by examining the segmenter history stack in the
VI node for that region. If the new segmenter has not been previously
executed on this region, the resegmentation occurs.

An important graph maintenance function is undertaken when reseg-
mentation occurs. The SI nodes and their supporting VI nodes below the
SI node to be resegmented are deleted. All SI nodes with only one par-
ent and one child above the SI node to be resegmented are also deleted.
This second phase of deletion is important in situations where deep in-
stantiations of taxonomic decomposition have been created before the
resegmentation process became possible.
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Figure 10. Hypothesis graph win-
dow illustrating selected hypothesis
weights (ordinate axis is unit inter-
val: 0-1).
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Interaction of relaxation labeling and resegmentation The relax-
ation labeling and resegmentation processes in CITE interact quite
closely in a dynamic way, which is illustrated by a simple example of
a two-stage segmentation and recognition of an oak tree. Figure 10
illustrates four hypotheses as a function of time as the relaxation label-
ing and resegmentation processes interact. In this example, the object
in question is a single tree that matches well to the “oak” and to the
“pencilpine” after the initial segmentation. The object has been imper-
fectly segmented (in this case under-segmented) and only one part is
available for matching. The initial segmentation occurs at iteration O,
followed by relaxation to iteration 30, at which point the region is reseg-
mented. During the resegmentation the hypothesis weights move back
towards equal values because the bottom-up support VI nodes have been
removed. At iteration 52, the new segmentation creates the new child
nodes, and the hypotheses are relaxed to their final levels. Without re-
segmentation, a weakly matched, under-segmented result would have
been the best that could have been obtained.

Evidence of the power of resegmentation The Botanist knowledge
base classification results are given as an illustration of the power of
knowledge-driven resegmentation. The Botanist knowledge base used
is shown in Figure 3, and a sampling of the images covered by this
knowledge base is shown in Figure 11.

The classification results are shown in Table 1. Each column in this
table represents results obtained with a different default segmenter (the
segmenter stored in the top-level knowledge base node). The system
achieves an average classification rate of 99% when operating normally.
Each instance where a resegmentation has occurred is noted; for exam-
ple, (7—3—2) means that the initial segmentation gave seven parts,
the first resegmentation gave three parts and the second resegmentation
gave two parts. If the knowledge-driven resegmentation is deactivated,
the average classification rate drops to 59%.

Segmentation algorithms All of the segmenters in CITE have a num-
ber of common properties. Each segmenter must be able to operate
on an arbitrary subset of any of the images currently being processed.
The segmenter must be able to operate on normalized color images
and run in parallel with other segmenters running on the same or dif-
ferent regions. When a segmenter is loaded into a VI node for execu-
tion, it is initialized with the parameters stored in the best-hypothesized
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Figure 11. Sample of images used in
Botanist knowledge base.

Hedge (bush) Lantana (bush)
Plane Tree Pencilpine
Norfolk Island Pine Oak Tree

Table 1. Botanist knowledge Image NIPine Seg PencilPine Seg Oak Seg Plane Seg

base classification results.
nipinel Correct Correct (2—3)  Correct Correct (5—2)
nipine2 Correct Correct Correct (3—2) Correct (7—3—2)
nipine3 Correct Correct Correct Correct (4—2)
nipine4 Correct Correct Correct Correct (3—2)
pencilpine5 Correct (1—2) Correct Correct (3—2) Correct (7—3—2)
pencilpine6  Correct (1—2) Correct Correct Correct (3—2)
pencilpine7  Correct (1—-2) Correct Correct (1—2) Correct (11—2)
pencilpine8  Correct (1—-2) Correct Correct Correct (5—2)
oak5 Correct (1—2) Correct Correct Correct (4—2)
oak6 Correct (1—2) Correct Correct Correct (5—2)
oak?7 Correct (1—-2) Correct Correct Correct (4—2)
oak8 Correct (1—2) Correct Correct Correct (9—2)
plane3 Correct Correct Correct Correct
plane4 Correct (1-2) Correct (1—2) Correct (1—-2) Correct
plane5 Correct (1—2) Correct (1—2)  Correct (1—2) Correct
hedgel Correct Correct Correct Correct
hedge2 Correct Correct Correct Correct
lantanal Correct Correct Correct Correct
lantana2 Correct Incorrect Correct Correct
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knowledge base node. The three segmentation algorithms available in
CITE are described briefly below.

