UNIVERSITY of

&y ROCHESTER

Introduction to Regular Expression Derivatives
A functional, algebraic approach to generate DFAs

Schrodinger Yifan ZHU

Computer Science Department
University of Rochester

System Seminar 20 July 2023

» Derivative-based DFA generation for individual regular
expressions
» Regular expression definitions (set-based)
» Derivatives of REs
» Weak-equivalence between REs
» Congruence classes of the alphabet

» Derivative-based DFA generation for lexers (groups of RES)

UNIVERSITYsROCHESTER

What are regular expressions?

Regular expressions on an ambient set ¥ (a.k.a. alphabet) is
inductively defined with the following rules:

L= cla~platp|akb|a"|-a|l (1)

» We may abuse single characters (’a’) to represent singleton
sets.

» We use some pictures from Scott Owens’ Regular-expression
derivatives re-examined, where ~ may be omitted or replaced
by - instead.

JNIVERSITY ROCHESTER

What are regular expressions?

Regular expressions on an ambient set X (a.k.a. alphabet) is
inductively defined with the following rules:

» . C X¥: single character languages where the character comes
from a subset of the alphabet.

» ¢: empty languages.

» a ~ f3: languages where sub-language o immediately followed
by sub-language 5.

» « + [: union of languages represented by « or 5.

» «a&f3: intersection of languages represented by « and £.

» o*: Kleene closure of a.

» (: no language.

» —a: languages that a rejects.

JNIVERSITY ROCHESTER

What are regular expression derivatives?

A derivative of a regular expression . over a character is another
regular expression ¢’ that accepts languages that are accepted in
&« after character is consumed.

Jsla~b~c)=b~c
dpla~b~c)=10
da((@a+b)~b~c)=b~c

y UNIVERSITY+ ROCHESTER

What are regular expression derivatives?

(05(a) ~ B) +,(B), nullable(x)
dy(a) ~ B, —nullable(«) (2)

m;,éx;‘ UNIVERSITY« ROCHESTER

What are regular expression derivatives?

False
False
True

nullable (S) =
nullable () =
nullable (¢) =
nullable (o« ~ 3) = nullable («) A nullable (5) 3)
nullable (« + 8) = nullable («) Vv nullable (3)
nullable (a&:5) = nullable («) A nullable (5)
nullable (o*) = True
)

nullable (—a) = —nullable («)

UNIVERSITYsROCHESTER

The big picture

v

Each regular expression . represents a state in DFA.

At each state ., enumerate the alphabet ¥ and create a edge
from .2 to 0,(Z) for character ~.

Successful matches are represented by nullable expressions.
Rejecting states are indicated by 0.

v

v

v

JNIVERSITY ROCHESTER

The big picture

o a’b’c

Figure: An example DFA for (a~ b) + (a ~ ¢)

UNIVERSITYsROCHESTER

Semantically identical regular expressions?

For regular expressions with intersection and complement,
checking if two expressions accept the same set of languages may
acquire non-elementary time complexity (Aho, et al. The Design
and Analysis of Computer Algorithms)

JNIVERSITY ROCHESTER

A weaker notion of equivalence

r&r =~ r (*) r+r = r
r&s ~ s&r (*) r+s = s+r
r&s)&t ~ r&(s&t) (*) (r+s)+t = r+(s+1)

0&r ~ 0 O+r ~ -0
O&r =~ r O0+r = r
(r-s)t = r(s't) ™ =

0-r =~ 0 e o~ ¢

ro =~ 0 0"~ ¢

e'r = r -(-r) = r

re = r

Figure: A weaker notion of equivalence between REs.

UNIVERSITYsROCHESTER

A weaker notion of equivalence

» One can add/remove rules based on practical cases. (DotNet’s
alternation rule is not commutative)

» If you see the rule from left to right, it actually provides a way to
simplify and reorder rules.

» We use Wnorm(.¢) to represent apply weakly normalization
on expression . based on this weaker notion of equivalence.

JNIVERSITY ROCHESTER

Congruence classes

Iterate through the whole alphabet?
Too costly for larger alphabets!

y UNIVERSITY+ ROCHESTER

Congruence classes

Given two characters o, § € ¥ and a regular expression .
(denoted by o ~ &), we say « is congruent to 5 at expression .
if 0,(-Z) and 05(.Z’) accept the same set of languages.

a=(goyc b < Da((alb) ~ ¢) = dp((alb) ~ ©)

c
d ~(ap)c € <= g((ab) ~ c) = de((alb) ~ c) =0

y UNIVERSITY+ ROCHESTER

Congruence classes

» If we know all the congruence classes for ., we only need to
calculate the derivatives per class.
» Still no precise solution within reasonable time complexity.

» Finer partitions are safe!

JNIVERSITY ROCHESTER

Congruence classes

» If we know all the congruence classes for ., we only need to
calculate the derivatives per class.
» Still no precise solution within reasonable time complexity.

» Finer partitions are safe!

