Introduction to Regular Expression Derivatives

A functional, algebraic approach to generate DFAs

Schroedinger Yifan ZHU

Computer Science Department
University of Rochester
Agenda

- Derivative-based DFA generation for individual regular expressions
 - Regular expression definitions (set-based)
 - Derivatives of REs
 - Weak-equivalence between REs
 - Congruence classes of the alphabet
- Derivative-based DFA generation for lexers (groups of REs)
What are regular expressions?

Regular expressions on an ambient set Σ (a.k.a. alphabet) is inductively defined with the following rules:

$$\mathcal{L} := \mathcal{I} \mid \varepsilon \mid \alpha \sim \beta \mid \alpha + \beta \mid \alpha \& \beta \mid \alpha^* \mid \neg \alpha \mid \emptyset$$ \hspace{1cm} (1)

- We may abuse single characters (‘a’) to represent singleton sets.
- We use some pictures from Scott Owens’ Regular-expression derivatives re-examined, where \sim may be omitted or replaced by \cdot instead.
What are regular expressions?

Regular expressions on an ambient set Σ (a.k.a. alphabet) is inductively defined with the following rules:

- $\mathcal{S} \subseteq \Sigma$: single character languages where the character comes from a subset of the alphabet.
- ϵ: empty languages.
- $\alpha \sim \beta$: languages where sub-language α immediately followed by sub-language β.
- $\alpha + \beta$: union of languages represented by α or β.
- $\alpha \& \beta$: intersection of languages represented by α and β.
- α^*: Kleene closure of α.
- \emptyset: no language.
- $\neg \alpha$: languages that α rejects.
What are regular expression derivatives?

A **derivative** of a regular expression \(L \) over a character is another regular expression \(L' \) that accepts languages that are accepted in \(L \) after character is consumed.

\[
\partial_a(a \sim b \sim c) = b \sim c \\
\partial_b(a \sim b \sim c) = \emptyset \\
\partial_a((a + b) \sim b \sim c) = b \sim c
\]
What are regular expression derivatives?

\[\partial_\gamma (I) = \begin{cases} \varepsilon, & \gamma \in I \\ \emptyset, & \gamma \notin I \end{cases} \]

\[\partial_\gamma (\varepsilon) = \emptyset \]

\[\partial_\gamma (\alpha \sim \beta) = \begin{cases} (\partial_\gamma (\alpha) \sim \beta) + \partial_\gamma (\beta), & \text{nullable}(\alpha) \\ \partial_\gamma (\alpha) \sim \beta, & \neg \text{nullable}(\alpha) \end{cases} \]

\[\partial_\gamma (\alpha + \beta) = \partial_\gamma (\alpha) + \partial_\gamma (\beta) \]

\[\partial_\gamma (\alpha \& \beta) = \partial_\gamma (\alpha) \& \partial_\gamma (\beta) \]

\[\partial_\gamma (\alpha^*) = \partial_\gamma (\alpha) \sim \alpha^* \]

\[\partial_\gamma (\neg \alpha) = \neg \partial_\gamma (\alpha) \]
What are regular expression derivatives?

\[
\begin{align*}
\text{nullable } (S) &= \text{False} \\
\text{nullable } (\emptyset) &= \text{False} \\
\text{nullable } (\epsilon) &= \text{True} \\
\text{nullable } (\alpha \sim \beta) &= \text{nullable } (\alpha) \land \text{nullable } (\beta) \\
\text{nullable } (\alpha + \beta) &= \text{nullable } (\alpha) \lor \text{nullable } (\beta) \\
\text{nullable } (\alpha \& \beta) &= \text{nullable } (\alpha) \land \text{nullable } (\beta) \\
\text{nullable } (\alpha^*) &= \text{True} \\
\text{nullable } (\neg \alpha) &= \neg \text{nullable } (\alpha)
\end{align*}
\]
The big picture

- Each regular expression \mathcal{L} represents a state in DFA.
- At each state \mathcal{L}, enumerate the alphabet Σ and create an edge from \mathcal{L} to $\partial_\gamma(\mathcal{L})$ for character γ.
- Successful matches are represented by \textbf{nullable} expressions.
- Rejecting states are indicated by \emptyset.
The big picture

Figure: An example DFA for $(a \sim b) + (a \sim c)$
Semantically identical regular expressions?

For regular expressions with intersection and complement, checking if two expressions accept the same set of languages may acquire **non-elementary time complexity** (Aho, et al. The Design and Analysis of Computer Algorithms)
A weaker notion of equivalence

\[
\begin{align*}
 r & \& r & \approx & r \\
 r & \& s & \approx & s & \& r \\
 (r & s) & \& t & \approx & r & \& (s & t) \\
 \emptyset & \& r & \approx & \emptyset \\
 \neg \emptyset & \& r & \approx & r \\
 (r \cdot s) \cdot t & \approx & r \cdot (s \cdot t) \\
 \emptyset \cdot r & \approx & \emptyset \\
 r \cdot \emptyset & \approx & \emptyset \\
 \varepsilon \cdot r & \approx & r \\
 r \cdot \varepsilon & \approx & r
\end{align*}
\]

\[
\begin{align*}
 r + r & \approx r \\
 r + s & \approx s + r \\
 (r + s) + t & \approx r + (s + t) \\
 \neg \emptyset + r & \approx \neg \emptyset \\
 \emptyset + r & \approx r \\
 (r^*)^* & \approx r^* \\
 \varepsilon^* & \approx \varepsilon \\
 \emptyset^* & \approx \varepsilon \\
 \neg (\neg r) & \approx r
\end{align*}
\]