Segmentation by clustering and growing The SEGMENTSEED algo-
rithm initially builds a localized (windowed) 3-D, colored (RGB) his-
togram to find seed points for region growing. The most common color
is chosen as a seed point and regions are then grown from all pixels of
this color. The regions may incorporate pixels of slightly different colors
according to a color distance threshold. This process is repeated until all
pixels in the area of the image to be segmented have been labeled.

Each region in the labeled image is then relabeled so that the labels
are unique. Regions are then grown to remove small regions. A small
region is one whose size is less than a specifiable ratio of the total cover.
In the region-growing algorithm, regions are relabeled to the nearest
neighbor with the highest-matched color. The region-growing process
continues until there are no small regions.

Segmentation by clustering and ratio growing The SEGMENTERSEED
algorithm was found to work well for a large number of objects, but
failed on objects with low-contrast parts. This was mainly because color
distance is calculated as an absolute measure, which performs poorly
on badly illuminated objects. A modified version of this segmenter was
constructed that computed all color differences as ratios rather than
absolute differences.

Segmentation by edge extraction and merging The SEGMENTEDGE
algorithm initially performs a standard edge detection (in this case,
the Sobel operator was used (see Ballard and Brown [9])) based on a
small local window and added across each of the three color planes.
The set of edge pixels E is created by thresholding all pixels in the edge
map against an upper threshold. From these edge pixels, the edges are
grown in an eight-connected manner against a lower threshold. This
edge growing is iterated until there are no more pixels being labeled
as edges.

Once edge growing is complete, uniquely labeled regions are created
by a standard recursive paint-filling algorithm. The edge pixels are then
eroded away to leave a full covering of the region of the image being seg-
mented. Regions below a specified fraction of the overall region size are
then merged in a two-phase operation. The first phase considers small
regions only connected to other small regions, and then propagates their
labels into other small regions. The second phase looks at all remaining
small regions and relabels them as their closest large neighbor, for which
there will always be at least one. This region merging is ideal for com-
plex textured regions that yield a large number of small regions placed
close together. In cases where small regions may be generated not only
from large textured surfaces, a different segmenter can be chosen.

2.8 Feature Extraction

The problem of determining how to adequately represent segmented re-
gions based upon pixel statistics is difficult and is best decided via expert
or other types of domain constraints. In this case, such features were
calculated on single regions (unary features) typically including color,
texture, size, and shape descriptions of the region. Relational (binary)
features were calculated on pairs of regions and typically concentrate on
geometric properties such as the distance between the regions, length
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Figure 12. Storage of unary and
binary features in VI nodes.

Table 2. Summary of unary features.
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Bi nary Features
Unary Features

size | 0.39 VI Parent Lz ]3| Dist. |0.29
Colour | 0.72 1 Bor der | 0.02
2 Angl 4
El ong. | 0. 66 gle [ 0.43
3
Bi nary Feature Table
(12 ) Cs)
VI Child Nodes

Feature Type Description
Nlumination  Color Average region illumination
Red Color Average region red component
Green Color Average region green component
Blue Color Average region blue component
VarRed Texture Variance in region red component
VarGreen Texture Variance in region green component
VarBlue Texture Variance in region blue component
Size Geometric  Ratio of region to parent
Elongation Geometric  Ratio of diameter to area
HeightWidth  Geometric Height to width ratio
Straightness = Geometric  Vertical straightness measure
AOnPSqr Geometric  Area to Perimeter ratio
Extent Geometric Whether region has infinite extent

of common border, and so on. It is conceivable (although not common)
that binary features could describe unusual relational features such as
how similarly colored or textured the two parts were.

CITE uses both unary and binary features, which can be calculated
across the visual interpretation hierarchy. This represents a broadly
quantized contextual scale invariance in the feature-extraction process
that goes a small way to address this issue of such large information
reduction.

Feature storage and calculation When calculated, features are stored
in the visual interpretation nodes. Binary features stored at a node de-
scribe the relationships among the children of the node, whereas the
unary features stored at a node describe the node itself, as illustrated in
Figure 12.

For the purposes of presenting the learning and classification systems
with uniform data, all unary and binary features within CITE are scaled
to the range 0.0 to 1.0. In the case of features that have no upper bound,
a reasonable scaling is applied and then the feature is clipped to 1.0.

Unary features The choice of unary features calculated for each region
is based on knowledge about the current scene interpretation and learn-
ing results, as governed by the matching algorithms in the knowledge
base. Table 2 lists the unary features.

