

Introduction to Regular Expression Derivatives

A functional, algebraic approach to generate DFAs

Schrodinger Yifan ZHU

Computer Science Department University of Rochester

System Seminar

20 July 2023

- Derivative-based DFA generation for individual regular expressions
 - Regular expression definitions (set-based)
 - Derivatives of REs
 - Weak-equivalence between REs
 - Congruence classes of the alphabet
- Derivative-based DFA generation for lexers (groups of REs)

Regular expressions on an ambient set Σ (a.k.a. alphabet) is inductively defined with the following rules:

$$\mathscr{L} := \mathscr{S} \mid \varepsilon \mid \alpha \sim \beta \mid \alpha + \beta \mid \alpha \& \beta \mid \alpha^* \mid \neg \alpha \mid \emptyset$$
(1)

- We may abuse single characters ('a') to represent singleton sets.
- ► We use some pictures from Scott Owens' Regular-expression derivatives re-examined, where ~ may be omitted or replaced by · instead.

Regular expressions on an ambient set Σ (a.k.a. alphabet) is inductively defined with the following rules:

- ► ε: empty languages.
- *α* ~ β: languages where sub-language *α* immediately followed
 by sub-language *β*.
- $\alpha + \beta$: union of languages represented by α or β .
- $\alpha \& \beta$: intersection of languages represented by α and β .
- α^* : Kleene closure of α .
- ▶ Ø: no language.
- $\neg \alpha$: languages that α rejects.

A **derivative** of a regular expression \mathscr{L} over a character is another regular expression \mathscr{L}' that accepts languages that are accepted in \mathscr{L} after character is consumed.

$$\partial_a(a \sim b \sim c) = b \sim c$$

 $\partial_b(a \sim b \sim c) = \emptyset$
 $\partial_a((a + b) \sim b \sim c) = b \sim c$

What are regular expression derivatives?

$$\partial_{\gamma} (\mathscr{S}) = \begin{cases} \varepsilon, & \gamma \in \mathscr{S} \\ \emptyset, & \gamma \notin \mathscr{S} \end{cases}$$
$$\partial_{\gamma} (\varepsilon) = \emptyset$$
$$\partial_{\gamma} (\alpha \sim \beta) = \begin{cases} (\partial_{\gamma} (\alpha) \sim \beta) + \partial_{\gamma} (\beta), & \text{nullable}(\alpha) \\ \partial_{\gamma} (\alpha) \sim \beta, & \neg \text{nullable}(\alpha) \end{cases}$$
(2)
$$\partial_{\gamma} (\alpha + \beta) = \partial_{\gamma} (\alpha) + \partial_{\gamma} (\beta) \\\partial_{\gamma} (\alpha \& \beta) = \partial_{\gamma} (\alpha) \& \partial_{\gamma} (\beta) \\\partial_{\gamma} (\alpha^{*}) = \partial_{\gamma} (\alpha) \sim \alpha^{*} \\\partial_{\gamma} (\neg \alpha) = \neg \partial_{\gamma} (\alpha) \end{cases}$$

What are regular expression derivatives?

nullable (S) = False nullable $(\emptyset) =$ False nullable $(\epsilon) =$ True nullable $(\alpha \sim \beta) =$ nullable $(\alpha) \land$ nullable (β) nullable $(\alpha + \beta) =$ nullable $(\alpha) \lor$ nullable (β) nullable $(\alpha \& \beta) =$ nullable $(\alpha) \land$ nullable (β) nullable $(\alpha^*) =$ True nullable $(\neg \alpha) = \neg$ nullable (α)

The big picture

- Each regular expression \mathcal{L} represents a state in DFA.
- At each state ℒ, enumerate the alphabet Σ and create a edge from ℒ to ∂_γ(ℒ) for character γ.
- Successful matches are represented by nullable expressions.
- Rejecting states are indicated by \emptyset .

The big picture

Figure: An example DFA for $(a \sim b) + (a \sim c)$

Semantically identical regular expressions?

For regular expressions with intersection and complement, checking if two expressions accept the same set of languages may acquire **non-elementary time complexity** (Aho, et al. The Design and Analysis of Computer Algorithms)

A weaker notion of equivalence

Figure: A weaker notion of equivalence between REs.

