
Improving I/O on fast,
byte-addressable NVM

Haosen Wen
Oct. 15, 2021

1



Goal

• Low-latency, high-bandwidth I/O
•Necessary protection against bugs and failures
• Easy to use

2



Outline

• NVM in local synchronous I/O
• Memory-mapped I/O
• POSIX-style file operations

• Distributed storage on NVM
• Asynchronous I/O?

• Reduce kernel intervention I/O on NVM
• Some mixture of all

3



I/O on block devices

• POSIX-style file API
• open(), seek(), read() and write() sys calls to access files
• Interfaces like AIO for asynchronous accesses
• File system checks access privilege of application(s) for protection
• Easier to use: failure atomicity provided by FS; serialization of write()’s

• mmap-ed I/O
• mmap() maps a (chunk of a) file to the virtual address space of an application

• Virtual address space is private to each process
• Access with user-level store and load instructions, (almost) always 

synchronous

4



Memory-mapped I/O (Linux)

CPU

page cache

5

store

storage

write-back
(on sync() or simultaneously) 

page fault

load

Output Input

DRAM
(byte-addressable)

block device



Latency of persistence

6

page cache

DRAM
(~100ns)

Block device
(≥100μs, 180μs/4KB)

sync()

syscall
(~1μs (?))

Write back to 
storage

Reference: https://ci.spdk.io/download/performance-reports/SPDK_nvme_bdev_perf_report_2104.pdf

• Note: page cache may get written back at the convenience of 
kernel/FS

https://ci.spdk.io/download/performance-reports/SPDK_nvme_bdev_perf_report_2104.pdf


Memory-mapped I/O (Linux)

CPU

7

store

load

Output Input

• With file systems supporting Direct Access (DAX-)mmap (e.g. Ext4-
DAX, XFS), CPU can access NVM with store and load instructions.

• Failure atomicity is non-trivial:
• Failure-atomic msync[Park et al., EuroSys’13], atomic mmap[Xu and Swanson, FAST’16]

• General purpose systems: PMDK, persistent STMs, iDo, Montage, etc.
• Dozens of ad-hoc persistent data structures

DRAM+NVM
Main Memory

(byte-addressable)

persistent
memoryvolatile indices

less
general



Latency of persistence

8

persistent
memoryvolatile indices

Or: persistent
memory

• Probably the best we could hope for
• Only fits applications implementing memory-mapped I/O
• Without sophisticated infrastructures for NVM, sync() and non-temporal 

store/load are usually the only tool to guarantee persistence

NVM
(≥100ns, 50μs/4KB)

sync()

Data Reference: Basic Performance Measurements of the Intel Optane DC Persistent Memory Module,
Izraelevitz et al., ArXiV, Aug 2019

DRAM
(~100ns)

syscall
(~1μs (?))

sync()



Memory-mapped I/O on NVM

• Nova[Xu and Swanson, FAST’16] allocates copy-on-write replica pages for 
atomicity
• It copies replica data back to the original on msync()
• Replica pages are always on NVM

• Are these really the best choices?
• Remap pages to replace original with replica? (nvramdisk[Jung et al., ToC’16])
• Put (some) replica pages in DRAM?

9



POSIX file operations (Linux)

CPU

I/O buffer

page cache

10

prepare data

write(): copy data

storage

write-back
(on sync() or simultaneously) 

page fault

read(): copy data

load data

Output Input

block device

DRAM
(byte-addressable)



Latency of persistence

11

page cache sync()write()

DRAM
(~100ns)

syscall
(~1μs (?))

syscall
(~1μs (?))

Block device
(≥100μs, 180μs/4KB)

copy to storage

Reference: https://ci.spdk.io/download/performance-reports/SPDK_nvme_bdev_perf_report_2104.pdf

• Note: page cache may get written back at the convenience of 
kernel/FS

https://ci.spdk.io/download/performance-reports/SPDK_nvme_bdev_perf_report_2104.pdf


POSIX file operations (Linux)

CPU

I/O buffer

12

prepare data

write(): copy data

read(): copy data

load data

Output Input

persistent
memoryvolatile indices

DRAM+NVM
Main Memory

(byte-addressable)

• This model is picked up by most existing NVM file systems when 
implementing POSIX-compatible interfaces

• Why is I/O buffer still there? 



POSIX read()/write() examples in C

13

/* write() */
char buf[128];
fd1 = open("foo", O_WRONLY |

O_CREAT);
scanf("%127s", buf);
write(fd1, buf, strlen(buf));
close(fd1);

/* read() */
char buf[128];
fd1 = open("foo", O_RDONLY |

O_CREAT);
read(fd1, buf, 128);
close(fd1);

Reference: https://en.wikibooks.org/wiki/C_Programming/POSIX_Reference/unistd.h/write

POSIX read()/write() interface implies copy-based data transfer [Kim et al., APSys’20]

https://en.wikibooks.org/wiki/C_Programming/POSIX_Reference/unistd.h/write


peek() and patch() [Kim et al., APSys’20]

14

/* write() equivalent */
void* buf = alloc_pmem(…);
fd1 = open("foo", O_WRONLY |

O_CREAT);
scanf("%127s", *buf);
patch(fd1, buf, strlen(buf));
free_pmem(buf);

/* read() equivalent */
fd1 = open("foo", O_RDONLY |

O_CREAT);
char* buf = peek(fd1, 0, in_len);
…
unpeek(buf);

No copy; page table update only No copy; returns reference only



POSIX file operations (Linux)

CPU

I/O buffer

15

prepare data

write(): copy data

read(): copy data

load data

Output Input

persistent
memoryvolatile indices

DRAM+NVM
Main Memory

(byte-addressable)



POSIX file operations (Linux)

CPU

16

store and patch()

peek() and load

Output Input

persistent
memoryvolatile indices

DRAM+NVM
Main Memory

(byte-addressable)



Latency of persistence

17

copy to persistent
memoryvolatile indices

Or:

sync()write()

write()

DRAM
(~100ns)

syscall
(~1μs (?))