The unary size feature of a region is given as the square root of the ra-
tio of its size (in pixels) to its parent’s size. A normalized height-to-width
ratio of a region is calculated as the ratio between the height of the re-
gion and the sum of its height and width. The elongation of a region
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Table 3. Summary of binary features.

Figure 13. Two methods for comput-
ing shared boundary ratio.
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Feature Description Directed
Size Ratio Ratio of image sizes Yes
Distance Image distance to size ratio No
Boundary Ratio of shared boundary Yes

Above/Below Proportion above/below region Yes
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is defined as twice the ratio of the maximum diameter to the perime-
ter. A common region shape descriptor is the ratio of area to perimeter
squared, called “A on P squared,” or “compactness.” This feature is unit-
less and bounded by % corresponding to a circle. An estimate of the
vertical straightness of a region can be obtained by fitting a quadratic
line to the midpoint of each scan line in the region. The straightness of
the region is then inversely proportional to the coefficient of the second-
order term. The unary extent feature gives CITE an indication of whether
a region is bounded. For example, sky and ground regions can be con-
sidered to have “infinite” extent.

Binary features Table 3 lists the binary features available in CITE. A
binary feature is said to be directed if F(a,b) # F(b,a). Most learning and
binary matching systems are designed to use directed features, and they
incorporate undirected features simply by computing the feature using
both region orderings. CITE adopts this strategy.

The binary size ratio feature provides an indication of how large or
small one region is compared to another. This is computed as a nonlinear
ratio of region sizes bounded such that a region eight times larger (or
greater) gives a size ratio of 1.0, and a region of identical size will give
a size ratio of 0.5. A common binary feature is to compute the distance
between the centroids of the two regions, scaled by their average area.
Another common binary feature implemented in CITE is the fraction of
shared boundary between two regions. Given the hierarchical nature of
CITE’s segmentation structure, and the fact that pixels may belong to a
number of regions at the same level in the hierarchy, there are two ways
to compute the binary boundary feature, as illustrated in Figure 13.

The boundary-region method counts all boundary pixels of region A
that are within one (four-connected) pixel of region B. The boundary-
boundary method counts all boundary pixels of region A that are within
one (four-connected) pixel of the boundary pixels of region B. Both
methods give identical results when regions are not permitted to over-
lap, but because this restriction is lifted in CITE the boundary-region
method is used. The actual binary boundary feature is the ratio of the
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overlapping boundary pixels in region A to the total boundary length of
region A.

The above/below feature computes the number of pixels of region
A that are above region B, ngpoe, and the number that are below re-
gion B, npe0w, and computes the above/below feature as Rupovebeiow =
(1+ meboveznbelon ) N, is the total number of pixels in region A, which
means that Rpopepeiow i correctly bounded between 0.0 and 1.0.

Feature invariances An important characteristic of both unary and
binary features is their invariance. Of most importance to CITE is invari-
ance to two-dimensional translation, rotation, scale, and illumination.
Translation invariance is typically the easiest to obtain; however, for rea-
sons of global positioning of objects, sometimes features are used that
are not invariant to translation. The color and texture unary features are
invariant to translation, rotation, and scale, but not to illumination. The
geometric unary features are invariant to all four types of perturbation,
although the height-width and straightness measures are deliberately
variant under rotation. The binary features in CITE are all invariant to
illumination, rotation, scale, and translation with the exception of the
above-below feature which varies significantly with rotation. The im-
age distance feature is the only binary feature in CITE that is symmetric
(undirected).

3 System Performance and Results

CITE is demonstrated on four scenarios: views of street scenes, views
of office objects, aerial views of airports, and the context-sensitive tree
taxonomies. The results summary for these scenarios is listed in Table 4.
In total, 253 scene elements were detected from 38 images of the four
scenarios. The knowledge bases for the scenarios were constructed from
a collection of 85 images. The knowledge bases themselves contain a
total of 155 scene elements at different levels of abstraction. Of the 253
detected scene elements, an average classification success of 96% was
achieved.

3.1 Views of Street Scenes

The street scene scenarios provide a simple demonstration of CITE in
a general environment. The knowledge base was constructed from iso-
lated and in situ examples of objects. Objects of a finite extent such as
the buildings and vehicles were learned from isolated examples. The ob-
jects of unlimited extent such as the various ground covers and the sky
were learned from landscapes containing just those scene elements.

