
Introduction to Regular Expression Derivatives
A functional, algebraic approach to generate DFAs

Schrodinger Yifan ZHU

Computer Science Department
University of Rochester

System Seminar 20 July 2023

Agenda

▶ Derivative-based DFA generation for individual regular
expressions

▶ Regular expression definitions (set-based)
▶ Derivatives of REs
▶ Weak-equivalence between REs
▶ Congruence classes of the alphabet

▶ Derivative-based DFA generation for lexers (groups of REs)

What are regular expressions?

Regular expressions on an ambient set Σ (a.k.a. alphabet) is
inductively defined with the following rules:

L := S | ε | α ∼ β | α+ β | α&β | α∗ | ¬α | ∅ (1)

▶ We may abuse single characters (’a’) to represent singleton
sets.

▶ We use some pictures from Scott Owens’ Regular-expression
derivatives re-examined, where ∼ may be omitted or replaced
by · instead.

What are regular expressions?

Regular expressions on an ambient set Σ (a.k.a. alphabet) is
inductively defined with the following rules:

▶ S ⊆ Σ: single character languages where the character comes
from a subset of the alphabet.

▶ ϵ: empty languages.
▶ α ∼ β: languages where sub-language α immediately followed

by sub-language β.
▶ α+ β: union of languages represented by α or β.
▶ α&β: intersection of languages represented by α and β.
▶ α∗: Kleene closure of α.
▶ ∅: no language.
▶ ¬α: languages that α rejects.

What are regular expression derivatives?

A derivative of a regular expression L over a character is another
regular expression L ′ that accepts languages that are accepted in
L after character is consumed.

∂a(a ∼ b ∼ c) = b ∼ c
∂b(a ∼ b ∼ c) = ∅

∂a((a + b) ∼ b ∼ c) = b ∼ c

What are regular expression derivatives?

∂γ (S) =

{
ε, γ ∈ S

∅, γ /∈ S

∂γ (ε) = ∅

∂γ (α ∼ β) =

{
(∂γ(α) ∼ β) + ∂γ(β), nullable(α)
∂γ(α) ∼ β, ¬nullable(α)

∂γ (α+ β) = ∂γ (α) + ∂γ (β)

∂γ (α&β) = ∂γ (α)&∂γ (β)

∂γ (α
∗) = ∂γ (α) ∼ α∗

∂γ (¬α) = ¬∂γ (α)

(2)

What are regular expression derivatives?

nullable (S) = False
nullable (∅) = False
nullable (ϵ) = True

nullable (α ∼ β) = nullable (α) ∧ nullable (β)

nullable (α+ β) = nullable (α) ∨ nullable (β)

nullable (α&β) = nullable (α) ∧ nullable (β)

nullable (α∗) = True
nullable (¬α) = ¬nullable (α)

(3)

The big picture

▶ Each regular expression L represents a state in DFA.
▶ At each state L , enumerate the alphabet Σ and create a edge

from L to ∂γ(L) for character γ.
▶ Successful matches are represented by nullable expressions.
▶ Rejecting states are indicated by ∅.

The big picture

Figure: An example DFA for (a ∼ b) + (a ∼ c)

Semantically identical regular expressions?

For regular expressions with intersection and complement,
checking if two expressions accept the same set of languages may
acquire non-elementary time complexity (Aho, et al. The Design
and Analysis of Computer Algorithms)

A weaker notion of equivalence

Figure: A weaker notion of equivalence between REs.

A weaker notion of equivalence

▶ One can add/remove rules based on practical cases. (DotNet’s
alternation rule is not commutative)

▶ If you see the rule from left to right, it actually provides a way to
simplify and reorder rules.

▶ We use Wnorm(L) to represent apply weakly normalization
on expression L based on this weaker notion of equivalence.

Congruence classes

Iterate through the whole alphabet?
Too costly for larger alphabets!

Congruence classes

Given two characters α, β ∈ Σ and a regular expression L
(denoted by α ≃L β), we say α is congruent to β at expression L
if ∂α(L) and ∂β(L) accept the same set of languages.

a ≃(a|b)∼c b ⇐⇒ ∂a((a|b) ∼ c) ≡ ∂b((a|b) ∼ c) ≡ c

d ≃(a|b)∼c e ⇐⇒ ∂d((a|b) ∼ c) ≡ ∂e((a|b) ∼ c) ≡ ∅

Congruence classes

▶ If we know all the congruence classes for L , we only need to
calculate the derivatives per class.

▶ Still no precise solution within reasonable time complexity.
▶ Finer partitions are safe!

Congruence classes

▶ If we know all the congruence classes for L , we only need to
calculate the derivatives per class.

▶ Still no precise solution within reasonable time complexity.
▶ Finer partitions are safe!

Congruence classes

ApproxCC(ϵ) = {Σ}
ApproxCC(S) = {S ,Σ− S }

ApproxCC(α ∼ β) =

{
ApproxCC(α), ¬nullable(α)
ApproxCC(α) ∧ ApproxCC(β), nullable(α)

ApproxCC(α+ β) = ApproxCC(α) ∧ ApproxCC(β)

ApproxCC(α&β) = ApproxCC(α) ∧ ApproxCC(β)

ApproxCC(α∗) = ApproxCC(α)

ApproxCC(¬α) = ApproxCC(α)

S ∧ T = {s ∩ t | s ∈ S ∨ t ∈ T}
(4)

Congruence classes

ApproxCC((a + (b ∼ a)) ∼ c)
=ApproxCC(a + (b ∼ a)) ∧ ApproxCC(c)
=ApproxCC(a) ∧ ApproxCC(b ∼ a) ∧ ApproxCC(c)
=ApproxCC(a) ∧ ApproxCC(b) ∧ ApproxCC(c)
={a,Σ− a} ∧ {b,Σ− b} ∧ {c,Σ− c}
={∅,a,b,Σ− {a,b}} ∧ {c,Σ− c}
={∅,a,b, c,Σ− {a,b, c}}

Precise result is {{a, c},b,Σ− {a,b, c}}.

DFA generation

Figure: DFA States Exploration

Regular expression vectors for lexer generation

A regular expression vector (ℓ1, ℓ2, . . . , ℓn) ∈ L n is just a tuple of
regular expressions.

Wnorm ((ℓ1, . . . , ℓn)) = (Wnorm(ℓ1), . . . ,Wnorm(ℓn))

ApproxCC ((ℓ1, . . . , ℓn)) =
n∧

i=1

ApproxCC(ℓi)

∂ ((ℓ1, . . . , ℓn)) = (∂(ℓ1), . . . , ∂(ℓn))

(5)

(
∧

is the meet operator defined in ApproxCC.)

Regular expression vectors for lexer generation

Accept ((ℓ1, ℓ2, . . . , ℓn)) =
n∨

i=1

nullable(ℓi)

Reject ((ℓ1, ℓ2, . . . , ℓn)) =
n∧

i=1

ℓi ≡ ∅
(6)

(
∧
,
∨

are logical operators.)

Longest-match lexer

Num of States

Preprocessing Time

Figure: PLDI slides for Derivative Based Nonbacktracking Real-World
Regex Matching with Backtracking Semantics