A weaker notion of equivalence

- One can add/remove rules based on practical cases. (DotNet's alternation rule is not commutative)
- If you see the rule from left to right, it actually provides a way to simplify and reorder rules.
- ► We use Wnorm(L) to represent apply weakly normalization on expression L based on this weaker notion of equivalence.

Iterate through the whole alphabet? Too costly for larger alphabets!

Given two characters $\alpha, \beta \in \Sigma$ and a regular expression \mathscr{L} (denoted by $\alpha \simeq_{\mathscr{L}} \beta$), we say α is **congruent** to β at expression \mathscr{L} if $\partial_{\alpha}(\mathscr{L})$ and $\partial_{\beta}(\mathscr{L})$ accept the same set of languages.

$$a \simeq_{(a|b)\sim c} b \iff \partial_a((a|b)\sim c) \equiv \partial_b((a|b)\sim c) \equiv c$$

 $d \simeq_{(a|b)\sim c} e \iff \partial_d((a|b)\sim c) \equiv \partial_e((a|b)\sim c) \equiv \emptyset$

- ► If we know all the congruence classes for *L*, we only need to calculate the derivatives per class.
- Still no precise solution within reasonable time complexity.
- Finer partitions are safe!

- ► If we know all the congruence classes for *L*, we only need to calculate the derivatives per class.
- Still no precise solution within reasonable time complexity.
- Finer partitions are safe!

$$\begin{aligned} \mathsf{ApproxCC}(\epsilon) &= \{\Sigma\} \\ \mathsf{ApproxCC}(\mathscr{S}) &= \{\mathscr{S}, \Sigma - \mathscr{S}\} \\ \mathsf{ApproxCC}(\alpha \sim \beta) &= \begin{cases} \mathsf{ApproxCC}(\alpha), & \neg \mathsf{nullable}(\alpha) \\ \mathsf{ApproxCC}(\alpha) \wedge \mathsf{ApproxCC}(\beta), & \mathsf{nullable}(\alpha) \end{cases} \\ \mathsf{ApproxCC}(\alpha + \beta) &= \mathsf{ApproxCC}(\alpha) \wedge \mathsf{ApproxCC}(\beta) \\ \mathsf{ApproxCC}(\alpha \& \beta) &= \mathsf{ApproxCC}(\alpha) \wedge \mathsf{ApproxCC}(\beta) \\ \mathsf{ApproxCC}(\alpha \& \beta) &= \mathsf{ApproxCC}(\alpha) \\ \mathsf{ApproxCC}(\alpha^*) &= \mathsf{ApproxCC}(\alpha) \\ \mathsf{ApproxCC}(\neg \alpha) &= \mathsf{ApproxCC}(\alpha) \\ & \mathcal{S} \wedge \mathcal{T} = \{s \cap t \mid s \in S \lor t \in \mathcal{T}\} \end{aligned}$$

$$(4)$$

 $\begin{array}{l} \mathsf{ApproxCC}((a+(b\sim a))\sim c)\\ =&\mathsf{ApproxCC}(a+(b\sim a))\wedge\mathsf{ApproxCC}(c)\\ =&\mathsf{ApproxCC}(a)\wedge\mathsf{ApproxCC}(b\sim a)\wedge\mathsf{ApproxCC}(c)\\ =&\mathsf{ApproxCC}(a)\wedge\mathsf{ApproxCC}(b)\wedge\mathsf{ApproxCC}(c)\\ =&\{a,\Sigma-a\}\wedge\{b,\Sigma-b\}\wedge\{c,\Sigma-c\}\\ =&\{\emptyset,a,b,\Sigma-\{a,b\}\}\wedge\{c,\Sigma-c\}\\ =&\{\emptyset,a,b,c,\Sigma-\{a,b,c\}\}\\ \end{array}$

Precise result is $\{\{a, c\}, b, \Sigma - \{a, b, c\}\}$.