In the first town image example, CITE correctly recognizes the objects
present on the first pass and then uses the knowledge-driven resegmen-

Table 4. Summary of results pre- Scenario KB Elements Elements Tested % Correct
sented.
Street Scenes 24 38 95
Office Scenes 64 73 95
Airport Scenes 19 70 100
Tree Taxonomies 48 72 93
Total 155 253 96
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Figure 14. Images and analysis graph
of simple street scene.

Figure 15. Text description of street
scene.
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World[0] (1.000) Consisting of:
— sky[6] (1.000)
I ground[7] (1.000) Of Type:
L road[1] (1.000)
L ground[8] (1.000) Of Type:
L grasy2] (1.000)
L dairy[9] (1.000) Constructed from:
- building[15] (1.000)
L building[16] (1.000)
L roof[17] (1.000)
- firetruck[10] (1.000) Constructed from:
— body[12] (1.000)
- wheel§[13] (1.000)
L emblem[14] (1.000)
L pencilpine[11] (1.000) Constructed from:
L trunk[18] (0.981)
L foliage[19] (0.981)

tation to obtain a finer-resolution description. The resulting object labels
and segment boundaries are shown overlaying the original image in Fig-
ure 14. Their interpretation is shown in Figure 15, with the results at
both the leaf node description (most detailed) and at the next level up.
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Figure 16. Images and analysis graph

of complex street scene.

Figure 17. Text description
of street scene.

World[0] (1.000) Consisting of:

| ground[46] (1.000) Of Type:

| sky[25] (0.876) L grasg2] (0.868)
L ground[26] (1.000) Of Type: L ground[47] (1.000) Of Type:
L grasg1] (0.825) L grasg3] (0.848)
L pencilping[27] (1.000) Constructed from: L ground[48] (1.000) Of Type:
foliage[9] (0.932) L grasg4] (0.563)

trunk[5] (0.878)
L pencilping[29] (1.000) Constructed from:
L foliage[22] (0.922)
L pencilping[31] (1.000) Constructed from:
L foliage[23] (0.939)
I house[36] (0.666) Constructed from:

I ground[49] (1.000) Of Type:
L road[6] (1.000)

I ground[50] (1.000) Of Type:
L grass{7] (0.687)

I ground[51] (1.000) Of Type:

L road[8] (0.830)

L building[19] (1.000) L firetruck[52] (1.000) Constructed from:
L roof[18] (1.000) L body[12] (0.842)
L fueltruck[44] (1.000) Constructed from: I ground[53] (1.000) Of Type:
| chassig[11] (1.000) L grasg13] (1.000)
L tank[10] (0.920) L ground[54] (1.000) Of Type:
| dairy[45] (1.000) Constructed from: L grasg14] (0.716)
L roof[21] (0.934) L ground[55] (1.000) Of Type:
L building[20] (1.000) L path[15] (1.000)

L ground[56] (1.000) Of Type:
L road[16] (1.000)

In the more complex street scene shown in Figure 16, a total of 24
scene elements have been detected. Of these, one is a misclassification
and three are the result of spurious segmentations. One of the spurious
segmentations, the shadow under the fuel truck, generates an incorrect
“trunk” object. The other two are under and over segmentations, but
are correctly labeled as “grass.” Figure 17 shows the full text description
generated by CITE, including the groupings of the low-level parts into
constituent objects.

3.2 Views of Office Objects

This section illustrates CITE in operation recognizing small collections
of objects from a database of twenty objects arranged in a hierarchy
containing 64 elements. The full knowledge base is listed in an expanded
text form in Figure 18. Following this are four figures showing the results
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Figure 18. Text description
of office knowledge base.

VIDERE 1:2

World[0] Consisting of: mug-molly[34] Constructed from:
L stapler[57] Of Types: body[35]
stapler2[53] Constructed from: Eface[36]
base[54] rim[37]
lever[55] mug-craig[31] Constructed from:
stapler1[49] Constructed from: body[32]
base[50] rim[33]
lever[51] L drink[14] Constructed from:
head[52] bottle[15]
I holepunch[56] Of Types: lid[16]

holepunch-old[26]

L storage[62] Of Types:

