
CSC 242: Artificial Intelligence

Course website:
www. cs. r ochest er . edu/ u/ kyr os/ cour ses/ csc242

Instructor: Kyros Kutulakos
Office: 623 CSB

Extension: x5-5860

Email: kyros@cs.rochester.edu

Hours: TR 3:30-4:30 (or by appointment)

TA: Joel Tetreault
Email: tetreaul@cs.rochester.edu

Hours: M 1:00-2:00

Recitations: TBA

Textbooks:
Russell & Norvig, Artificial Intelligence

Wilensky, Common LISPcraft

Another very good LISP textbook:
Winston & Horn, LISP (Addison-Wesley)

Common Lisp

• LISP is one of the most common “AI programming
 languages”

• LISP (=LISt Processing) is a language whose main
 power is in manipulating lists of symbols:

(a b c (d e f (g h)))

 arithmetic operations are also included
 (sqr t (+ (* 3 3) (* 4 4)))

• Lisp is a general-purpose, interpreter-based
 language

• All computation consists of expression evaluations:
 l i sp- pr ompt >(sqr t (+ (* 3 3) (* 4 4)))
 l i sp- pr ompt > 25

• Since data are list structures and programs are list
 structures, we can manipulate programs just like data

• Lisp is the second-oldest high-level programming
 language (after Fortran)

Getting Started

• Command-line invocation
uni x- pr ompt >cl
system responds with loading & initialization
messages followed by a Lisp prompt
USER(1) :
whenever you have balanced parentheses & hit
return, the value of the expression (or an error
message) are returned

USER(1) : (+ 1 2)
3
saying “hello”

USER(2) : ‘ hel l o
HELLO
USER(3) : “ Hel l o”
“ Hel l o”

• Exiting Lisp:
USER(2) : (exi t)

uni x- pr ompt >

Getting Started (cont.)

• Reading a file f that is in the same
 directory from which you are running Lisp:

(l oad “ f ”)
system responds by reading & evaluating all
expressions in the file & returning with a prompt for
further interactive input; to read file from a different
directory use
(l oad “ / u/ j oe/ l i sp- pr og/ f ”)

after all expressions in file are evaluated, you can use
functions & constants that were defined in f

• Lisp file names conventionally have the
 . l i sp extension

Basic Lisp Primitives

• Atom
• Numeric

– Fixed point
- 17, 3400

– Fractions
1/ 2, 8/ 3

– Floating point
- 17. 0, 0. 33333, 2. 34

• Symbols (literal atoms)
– Boolean values

T, NI L

– Other symbols
John, l oves, Mar y123, Book- 1

• Characters
#\ a, #\ A, #\ !

• Strings
“ Thi s i s a st r i ng”

• List: a left parenthesis, followed by 0 or more
 atoms, followed by a right parenthesis

(+ 1 2 3 4 5)

• Symbolic expression (s-expression)
A list or an atom

Basic Lisp Primitives: Lists

• Lists provide an intuitive way to organize &
 represent concepts
(r ochest er (a- ki nd- of uni ver si t y)

 (l ocat i on (r ochest er new- yor k)

 (phone 253- 7000)

 (school s (comput er - sci ence

 busi ness

 engi neer i ng)))

• Lists are like “bowls”

• Parentheses are extremely important when
 defining a Lisp list

• In Lisp, empty lists are significant
() = NI L

• In Lisp, “contains” means “directly contains”

b ca

() () (a) b ()() c=

Basic Lisp Primitives (cont.)

• Expressions
a list expression:
USER(1) : (+ 1 2 3 4)
10

an atom expression:
USER(2) : 5

5

• Expressions involving lists always use the
 prefix notation convention:

(f unct i on- name ar g- 1 ar g- 2 … ar g- n)

• The prefix notation ensures uniformity since the
 function name is always the first argument in a list

• When producing the value of a list expression, the
 first element of the list generally is the name of the
 function used to obtain the value

• The process of computing the value of an
 expression is called an evaluation

• Lisp programs are just sequences of expressions

Basic Lisp Primitives (cont.)