Figure: A weaker notion of equivalence between REs.
A weaker notion of equivalence

- One can add/remove rules based on practical cases. (DotNet’s alternation rule is not commutative)
- If you see the rule from left to right, it actually provides a way to simplify and reorder rules.
- We use $\text{Wnorm}(L)$ to represent apply weakly normalization on expression L based on this weaker notion of equivalence.
Congruence classes

Iterate through the whole alphabet? Too costly for larger alphabets!
Given two characters $\alpha, \beta \in \Sigma$ and a regular expression L (denoted by $\alpha \simeq_L \beta$), we say α is congruent to β at expression L if $\partial_\alpha(L)$ and $\partial_\beta(L)$ accept the same set of languages.

\[
a \simeq_{(a|b)\sim c} b \iff \partial_a((a|b) \sim c) \equiv \partial_b((a|b) \sim c) \equiv c
\]

\[
d \simeq_{(a|b)\sim c} e \iff \partial_d((a|b) \sim c) \equiv \partial_e((a|b) \sim c) \equiv \emptyset
\]
If we know all the congruence classes for L, we only need to calculate the derivatives per class.

Still no precise solution within reasonable time complexity.

Finer partitions are safe!
If we know all the congruence classes for \mathcal{L}, we only need to calculate the derivatives per class.

Still no precise solution within reasonable time complexity.

Finer partitions are safe!
Congruence classes

\[
\begin{align*}
\text{ApproxCC}(\epsilon) &= \{\Sigma\} \\
\text{ApproxCC}(\mathcal{I}) &= \{\mathcal{I}, \Sigma - \mathcal{I}\} \\
\text{ApproxCC}(\alpha \sim \beta) &= \begin{cases} \\
\text{ApproxCC}(\alpha), & \text{(nullable}(\alpha)} \\
\text{ApproxCC}(\alpha) \land \text{ApproxCC}(\beta), & \text{nonnullable}(\alpha)
\end{cases} \\
\text{ApproxCC}(\alpha + \beta) &= \text{ApproxCC}(\alpha) \land \text{ApproxCC}(\beta) \\
\text{ApproxCC}(\alpha \& \beta) &= \text{ApproxCC}(\alpha) \land \text{ApproxCC}(\beta) \\
\text{ApproxCC}(\alpha^*) &= \text{ApproxCC}(\alpha) \\
\text{ApproxCC}(\lnot \alpha) &= \text{ApproxCC}(\alpha) \\
S \land T &= \{s \cap t \mid s \in S \lor t \in T\}
\end{align*}
\]
Congruence classes

\[\text{ApproxCC}((a + (b \sim a)) \sim c) \]

\[= \text{ApproxCC}(a + (b \sim a)) \land \text{ApproxCC}(c) \]

\[= \text{ApproxCC}(a) \land \text{ApproxCC}(b \sim a) \land \text{ApproxCC}(c) \]

\[= \text{ApproxCC}(a) \land \text{ApproxCC}(b) \land \text{ApproxCC}(c) \]

\[= \{a, \Sigma - a\} \land \{b, \Sigma - b\} \land \{c, \Sigma - c\} \]

\[= \{\emptyset, a, b, \Sigma - \{a, b\}\} \land \{c, \Sigma - c\} \]

\[= \{\emptyset, a, b, c, \Sigma - \{a, b, c\}\} \]

Precise result is \(\{\{a, c\}, b, \Sigma - \{a, b, c\}\} \).
Algorithm 1 DFA states exploration

procedure EXPLORE_DFA(x, V, T) > x is current state (normalized), V is the set of visited states
 if x' \in V then
 return
 end if
 V ← V \cup \{x'\}
 for c ∈ APPROX_CC(x') do
 if IS_EMPTY(c) then
 continue
 end if
 r ← REPRESENTATIVE(c)
 y ← WNORM(\partial_r(x'))
 T[x'][c] ← y
 EXPLORE_DFA(y, V, T)
 end for
end procedure

> update DFA transition table

Figure: DFA States Exploration
A regular expression vector \((\ell_1, \ell_2, \ldots, \ell_n) \in \mathcal{L}^n\) is just a tuple of regular expressions.

\[
\text{Wnorm}\left(\left(\ell_1, \ldots, \ell_n\right)\right) = \left(\text{Wnorm}(\ell_1), \ldots, \text{Wnorm}(\ell_n)\right)
\]

\[
\text{ApproxCC}\left(\left(\ell_1, \ldots, \ell_n\right)\right) = \bigwedge_{i=1}^{n} \text{ApproxCC}(\ell_i)
\]

\[
\partial\left(\left(\ell_1, \ldots, \ell_n\right)\right) = \left(\partial(\ell_1), \ldots, \partial(\ell_n)\right)
\]