L calculator[4] Constructed from:

holepunch-new[23] Constructed from: | case[5]
base[24] L keypad[6]
handle[25] L display[7]
L liquidpaper[30] L tool[63] Of Types:

| plierg[45] Constructed from:

disk[10] Constructed from: handle[46]
case[11] Eja\NSW]
dlide[12] handle[48]
label[13] L keyset[27] Constructed from:
cdrom[1] Constructed from: holder[28]
case[ 2] keys[29]
label[3] L gluestick[20] Constructed from:
L duster[17] Constructed from: base[21]
L felt[18] lid[22]
L handle[19] L pen[58] Of Types:
L receptacle]61] Of Types: pen-green[42] Constructed from:
L cup[60] Of Types: body[43]
tea[9] lid[44]
espresso[ 8] pen-blue[39] Constructed from:
L mug[59] Of Types: body[40]
lid[41]

|_ mug-soup[38]

for the system labeling and interpreting small collections of partially
overlapping objects, with results perfectly consistent with the knowledge
base.

Four of five objects in Figure 22 are correctly recognized, with the
teacup being mismatched for part of a type of mug. This small error
can be corrected with subsequent incremental supervised learning, but
has been included to demonstrate one possible failure mode of CITE. In
total, five previously unseen images were tested using this knowledge
base, with an average correct labeling rate of 95%.

3.3 Aerial Views of Airports

The objective of this section is to demonstrate the operation of the
clique-resolving process and the hierarchical relaxation labeling as a
constraint-propagation mechanism. To demonstrate these features of
CITE, seven aerial images of an airport are analyzed to determine not
only the labeling of the constituent parts, but the local configurations
that they are in. These local configurations have been chosen to heavily
overlap so that the system must rely on relational information to resolve
ambiguities.
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Figure 19. CD, keyset, gluestick, and
drink scene.

Figure 20. Text description of CD, World[0] (1.000) Consisting of:
keyset, gluestick, and drink scene. | gluestick[13] (1.000) Constructed from:
base[6] (1.000)
lid[7] (0.831)
L tool[15] (1.000) Of Type:
L keyset[10] (1.000) Constructed from:
L holder[2] (1.000)
L keys[1] (1.000)
L receptacle[16] (1.000) Of Type:
L drink[11] (0.896) Constructed from:
L bottle[3] (0.906)
L 1id[8] (0.891)
L storage[17] (1.000) Of Type:
L cdrom[12] (0.545) Constructed from:
L case[5] (0.725)
L label[4] (0.706)
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Figure 21. Two pens, two cups, and
holepunch scene.

Figure 22. Text description of pens,  World[1] (1.000) Consisting of:
cups, and holepunch scene. | receptacle[14] (1.000) Of Type:

L mug[19] (1.000) Of Type:

L mug-molly[20] (1.000) Constructed from:
L face[9] (1.000)

L pen[15] (1.000) Of Type:

L pen-blueg[11] (1.000) Constructed from:
L body[3] (1.000)
L lid[2] (1.000)
L holepunch[16] (1.000) Of Type:

L hol epunch-new[12] (1.000) Constructed from:
L base[4] (1.000)
L handl€e[5] (1.000)
L pen[17] (1.000) Of Type:

L pen-green[13] (1.000) Constructed from:
L body[6] (1.000)
L lid[7] (1.000)
L receptacle[21] (1.000) Of Type:

L cup[22] (1.000) Of Type:

L espresso[8] (1.000)
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Figure 23. Full knowledge base used
in airport analysis.
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The full knowledge base in shown in Figure 23. This was constructed
by learning each object from a single image, followed by learning each
higher-level configuration from full-scene examples. As can be seen, the
“plane” object plays a central role, being involved in five higher-level
objects: the “loading,” the “emergency,” the “service,” the “landing,” and
the “refueling” objects. When a plane is detected, the system must use
relational information to determine which of the five possible parent
objects the plane is most likely to belong to, and then propagate this
through the scene interpretation graph using relaxation labeling. The
clique-resolving operator generates the most likely set of possibilities,
and relaxation labeling resolves these to determine a subset of high
compatibility.

A further complication in these scenes is that a number of objects
in the database can appear in isolation, or as part of a higher-level ob-
ject. The determination for this in each case rests solely on the strength
of the binary matching, and the propagation of the resulting hypothe-
ses through the scene interpretation structure. These nodes are those
whose names are preceded by an asterisk are described as “Not-Always-
Partof.”