JNIVERSITY ROCHESTER

Congruence classes

ApproxCC(e) = {X}

ApproxCC(.v) = {/, X — ¥}

ApproxCC(a ~ f) — {ApproxCC(a), —nullable(«)
ApproxCC(«) A ApproxCC(3), nullable(«)
ApproxCC(« + 3) = ApproxCC(«) A ApproxCC(/3)
ApproxCC(a&) = ApproxCC(«) A ApproxCC(/3)
ApproxCC(a*) = ApproxCC(«)
ApproxCC(—«) = ApproxCC(«)
SAT={snt|seSvteT}

UNIVERSITYsROCHESTER

Congruence classes

ApproxCC((a+ (b~ a)) ~c)

=ApproxCC(a+ (b ~ a)) A ApproxCC(c)
=ApproxCC(a) A ApproxCC(b ~ a) A ApproxCC(c)
=ApproxCC(a) A ApproxCC(b) A ApproxCC(c)
={a,X—-a}A"{b,X—b} N{c, X —c}
={0,a,b,x —{a,b}} A{c,T — ¢}
={0,a,b,c,x —{a,b,c}}

Precise resultis {{a,c},b,x — {a, b, c}}.

UNIVERSITYsROCHESTER

DFA generation

Algorithm 1 DFA states exploration

procedure ExpLoreDFA(x, V, T) » x is current state (normalized), V is the set of visited states
if x’ € V then
return
end if
Ve VU{x'}
for ¢ € AprroxCC(x") do
if IsEmp1Y(c) then
continue
end if
r «— REPRESENTATIVE(c)
y «— WNorM(3,(x"))
T[x'][e] <y > update DFA transition table
ExprLoreDFA(y, V., T)
end for
end procedure

Figure: DFA States Exploration

o ROCHESTER

Regular expression vectors for lexer generation

A regular expression vector (¢4, /0o, ...,¢,) € Z"is just a tuple of
regular expressions.

Wnorm ((¢1,...,4n)) = (Wnorm(/4),..., Wnorm(¢,))

n
ApproxCC ((¢1,...,¢s)) = /\ ApproxCC((;) (5)
i=1

((t1,---,tn)) = (9(t1), ..., 0(ln))

(/\ is the meet operator defined in ApproxCC.)

UNIVERSITYsROCHESTER

Regular expression vectors for lexer generation

n
Accept (41,02, ..., £n)) = \/ nullable(¢,)
" (6)
Reject ((¢1,00,...,0n) = \ (=10
1

(A, are logical operators.)

UNIVERSITYsROCHESTER

Longest-match lexer

Algorithm 2 Longest-match Lexer

procedure LEXER(S) & S is the input
Me0 > M is the longest match, initialized to 0 (no match)
Lo + L is offset of the longest match
! + LENGTH(S)
s « State;
for i € Rance(0,1) do
¢« S[i] & ¢ is set to EOF if the lexer is at the end of the input

if s = State, then
if comptime AccerT(State;) then
Lei
M «— comptime FIRsTACCEPT (State;)
end if
if comptime RejecT(State;) then
break
end if
if ¢ € comptime AprrROXCC(State;)[0] then
s « comptime T [State,] [APPrROXCC(State,)[0]]
end if
go though all congruence classes
end if
go though all states
end for
return (M, L)
end procedure

»y UNIVERSITY*ROCHESTER

Num of States

Lexer ml-lex ml-ulex Minimal Description

Burg 61 58 58 A tree-pattern match generator
CKit 122 115 115 ANSI C lexer

Calc 12 12 12 Simple calculator

CM 153 146 146 The SML/NJ compilation manager
Expression 19 19 19 A simple expression language
FIG 150 144 144 A foreign-interface generator
FOL 41 41 41 First-order logic

HTML 52 49 49 HTML 3.2

MDL 161 158 158 A machine-description language
ml-lex 121 116 116 The ml-lex lexer

Scheme 324 194 194 R3RS Scheme

SML 251 244 244 Standard ML lexer

SML/NJ 169 158 158 SML/NI lexer

Pascal 60 55 55 Pascal lexer

ml-yacc 100 94 94 The ml-yacc lexer

Russo 4803 3017 2892 System-log data mining

L, n/a 147 106 Monitoring stress-test

Preprocessing Time

Wide Spectrum of Regex Matching Techniques

Thompson’68 algo = grep, RE2 (Google), Rust ...
Glushkov’61 algo = Hyperscan (Intel)

Metchipglcost Antimirov’95 derivatives

Backtr
IsMatch: acking
Fischer et al. 2010. Brzozowski'64 derivatives = SRM
Owens et al. 2009. NFA On-the-fly determinization of NFA
POSIX semantics:
Sulzmann and Lu. 2012. Derivatives
Ausaf et al. 2016. DFA

Preprocessing cost

This paper: .NET RegexOptions.NonBacktracking
PCRE semantics: for regexes with anchors

Figure: PLDI slides for Derivative Based Nonbacktracking Real-World
Regex Matching with Backtracking Semantics

ROCHESTER

