
Enhancing Checked C with Temporal
Memory Safety

Jie Zhou John Criswell David Tarditi
University of Rochester University of Rochester Microsoft

Checked C: A safe dialect of C

2

A little background on Checked C

Initiator: Galen Hunt (URCS alumnus) at Microsoft Research in 2015

Project leader: David Tarditi

Major collaborators outside Microsoft:
 Michael Hicks, Andrew Ruef (graduated), Ray Chen, and Hasan Touma (UMD)

 Aravind Machiry (UCSB), Jorge Navas (SRI), Arie Gurfinkel (U of Waterloo)
 Sam Elliott (graduated) and Anna Kornfeld Simpson (U of Washington)

3

A little background on Checked C

Initiator: Galen Hunt (URCS alumnus) at Microsoft Research in 2015

“The world builds on C. …… We cannot get rid of C. ……
I make long-term bets and history shows I’m good at it. …..
I bet the future of C is a safe dialect of C.”

 - Galen Hunt

Project leader: David Tarditi

Major collaborators outside Microsoft:
 Michael Hicks, Andrew Ruef (graduated), Ray Chen, and Hasan Touma (UMD)

 Aravind Machiry (UCSB), Jorge Navas (SRI), Arie Gurfinkel (U of Waterloo)
 Sam Elliott (graduated) and Anna Kornfeld Simpson (U of Washington)

3

Spatial Memory Safety
• out-of-bounds access
• null-pointer dereference

Memory Safety

Spatial Memory Safety
• Use-after-Free (UAF)
• Double Free

Temporal Memory Safety
• Use-After-Free (UAF)
• Double Free

Focus of current Checked C

4

Aspects of Memory Safety Solutions

Aspects What we want

Performance Overhead as low as possible

Memory Overhead as low as possible

Backward Compatibility compatible with legacy code

Generality general

Programmer Control high

Programmer Efforts as little as possible

Soundness sound

Completeness complete

Require Source Code no

5

Checked C’s Choices

Aspects What we want Checked C’s Choice

Performance Overhead as low as possible

Memory Overhead as low as possible

Backward Compatibility compatible with legacy code

Generality general

Programmer Control high

Programmer Efforts as little as possible medium

Soundness sound

Completeness complete

Require Source Code no

6

Spatial Memory Safety
• out-of-bounds access
• null-pointer dereference

Memory Safety

Spatial Memory Safety
• Use-after-Free (UAF)
• Double Free

Temporal Memory Safety
• Use-After-Free (UAF)
• Double Free

Focus of current Checked C Focus of this talk

8

Use-After-Free (UAF): dereferencing a pointer
after the pointed memory object has been freed.

9

Use-After-Free (UAF) Vulnerability

10

Use-After-Free (UAF) Vulnerability

11

12

13

13

Outline

❖ Existing Solutions to UAF

❖ Checked C Solution to UAF

❖ Demo (if time permits)

14

Outline

❖ Existing Solutions to UAF

❖ Checked C Solution to UAF

❖ Demo (if time permits)

15

Existing Solutions to UAF

•Safe memory allocators

• Invalidating dangling pointers

•Dynamic checking on dereference

16

Existing Solutions to UAF

•Safe memory allocators

• Invalidating dangling pointers

•Dynamic checking on dereference

17

Safe Memory Allocator

ptr memory
object

0x1000

0x10ff

18

Safe Memory Allocator

ptr

0x1000

0x10ff

18

Safe Memory Allocator

ptr
new

memory
object

new_ptr

0x1000

0x10ff

19

Safe Memory Allocator

Direction: Forbid / Minimize reuse of freed memory regions

• forbid/minimize reuse of virtual page (D & V DSN’16, Oscar)

• allocate memory region by data Type (Cling)

• randomize locations of allocated memory objects (DieHard)

ptr
new

memory
object

new_ptr

0x1000

0x10ff

19

Minimize Reuse of Virtual Memory Page

Virtual
Memory

Physical
Memory

MMU

Memory
Translation
Hardware

20

Minimize Reuse of Virtual Memory Page

Basic idea:

 - Put each newly allocated memory object on a new virtual page

 - Set the page access permission bit to be invalid after free operation

 - Rely on MMU to do the checking for access after free

Virtual
Memory

Physical
Memory

MMU

Memory
Translation
Hardware

20

Minimize Reuse of Virtual Memory Page

Basic idea:

 - Put each newly allocated memory object on a new virtual page

 - Set the page access permission bit to be invalid after free operation

 - Rely on MMU to do the checking for access after free

Limitations:
- Electric Fence (1994), PageHeap (2000): impractical memory consumption

- Dhurjati & Adve [DSN’06]: perform bad (up to 11x overhead) on allocation-intensive programs