The first result (Figures 24 and 25) shows one single instance situ-
ation, and the second result (Figures 26 and 27) shows a situation in
which two planes are involved. In this second test, CITE must deter-
mine not only if a particular situation is occuring, but which objects are
involved in that situation. In all cases this is determined solely by the
propagation of relational matching through the hierarchical scene de-
scription. Five other images were tested, and CITE correctly recognized
the various objects and the higher-level situations in which they were
involved.

4 System Operation

CITE is implemented as a single X-Windows Unix program. The graph-
ical user interface uses the Motif widget set and was developed on
a Silicon Graphics Indy using GNU C++. The system dynamically
determines whether the live video capture hardware is present, and
if so allows the user to grab images directly. However, most of the
testing of CITE was done using pre-saved images that can be loaded
into CITE at any point. Each of the main windows of the CITE sys-
tem is described in the following paragraphs. However, for more de-
tails and downloading instructions, consult www.cs.curtin.edu.au/
“cdillon/.

The Command Window

The command window is the main control window in CITE. It lets the
user enter commands from pulldown menus or from a one-line text
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Figure 24. Refueling image and
analysis graph.

hangar.

World

Figure 25. Text description of refuel-  World[55] (1.000) Consisting of:

ing scene. | grass56] (1.000)

L runway[57] (1.000)

L *hangar[65] (1.000)

L refuel[68] (0.946) Constructed from:
fueltruck[61] (1.000)
plane[59] (1.000)

L *firetruck[70] (1.000)

L *terminal[72] (1.000)

L *tower[73] (1.000)
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Figure 26. Emergency and load
image and analysis graph.

hangar.

World

Figure 27. Text description of emer-  World[90] (1.000) Consisting of:

gency and load scene. | grass[91] (1.000)

L runway[92] (1.000)

L *hangar[101] (1.000)

L emergency[102] (0.946) Constructed from:
plane[94] (1.000)
firetruck[96] (1.000)

L loading[105] (0.946) Constructed from:
plane[95] (1.000)
terminal[97] (1.000)

L *tower[110] (1.000)
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Figure 28. The main command
window in CITE.
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System  KBase Scene Image Video Options

Jul 3 16:26:32: Frogress: Loaded Images/HoleFunchl sholepunchl-1.rgb (378x2
Jul 316:26:33: Progress: System started
Jul 316:26:26: Progress: Segmenting VINecde: O

show depth O
show depth 1
set name stapler

command prompt. Figure 28 shows the command window as it normally
appears. The top text window contains the status and progress-reporting
messages from CITE. The middle text window is a history of the previous
entered commands, and the lower text window is the command prompt.

Under the main menu in the command window are menu options that
duplicate the commands that can be entered at the command prompt. In
addition, there are menu options for displaying a live video window and
for grabbing the live video input and saving it to a file (Silicon Graphics
machines only). There is an additional window under the “Options”
window which contains a slidebar for each of the real-valued options
under the “set” command.

The Image Window

The image window contains the images of the current scene and their
segmentations. When labeling is complete the labels are placed over the
segmented image. The user can choose to display the segmentation at
any level, such as at leaf nodes, at parents of leaf nodes, and so on. (See
Figure 29.)

The Data Graph Window

The data graph window is the most important visual display in CITE.
It contains three panels arranged vertically. The top panel contains the
knowledge base, the middle panel contains the scene interpretation, and
the bottom panel contains the visual interpretation for each image.

There are many display options that control what is displayed on the
screen. This includes displaying hypotheses from the visual interpreta-
tions to the scene interpretation, and from the scene interpretation to
the knowledge base. The user can also select nodes for editing, group-
ing, or deleting with the mouse. The data graph window is shown in
Figure 30.

The menu options in this window enable various levels of display
detail of hypotheses. There is a considerable amount of information in
the three graphs represented in this window, and to display all this at
once would be virtually impossible. Nodes may be selected by clicking
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Figure 29. The image and segmenta-
tion window.

VIDERE 1:2

| Image Viewer T
Cptions

foliage

on them with the left mouse button. Clicking on them with the right
button brings up the display window for that node. There are three basic
types of node display window: one for VI nodes, one for SI nodes, and
one for KB nodes.

The Hypothesis Weight Window

A more detailed analysis of the hypothesis weights can be obtained
via the hypothesis weight window. This displays a graph of hypothesis
weights as a function of time. The weights that are displayed can be
individually selected from the node display windows by clicking on the
text display of the particular hypothesis of interest. Figure 31 shows the
hypothesis weight window with three SI-KB hypotheses selected. Every
hypothesis has a unique integer identifier, and this is displayed on this
window as well as the node display window.

