CSC 242: Artificial Intelligence

Course website:

WWW. CS. rochest er. edu/ u/ kyr os/ courses/ csc242

Instructor: Kyros Kutulakos

Office: 623 CSB

Extension: x5-5860

Email: kyros@cs.rochester.edu

Hours: TR 3:30-4:30 (or by appointment)

TA: Joel Tetreault
Email: tetreaul@cs.rochester.edu
Hours: M 1:00-2:00
Recitations: TBA

Textbooks:
Russell & Norvig, Artificial Intelligence
Wilensky, Common LISPcraft

Another very good LISP textbook:
Winston & Horn, LISP (Addison-Wesley)

Common Lisp

 LISP is one of the most common “Al programming
languages”

* LISP (=LISt Processing) is a language whose main
power is in manipulating lists of symbols:

(abc (def (gh)))

arithmetic operations are also included

(sgrt (+ (* 3 3) (* 4 4)))

* Lisp is a general-purpose, interpreter-based
language

* All computation consists of expression evaluations:

lisp-prompt>(sqrt (+ (* 3 3) (* 4 4)))
| 1 sp- pronpt> 25

 Since data are list structures and programs are list
structures, we can manipulate programs just like data

* Lisp is the second-oldest high-level programming
language (after Fortran)

Getting Started

e Command-line invocation

uni x- pr onpt >cl

system responds with loading & initialization
messages followed by a Lisp prompt
USER(1) :

whenever you have balanced parentheses & hit
return, the value of the expression (or an error
message) are returned

USER(1): (+ 1 2)

3

saying “hello”

USER(2): ‘hello

HELLO

USER(3): “Hell 0"

“Hel | 0”

e EXiting Lisp:
USER(2): (exit)
uni x- pronpt >

Getting Started (cont.)

 Reading a file f that is in the same
directory from which you are running Lisp:
(load “f™)
system responds by reading & evaluating all
expressions in the file & returning with a prompt for
further interactive input; to read file from a different

directory use
(load “/u/joel/lisp-prog/f”)

after all expressions in file are evaluated, you can use
functions & constants that were defined in f

e Lisp file names conventionally have the
.11 sp extension

Basic Lisp Primitives

e Atom
 Numeric
— Fixed point
-17, 3400
— Fractions
1/ 2, 8/3

— Floating point
-17.0, 0.33333, 2.34

« Symbols (literal atoms)

— Boolean values
T, NL

— Other symbols
John, |oves, Maryl23, Book-1

e Characters

#\a, #\A #\!
 Strings

“This is a string”

e List: a left parenthesis, followed by O or more
atoms, followed by a right parenthesis
(+ 12 3 405

» Symbolic expression (s-expression)
A list or an atom

Basic Lisp Primitives: Lists

* Lists provide an intuitive way to organize &
represent concepts
(rochester (a-kind-of university)

(l ocation (rochester new york)

(phone 253-7000)

(school s (conputer-science
busi ness
engi neering)))

e |ists are like “bowls”

(((a) b)(() c))

ey flLte]

« Parentheses are extremely important when
defining a Lisp list

* In Lisp, empty lists are significant
() = NIL

* In Lisp, “contains” means “directly contains”

Basic Lisp Primitives (cont.)

* EXpressions

a list expression:
USER(1): (+ 1 2 3 4)

10

an atom expression:
USER(2): 5

5

» Expressions involving lists always use the
prefix notation convention:

(function-nane arg-1 arg-2 ...arg-n)

» The prefix notation ensures uniformity since the
function name is always the first argument in a list

* When producing the value of a list expression, the
first element of the list generally is the name of the
function used to obtain the value

* The process of computing the value of an
expression is called an evaluation

e Lisp programs are just sequences of expressions

Basic Lisp Primitives (cont.)

» Quotes stop expression evaluation
(+ 1 2 3)
6
‘(+1 2 3
(+ 1 2 3)
‘(A B Q)
(A B Q
(A B Q
ERROR

* Lisp binding operations provide a mechanism for
assigning values to symbols

(setf ab-list ‘(a b))
(A B)

* The side effect of set f is to associate the symbol
ab-11 st with the list (A B)
ab-11 st
(A B)
(setf one 1)
1
(+ one 2 3)
6

Basic List Manipulation

e first returns the first element of a list:
(first “(a b c d))

A

(first ())

NI L

(first ‘((a b) (c d)))
(A B)

e rest returns a list with the first element removed
(rest ‘“(a b c d))

(B C D)
(rest ‘(c))
NI L

(rest “())
NI L

* obtaining the second element of a list:

(first (rest ‘(a b c d)))

Basic List Manipulation

« old-fashioned expressions for list manipulation:

(car ‘(a b c))

A

(cdr “(a b c))

(B O

(cadr ‘(a b c))

B

(car (cdr ‘(a b c)))
B

(caddr ‘(a b c))

C

* higher-order list manipulation:

(nthcdr 3 ‘(abcdef g))
(DEF QG

(butlast ‘“(abcdef g) 3
(A B C D)

(butlast ‘(a bcdef g) 100)
NI L

e concatenating an element to a list:
(cons ‘a ‘(a b))

(A A B)

(cons ‘(a b) ‘(a b))

((A B) A B)

» appending lists:

(append ‘(a b c) ‘(de f))
(ABCDEF

Basic List Manipulation

e getting the length of a list:
(length ‘(a b c))
3

e reversing a list:

(reverse ‘(a b c))
(CBA

e getting the last element of a list:
(last “(a b c d))