DFA generation

```
Algorithm 1 DFA states exploration
  procedure EXPLOREDFA(x, V, T) \triangleright x is current state (normalized), V is the set of visited states
      if r' \in V then
           return
      end if
       V \leftarrow V \cup \{x'\}
      for c \in APPROXCC(x') do
           if IsEmpty(c) then
               continue
           end if
           r \leftarrow \text{Representative}(c)
           y \leftarrow \text{WNORM}(\partial_r(x'))
          T[x'][c] \leftarrow y
                                                                             update DFA transition table
           EXPLOREDFA(y, V, T)
      end for
  end procedure
```

Figure: DFA States Exploration

A regular expression vector $(\ell_1, \ell_2, ..., \ell_n) \in \mathscr{L}^n$ is just a tuple of regular expressions.

$$Wnorm ((\ell_1, \dots, \ell_n)) = (Wnorm(\ell_1), \dots, Wnorm(\ell_n))$$
$$ApproxCC ((\ell_1, \dots, \ell_n)) = \bigwedge_{i=1}^n ApproxCC(\ell_i)$$
(5)
$$\partial ((\ell_1, \dots, \ell_n)) = (\partial(\ell_1), \dots, \partial(\ell_n))$$

(\wedge is the meet operator defined in **ApproxCC**.)

Regular expression vectors for lexer generation

Accept
$$((\ell_1, \ell_2, \dots, \ell_n)) = \bigvee_{i=1}^n \text{nullable}(\ell_i)$$

Reject $((\ell_1, \ell_2, \dots, \ell_n)) = \bigwedge_{i=1}^n \ell_i \equiv \emptyset$
(6)

 $(\wedge, \vee \text{ are logical operators.})$

Longest-match lexer

Algorithm 2 Longest-match Lexer	
procedure Lexer(S)	⊳ S is the input
$M \leftarrow 0$	▹ M is the longest match, initialized to 0 (no match)
$L \leftarrow 0$	\triangleright <i>L</i> is offset of the longest match
$l \leftarrow \text{Length}(S)$	
$s \leftarrow \mathbf{State}_0$	
for $i \in Range(0, l)$ do	
$c \leftarrow S[i]$	▷ c is set to EOF if the lexer is at the end of the input
if $s = $ State $_0$ then	
if comptime ACCEPT(State	0) then
$L \leftarrow i$	
$M \leftarrow comptime FirstA$	CCEPT(State ₀)
end if	
if comptime Reject(State ₀) then
break	
end if	
if $c \in comptime ApproxCC$	C(State ₀)[0] then
$s \leftarrow \text{comptime } T[\text{State}]$	$[ApproxCC(State_0)[0]]$
end if	
go though all congruence cla	isses
end if	
go though all states	
end for	
return (M, L)	
end procedure	

Num of States

ml-lex	ml-ulex	Minimal	Description
61	58	58	A tree-pattern match generator
122	115	115	ANSI C lexer
12	12	12	Simple calculator
153	146	146	The SML/NJ compilation manager
19	19	19	A simple expression language
150	144	144	A foreign-interface generator
41	41	41	First-order logic
52	49	49	HTML 3.2
161	158	158	A machine-description language
121	116	116	The ml-lex lexer
324	194	194	R ⁵ RS Scheme
251	244	244	Standard ML lexer
169	158	158	SML/NJ lexer
60	55	55	Pascal lexer
100	94	94	The ml-yacc lexer
4803	3017	2892	System-log data mining
n/a	147	106	Monitoring stress-test
	ml-lex 61 122 153 19 150 41 52 161 121 324 251 169 60 100 4803 n/a	ml-lex ml-ulex 61 58 122 115 12 12 153 146 19 19 150 144 41 41 52 49 161 158 121 116 324 194 251 244 169 158 60 55 100 94 4803 3017 n/a 147	ml-lex ml-ulex Minimal 61 58 58 122 115 115 12 12 12 153 146 146 19 19 19 150 144 144 41 41 41 52 49 49 161 158 158 121 116 116 324 194 194 251 244 244 169 158 158 60 55 55 100 94 94 4803 3017 2892 n/a 147 106

Preprocessing Time

Figure: PLDI slides for Derivative Based Nonbacktracking Real-World Regex Matching with Backtracking Semantics