(\(\bigwedge\) is the meet operator defined in \text{ApproxCC}.)
Regular expression vectors for lexer generation

\[
\text{Accept} \left((\ell_1, \ell_2, \ldots, \ell_n) \right) = \bigvee_{i=1}^{n} \text{nullable}(\ell_i)
\]

\[
\text{Reject} \left((\ell_1, \ell_2, \ldots, \ell_n) \right) = \bigwedge_{i=1}^{n} \ell_i \equiv \emptyset
\]

(\bigwedge, \bigvee \text{ are logical operators.})
Algorithm 2 Longest-match Lexer

procedure LEXER(S)
 \(M \leftarrow 0 \) \(\quad \) \(\triangleright S \) is the input
 \(L \leftarrow 0 \) \(\quad \) \(\triangleright M \) is the longest match, initialized to 0 (no match)
 \(l \leftarrow \text{LENGTH}(S) \) \(\quad \) \(\triangleright L \) is offset of the longest match
 \(s \leftarrow \text{State}_0 \)
 for \(i \in \text{RANGE}(0, l) \) do
 \(c \leftarrow S[i] \)
 if \(s = \text{State}_0 \) then
 if comptime ACCEPT(\text{State}_0) then
 \(L \leftarrow i \)
 \(M \leftarrow \text{comptime FIRST ACCEPT(}\text{State}_0) \)
 end if
 if comptime REJECT(\text{State}_0) then
 break
 end if
 if \(c \in \text{comptime APPRXCC(}\text{State}_0)[0] \) then
 \(s \leftarrow \text{comptime T[State}_0][\text{APPRXCC(}\text{State}_0)[0]] \)
 end if
 go through all congruence classes
 end if
 go through all states
end for
return \((M, L)\)
end procedure
<table>
<thead>
<tr>
<th>Lexer</th>
<th>ml-lex</th>
<th>ml-ulex</th>
<th>Minimal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burg</td>
<td>61</td>
<td>58</td>
<td>58</td>
<td>A tree-pattern match generator</td>
</tr>
<tr>
<td>CKit</td>
<td>122</td>
<td>115</td>
<td>115</td>
<td>ANSI C lexer</td>
</tr>
<tr>
<td>Calc</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>Simple calculator</td>
</tr>
<tr>
<td>CM</td>
<td>153</td>
<td>146</td>
<td>146</td>
<td>The SML/NJ compilation manager</td>
</tr>
<tr>
<td>Expression</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>A simple expression language</td>
</tr>
<tr>
<td>FIG</td>
<td>150</td>
<td>144</td>
<td>144</td>
<td>A foreign-interface generator</td>
</tr>
<tr>
<td>FOL</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>First-order logic</td>
</tr>
<tr>
<td>HTML</td>
<td>52</td>
<td>49</td>
<td>49</td>
<td>HTML 3.2</td>
</tr>
<tr>
<td>MDL</td>
<td>161</td>
<td>158</td>
<td>158</td>
<td>A machine-description language</td>
</tr>
<tr>
<td>ml-lex</td>
<td>121</td>
<td>116</td>
<td>116</td>
<td>The ml-lex lexer</td>
</tr>
<tr>
<td>Scheme</td>
<td>324</td>
<td>194</td>
<td>194</td>
<td>R₅RS Scheme</td>
</tr>
<tr>
<td>SML</td>
<td>251</td>
<td>244</td>
<td>244</td>
<td>Standard ML lexer</td>
</tr>
<tr>
<td>SML/NJ</td>
<td>169</td>
<td>158</td>
<td>158</td>
<td>SML/NJ lexer</td>
</tr>
<tr>
<td>Pascal</td>
<td>60</td>
<td>55</td>
<td>55</td>
<td>Pascal lexer</td>
</tr>
<tr>
<td>ml-yacc</td>
<td>100</td>
<td>94</td>
<td>94</td>
<td>The ml-yacc lexer</td>
</tr>
<tr>
<td>Russo</td>
<td>4803</td>
<td>3017</td>
<td>2892</td>
<td>System-log data mining</td>
</tr>
<tr>
<td>L_2</td>
<td>n/a</td>
<td>147</td>
<td>106</td>
<td>Monitoring stress-test</td>
</tr>
</tbody>
</table>
Preprocessing Time

Wide Spectrum of Regex Matching Techniques

Matching cost

Backtracking

NFA

Derivatives

DFA

Preprocessing cost

Thompson’68 algo ⇒ grep, RE2 (Google), Rust ...
Glushkov’61 algo ⇒ Hyperscan (Intel)
Antimirov’95 derivatives

Brzozowski’64 derivatives ⇒ SRM
On-the-fly determinization of NFA

IsMatch:
Fischer et al. 2010.
Owens et al. 2009.
POSIX semantics:
Sulzmann and Lu. 2012.
Ausaf et al. 2016.

This paper: .NET RegexOptions.NonBacktracking
PCRE semantics: for regexes with anchors

Figure: PLDI slides for Derivative Based Nonbacktracking Real-World Regex Matching with Backtracking Semantics