(D)

e creating a new list:
(list “(abc) “(def))
((ABC (DEF))

Basic Expression Evaluation

« Expressions like

“hell o
(load “f")
(setf n 5)

are complete stand-alone programs, not simply
statements (as in other programming languages)

 Numbers, characters, strings, boolean literals
evaluate to themselves

» Quotes prevent evaluation
» Unguoted expressions are like “function calls”
(cons ‘a ‘(b c d))

1. First elenent of list is the
function’s nane

2. Al remaining elenents of list are
first evaluated & then used as
argunents to the function

(A B C D)

* Some functions do not evaluate all their
arguments
(setf ab-list ‘(a b))
First argunent is not eval uated

Basic Storage Handling

» Unlike languages such as C, C++, Pascal, etc,
memory allocation & storage handling in Lisp are
transparent to the programmer

* Internal steps taken by Lisp interpreter upon
execution of
(setf ab-list ‘(a b c))
(A B Q

1. Allocate nenory to store the internal
representation of list ‘“(a b c)

2. Bind the nane ab-list to the new y-
al | ocat ed chunk of nenory
* Internal steps taken by Lisp interpreter upon
execution of
(append ab-list ‘(a b))
(A B C A B)

1. Allocate nenory to store the internal
representation of list ‘(a b)

2. Evaluate the synbol ab-1ist

3. Allocate nenory to store the internal
representation of the list (AB AB O

e All list manipulation operations considered so far
are non-destructive
ab-11 st
(A B C

Defining New Functions

* Lisp programs are generally created by writing new
functions that are composed of a sequence of
expressions:

(defun hello () “Hello there!”)
HELLO

the side-effect of def un is to bind the name hel | o to
a function that returns “Hel | o t her e”

» Function definitions are evaluated just like any other
Lisp expression

(def un <functi on-name>
(<arg-1> <arg-2> ...)
<expressi on-1>
<expressi on- 2>

)

» Executing a Lisp function:
(<function-name> <arg-1> <arg-2>...)

(hel | 0)
“Hel | o t here”

Data Structures

 Already seen:
Atonms, lists

» Other data structures:

Associ ation lists, arrays,
structures, dotted pairs,
functions, streans,

» Association lists are just lists of sub-lists
(setf sarah ‘((heiTght .stt) (wei ght 4. 4))

key val ue

* Retrieving elements from an association list
(assoc <key> <association-list>)

(assoc ‘ hei ght sarah)
(HElI GHT . 54)

Data Structures (cont.)

 Creating a Lisp array:
(setf a (nake-array ‘(3 4)
initial-contents
‘(((abcd 234
(“this” 5 6 7)
(#\c 8 9 10))))

* Retrieving an array element:

(setf value (aref a 2 3))
10

e Changing a value:
(setf (aref a 2 3) 12)

» Creating & manipulating a Lisp structure:
(def struct course nane tinme credits)
(setf csc242 (make-course
:hane “Al”
time ‘ TR300-415
.credits 4)
(setf (course-tine csc242) ‘ TR200-315)
(course-tine csc242)
TR200- 315

Dotted Pairs

* We can usually think of one’s data as atoms & lists;
however, lists are actually built out of dotted pairs

» Dotted pairs provide a handle to Lisp’s internal
list representation

internal representation of list (A)
Pointer to NIL

/

¥
A

internal representation of list (A B)

/[1\
¥ N
A
/
¥
B
each “cell represents a dotted pair:
(A) is (A . NL)
(A B) is (A. (B. NL))

 Dotted pairs are especially useful for manipulating
lists efficiently & for creating complex data structures
(e.g., binary trees)

Dotted Pairs (cont.)

* internal representation of list (A B C)

/1 N\
¥ N
A
A EAN
¥
B
/
¥
C

dotted pair representation:

(A. (B. (C. NL)))

» effect of expression
(setf x ‘(a b (c de)))

X —>y "/ T

¥ ¥
A B

Dotted Pairs (cont.)

» Dotted pairs can be used to represent binary trees
that are not lists:

AN
¥ X
A
[1\
¥ X
B C

dotted pair representation:
(A. (B. Q)

(AB. O

Dotted Pairs; CAR & CDR

* The left part of a dotted pair (the destination of the
left pointer) is called its car and the right part its cdr

(pronounced “could’r”)

e Examples:
(car ‘(a)) = (car ‘(a . NWL))
A
(crd “(a)) = (cdr “(a . NL))
NI L
(car ‘“(a b)) = (car ‘(a . (b .
NI L)))
A
(cdr “(a b)) = (cdr ‘“(a. (b.
NI L)))
=(B. NI L)

(B)

* In reality, car and cdr simply manipulate pointers
to lists

(car ‘(a b)) equiv. to (first ‘(a b))
(crd ‘(a b)) equiv. to (rest ‘(a b))

Dotted Pairs (cont.)

« Constructing a dotted pair:
(cons ‘“a ‘D)
(A B)
(cons ‘a NL)

(A)

* When the second argument of cons is a list, we can
think of its operation as inserting the first argument at
the head of the list given as second argument:

(cons ‘a ‘(b c))

(A B QO

(cons ‘“(a b) ‘“(c (de)))
((AB) C(DE))

(cons () ())

(())
(NI L)

Summary

 Basic Lisp primitives

« Manipulating lists in Lisp

» Expressions in Lisp & their evaluation
 Defining simple functions

» Basic Lisp data structures

 Dotted pairs

Next time:

— Joel will be talking about functions,
iteration, etc

— First programming assignment