• Quotes stop expression evaluation
(+ 1 2 3)
6
‘ (+ 1 2 3)
(+ 1 2 3)
 ‘ (A B C)
(A B C)
(A B C)
ERROR

• Lisp binding operations provide a mechanism for
 assigning values to symbols

(set f ab- l i s t ‘ (a b))
(A B)

• The side effect of set f is to associate the symbol
 ab- l i st with the list (A B)

ab- l i st
(A B)
(set f one 1)
1
(+ one 2 3)
6

Basic List Manipulation

• f i r st returns the first element of a list:
(f i r st ‘ (a b c d))
A

(f i r st ())
NI L
(f i r st ‘ ((a b) (c d)))
(A B)

• r est returns a list with the first element removed
(r est ‘ (a b c d))
(B C D)
(r est ‘ (c))

NI L
(r est ‘ ())
NI L

• obtaining the second element of a list:

(f i r st (r est ‘ (a b c d)))

Basic List Manipulation

• old-fashioned expressions for list manipulation:
(car ‘ (a b c))
A
(cdr ‘ (a b c))
(B C)
(cadr ‘ (a b c))
B
(car (cdr ‘ (a b c)))
B
(caddr ‘ (a b c))
C

• higher-order list manipulation:
(nt hcdr 3 ‘ (a b c d e f g))
(D E F G)
(but l ast ‘ (a b c d e f g) 3)
(A B C D)
(but l ast ‘ (a b c d e f g) 100)
NI L

• concatenating an element to a list:
(cons ‘ a ‘ (a b))
(A A B)
(cons ‘ (a b) ‘ (a b))
((A B) A B)

• appending lists:
(append ‘ (a b c) ‘ (d e f))
(A B C D E F)

Basic List Manipulation

• getting the length of a list:
(l engt h ‘ (a b c))
3

• reversing a list:
(r ever se ‘ (a b c))
(C B A)

• getting the last element of a list:
 (l ast ‘ (a b c d))
 (D)

• creating a new list:
(l i s t ‘ (a b c) ‘ (d e f))
((A B C) (D E F))

Basic Expression Evaluation

• Expressions like
 ‘ hel l o
 (l oad “ f ”)
 (set f n 5)

 are complete stand-alone programs, not simply
 statements (as in other programming languages)

• Numbers, characters, strings, boolean literals
 evaluate to themselves
• Quotes prevent evaluation
• Unquoted expressions are like “function calls”

(cons ‘ a ‘ (b c d))

1. Fi r st el ement of l i st i s t he
 f unct i on’ s name

2. Al l r emai ni ng el ement s of l i s t ar e
 f i r st eval uat ed & t hen used as
 ar gument s t o t he f unct i on

(A B C D)

• Some functions do not evaluate all their
 arguments

(set f ab- l i st ‘ (a b))

Fi r st ar gument i s not eval uat ed

Basic Storage Handling

• Unlike languages such as C, C++, Pascal, etc,
 memory allocation & storage handling in Lisp are
 transparent to the programmer

• Internal steps taken by Lisp interpreter upon
 execution of

(set f ab- l i s t ‘ (a b c))
(A B C)

1. Al l ocat e memor y t o st or e t he i nt er nal
 r epr esent at i on of l i s t ‘ (a b c)

2. Bi nd t he name ab- l i s t t o t he newl y-
 al l ocat ed chunk of memor y

• Internal steps taken by Lisp interpreter upon
 execution of

(append ab- l i st ‘ (a b))
(A B C A B)

1. Al l ocat e memor y t o st or e t he i nt er nal
 r epr esent at i on of l i s t ‘ (a b)

2. Eval uat e t he symbol ab- l i s t

3. Al l ocat e memor y t o st or e t he i nt er nal
 r epr esent at i on of t he l i s t (A B A B C)

• All list manipulation operations considered so far
 are non-destructive

 ab- l i st
(A B C)

Defining New Functions

• Lisp programs are generally created by writing new
 functions that are composed of a sequence of
 expressions:

(def un hel l o () “ Hel l o t her e! ”)
HELLO

the side-effect of def un is to bind the name hel l o to
a function that returns “ Hel l o t her e”

• Function definitions are evaluated just like any other
 Lisp expression

(def un <f unct i on- name>
 (<ar g- 1> <ar g- 2> . . .)
 <expr essi on- 1>
 <expr essi on- 2>

 . . .)