The horizontal scale in the hypothesis weight window is the iteration
number where each iteration represents one complete pass through the
process stack when a change occurred in at least one hypothesis. This
prevents the system running to infinity with subsequent loss of the inter-
esting detail of the hypothesis curves. The horizontal axis is autoscaling,
and the vertical axis ranges between 0.0 and 1.0.

The profile window CITE has a cyclic process scheduler that runs
each loaded operator for a short period before going to the next. The
total amount of time spent in each operator is stored in the operator de-
scription class and displayed in the profile window shown in Figure 32.
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Figure 30. The data graph window.

Figure 31. The hypothesis graphing

window.
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Options KB 31 VI Hypotheses
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078607500894

Options

0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17

Continuous

The columns in the profile window show the total time spent execut-
ing each operator, the overall percentage, a short-term percentage, a
long-term percentage, and the absolute time spent in the most previous
execution. In addition there is a performance measure expressed relative
to the original development platform of a 150 MHz R4400 processor.
The profiler gives useful information as to the relative computation re-
quired for each subtask within CITE.

Results Window

In order to produce the highest quality results, there is an additional
results window that shows the image in the original size with black-
bordered regions and the region labels in a more printable font. The
results window is shown in Figure 33 and is displayed from a menu entry
under the main system menu in the command window.
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Figure 32. The operator profile
window.

Figure 33. The results window.
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B Feewnmewe o

PROCESS NAME Total(s) Total(%) Short(3%) Leong(%) Last(ms)
Profile: Refresh 34 0.4 1.3 1.3 0.0
Check: VINode 33 04 049 1.1 0o
Checkz: VINode 52.0 136 07 1.2 0o
Init: Scene 21 0.8 14 1.1 0o
Init: ¥INode 42 1.1 1.2 1.5 0o
Segmenter: Run B4.9 17.0 4.4 33 0.0
Segmenter: Initial 17.8 4.6 6.7 6.3 0.1
Segmenter: Grouping by CC - 14.0 a7 4.1 45 0.0
Segmenter: Clique Growping 2.1 0.6 1.7 1.2 0o
Features: Basic Unary 181 a0 2.0 9.9 0.1
Features: Basic Binary 45.5 25.0 373 365 0.3
Matcher: BEasic Unary 10.0 2.6 kA 3.7 0.0
IMatcher: 51 From V| a6 2.5 3.3 36 0.0
IMatcher: V| From 51 o a7 135 142 0.1
Grouper: Hierarchy parts 83 2.3 3.3 32 0o
Matcher: Hierarchy KB 17.9 4.7 77 7.9 0.1
Learning: monitor 2.3 0.6 14 1.1 0.0
‘Weight Updater 23 0.6 0.3 1.0 0.0
CPU Performance Check 15.8 4.1 1.7 1.4 0o
ReSegmenter 22 0.6 0.9 1.1 0.0
Uptime: 00:15:27
Performance compared to 150MHz R4400:  Current: 0.930 Best: 0.935

B Rewwewe (]

Close | Save | | Refresh |

e trunk ¢ orT

5 Conclusion

In this paper we have presented a new system for domain-specific image
annotation and interpretation that integrates bottom-up and top-down
processing to integrate object recognition and scene-understanding ca-
pabilities within the same framework. The more novel aspects of this
paper are in the use of hierarchical structures to describe world knowl-
edge in addition to scene and visual decompositions, knowledge-driven
resegmentation, incremental supervised learning methods, and hierar-
chical relaxation labeling.

The explanatory least generalization on decision trees is presented
as one method of converting non-incremental learning algorithms into
an incremental form that obeys the identified desirable qualities of sub-
linear growth in memory and computational complexity. Results are
presented illustrating the performance improvement gained by closing
the loop on segmentation with the knowledge-driven resegmentation
algorithm.
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Again, CITE demonstates that the procedures required to build sys-
tems that accomplish understanding image components, as they refer-
ence past knowledge, as expressed by domain-specific annotation, is
complex and requires combining vision, learning, and knowledge rep-
resentation. Although all these processes have been isolated in human
cognition and, to some extent, in the cerebral cortex, the types of pro-
cesses and their operations used in CITE were necessary for us to imple-
ment a trainable and robust system without making any claims that this
is exactly how humans solve such tasks.
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