NVM
(≥100ns, 50μs/4KB)

syscall
(~1μs (?))

sync() copy to persistent
memory

With I/O
Buffer



Latency of persistence

18

volatile indices

Or:

sync()patch()

patch()

DRAM
(~100ns)

syscall
(~1μs (?))

syscall
(~1μs (?))

sync()

cache 
flush+fence

cache 
flush+fence

cache line write-back
to NVM

(≥100ns, 50μs/4KB)

Without I/O
Buffer

• This may be “cheating”: we are not counting in the additional latency 
when preparing the patch directly on NVM rather than DRAM

• By far the simplest mechanism of NVM-based file interface



Asynchronous I/O with DMA

19

CPU

I/O buffer

prepare data

io_submit()

storage

io_submit()

load data

Output Input

block device

DRAM
(byte-addressable)

• io_submit() returns when the I/O request is initiated. When I/O 
finishes, a callback function is called.



Latency of persistence

• Very useful when storage latency is high and/or bandwidth is low

20

Io_submit()

syscall
(~1μs (?))

Block device
(≥100μs, 180μs/4KB)

copy from/to 
storage

return here callback herehidden from CPU
(with DMA)



Latency of persistence

• Very useful when storage latency is high and/or bandwidth is low
• With NVM, nothing much to hide ┑(￣Д ￣)┍

21

Io_submit()

syscall
(~1μs (?))

copy from/to 
NVM

return here callback herehidden from CPU
(with DMA)

NVM
(≥100ns, 50μs/4KB)



Latency of persistence

• Very useful when storage latency is high and/or bandwidth is low
• With NVM, nothing much to hide ┑(￣Д ￣)┍
• But how about in a distributed and/or replicated file system?
• Anything else interesting? 22

Io_submit()

syscall
(~1μs (?))

copy from/to 
NVM

hidden from CPU
(with RDMA)

NVM
(≥100ns, 50μs/4KB)

Networking



Distributed storage on NVM
• Octopus[Lu et al., ATC’17] achieved low 

latency zero-copy RDMA transmission 
on server side
• Server NIC use DMA to read data directly 

from FS image
• They reported ≥85% bandwidth usage and 

~6μs end-to-end latency. Can any 
application benefit from asynchronous I/O? 
If so, are existing APIs good enough?

23

• PASTE[Honda et al., NSDI’18] allocates message pool directly in NVM, 
achieving zero-copy networking interface on client side
• Can/should we combine NVM-based message pool into an FS? Any 

applications that would benefit from it?



User-space FS and storage

• FUSE
• User-space extension of VFS from kernel
• For FS functionalities not worth putting in kernel

• SPDK
• Pure user-space storage stack (block device driver, FS-like block device 

abstraction, etc.)
• Performs better: actively polling for I/O completion; lockless I/O queues; no 

syscalls
• Implemented as a C/C++ library

24



User-space FS and storage on NVM

• ZoFS[Dong et al., SOSP’19] relaxes file protection from every single file to a 
group of files (coffer) with the same access privilege
• Reduces system call from every file operation to only the first access to each 

coffer
• Can we also relax the protection of (a part of) page table to achieve page 

remapping in user space?
• If we need kernel support for TLB shootdown, can we do it lazily?
• More hardware design proposals? (SPOT[Wang et al., ISCA’18])

• EvFS[Yoshimura et al., HotStorage’19] is purely in user space, inspired by SPDK
• Designed to live in a single protection domain

25



Some mixture of all

• SplitFS[Kadekodi et al., SOSP’19] serves read and write operations in user 
space. 
• It DAX-mmaps pages into user space and translates read() and write() into 

load and store instructions. Metadata accesses are done in kernel
• Provides relink() function that links pages in one file to another by modifying 

only page mapping metadata
• Writes are staged in a new file and inserted into files with relink()

• Libnvmmio[Choi et al., ATC’20]

• takes a similar approach to translate read() and write() into load and store, 
but uses per-block logging and epoch-based checkpointing for persistence

26



Some mixture of all

• Assise[Anderson et al., OSDI’20] uses NVM-based client-local caches to lower 
the latency of distributed FS
• Each node of the cluster maintains synchronized write logs and data replicas 

of different hotness on various media like NVM, SSD and remote storage
• Write cache on NVM takes the form of per-process logs with variable-sized 

entries, replicated across the cluster
• Read cache is kept in DRAM
• When sharing FS states among processes, it implements a lease-based crash 

consistent cache coherence protocol to provide prefix crash consistency 
(similar to buffered durable linearizability)

27



Observations

• State-of-art systems make interesting trade-offs between the amount 
of process-private (DAX-mmap()ed) NVM per system call and the 
range of protection to serve their needs
• Page, file, write cache, coffer, or the whole system

• Reducing copying is a common effort among recent proposals, which 
is also a clever way of using NVM’s byte-addressability. However, for 
applications with frequent reads/updates to staging data for I/O, 
DRAM’s even lower latency may outweigh the data copy overhead 
between DRAM and NVM
• e.g. Assise’s read cache in DRAM

28