• Executing a Lisp function:

(<f unct i on- name> <ar g- 1> <ar g- 2>. . .)

(hel l o)
“ Hel l o t her e”

Data Structures

• Already seen:
At oms, l i s t s

• Other data structures:
Associ at i on l i st s, ar r ays,
st r uct ur es, dot t ed pai r s,
f unct i ons, st r eams, . . .

• Association lists are just lists of sub-lists
(set f sar ah ‘ ((hei ght . 54) (wei ght 4. 4))

key val ue

• Retrieving elements from an association list
(assoc <key> <associ at i on- l i s t >)

(assoc ‘ hei ght sar ah)
(HEI GHT . 54)

Data Structures (cont.)

• Creating a Lisp array:
(set f a (make- ar r ay ‘ (3 4)

: i ni t i al - cont ent s
 ‘ (((a b c d) 2 3 4)
 (“ t hi s” 5 6 7)
 (#\ c 8 9 10))))

• Retrieving an array element:
(set f val ue (ar ef a 2 3))
10

• Changing a value:
(set f (ar ef a 2 3) 12)

• Creating & manipulating a Lisp structure:
(def st r uct cour se name t i me cr edi t s)
(set f csc242 (make- cour se

: name “ AI ”
: t i me ‘ TR300- 415

: cr edi t s 4)
(set f (cour se- t i me csc242) ‘ TR200- 315)
(cour se- t i me csc242)
TR200- 315

Dotted Pairs

• We can usually think of one’s data as atoms & lists;
 however, lists are actually built out of dotted pairs

• Dotted pairs provide a handle to Lisp’s internal
 list representation

internal representation of list (A)

internal representation of list (A B)

each “cell represents a dotted pair:
 (A) is (A . NI L)
 (A B) is (A . (B . NI L))

• Dotted pairs are especially useful for manipulating
 lists efficiently & for creating complex data structures
 (e.g., binary trees)

A

B

A

Pointer to NIL

Dotted Pairs (cont.)

• internal representation of list (A B C)

dotted pair representation:

• effect of expression
(set f x ‘ (a b (c d e)))

A B

(A . (B . (C . NI L)))

C D E

X

C

A

B

Dotted Pairs (cont.)

• Dotted pairs can be used to represent binary trees
 that are not lists:

dotted pair representation:

(A . (B . C))

(A B . C)

A

B C

Dotted Pairs: CAR & CDR

• The left part of a dotted pair (the destination of the
 left pointer) is called its car and the right part its cdr
 (pronounced “could’r”)

• Examples:
(car ‘ (a)) � (car ‘ (a . NI L))

A
(cr d ‘ (a)) � (cdr ‘ (a . NI L))
NI L

(car ‘ (a b)) � (car ‘ (a . (b .
NI L)))
A
(cdr ‘ (a b)) � (cdr ‘ (a . (b .
NI L)))
� (B. NI L)
(B)

• In reality, car and cdr simply manipulate pointers
 to lists

(car ‘ (a b)) equi v. t o (f i r st ‘ (a b))
(cr d ‘ (a b)) equi v. t o (r est ‘ (a b))

Dotted Pairs (cont.)

• Constructing a dotted pair:
(cons ‘ a ‘ b)
(A. B)
(cons ‘ a NI L)
(A)

• When the second argument of cons is a list, we can
 think of its operation as inserting the first argument at
 the head of the list given as second argument:

(cons ‘ a ‘ (b c))

(A B C)

(cons ‘ (a b) ‘ (c (d e)))
((A B) C (D E))
(cons () ())
(())
(NI L)

Summary

• Basic Lisp primitives

• Manipulating lists in Lisp

• Expressions in Lisp & their evaluation

• Defining simple functions

• Basic Lisp data structures

• Dotted pairs

Next time:
– Joel will be talking about functions,

iteration, etc
– First programming assignment