- Oscar [USENIX Security’17]: memory overhead 62% on average; up to > 400%

Virtual
Memory

Physical
Memory

MMU

Memory
Translation
Hardware

20

Existing Solutions to UAF

•Safe memory allocators

• Invalidating dangling pointers

•Dynamic checking on dereference

21

Invalidating Pointers After Deallocation

ptr

0x1000 42
23.5
‘c’
‘a’

‘\0’
’t’

a struct

0x1000

another_ptr

22

Invalidating Pointers After Deallocation

ptr

0x1000 42
23.5
‘c’
‘a’

‘\0’
’t’

a struct

0x1000

another_ptr

point-to relation

point-to relation

22

Invalidating Pointers After Deallocation

ptr

0x1000 42
23.5
‘c’
‘a’

‘\0’
’t’

a struct

Basic idea:

• keep track of the point-to relations

• invalidate pointers upon memory deallocation

0x1000

another_ptr

point-to relation

point-to relation

Examples: DANGNULL [NDSS’15], FreeSentry [NDSS’15], DangSan [EuroSys’17]

22

Invalidating Pointers After Deallocation

Solutions Performance Overhead Memory Overhead

DANGNULL Average: 80%

Maximum: > 400%

Average: 127%

Maximum: 1,700%

FreeSentry Average: 42%

Maximum: > 460% Not reported in the paper

DangSan Average: 41%

Maximum: 772%

Average: 240%

Maximum: 13,465%

Overhead summary of three recent works

Other problems: false positive, false negative, lack of multithreading support

23

Existing Solutions to UAF

•Safe memory allocators

• Invalidating dangling pointers

•Dynamic checking on dereference

24

Dynamic Checking on Pointer Dereference

ptr

0x1000 42
23.5
‘c’
‘a’

‘\0’
’t’

point-to relation

a struct

0x1000

another_ptr

point-to relation

ptr->num = 30;
check_if_pointer_is_valid(ptr);

25

Key-lock Based Dynamic Checking

ptr

0x1000 42
23.5
‘c’
‘a’

‘\0’
’t’

point-to relation

a struct

0x1000

another_ptr

point-to relation

26

Key-lock Based Dynamic Checking

ptr

0x1000 42
23.5
‘c’
‘a’

‘\0’
’t’

point-to relation

a struct

0x1000

another_ptr

point-to relation

Basic idea:

 - associate each pointer with a key and each memory object with a lock

 - invalidate the lock when a memory object is freed

 - check if the key matches the lock when a pointer is dereferenced

26

Key-lock Based Dynamic Checking

[ISMM’10] CETS: Compiler-Enforced Temporal Safety for C

27

Key-lock Based Dynamic Checking

[ISMM’10] CETS: Compiler-Enforced Temporal Safety for C

27

Key-lock Based Dynamic Checking

performance overhead: 48% on SPEC 2006

[ISMM’10] CETS: Compiler-Enforced Temporal Safety for C

Not cheap:
 each trie lookup for a pointer load/store: roughly 11 x86 instructions, including 4 loads

27

Outline

❖ Existing Solutions to UAF

❖ Checked C Solution to UAF

❖ Demo (if time permits)

28

Checked C Solution to UAF

Observation: using disjoint data structures to keep track of the

 point-to relations (metadata) is slow.

30

Checked C Solution to UAF

Observation: using disjoint data structures to keep track of the

 point-to relations (metadata) is slow.

Make the metadata travel with pointers and memory objects

C. N. Fischer and R. J. LeBlanc. The Implementation of Run-Time Diagnostics in Pascal.
IEEE Transactions on Software Engineering, SE-6(4):313–319, July 1980.

30

New Types of Pointers

New safe pointers : dereference is free from UAF errors

ptr

0x1000 42
23.5
‘c’
‘a’

‘\0’
’t’

point-to relation

a struct

0x2000

another_ptr

point-to relation

31

New Types of Pointers

New safe pointers : dereference is free from UAF errors

safe_ptr

42
23.5
‘c’
‘a’

‘\0’
’t’

lock

a struct

another_safe_ptr

0x1000
key

0x1000
key

32

pointers to struct: pointer arithmetic is forbidden

Safe Array Pointers

New safe pointers : dereference is free from UAF errors

safe_ptr
42
43
113
71

91
43

lock

an array

another_safe_ptr

0x1004
key

0x100C
key

33

Safe Array Pointers

New safe pointers : dereference is free from UAF errors

safe_ptr

42
43
113
71

91
43

lock

an array

another_safe_ptr

0x1004
key

lock_addr

0x100C
key

lock_addr

34

• on memory allocation: assign a non-zero unique integer

to both the pointer key and the object lock.

• on memory deallocation: set the object’s lock to 0.

• on pointer dereference: check if the key and lock match

Safe Array Pointers

New safe pointers : dereference is free from UAF errors

safe_ptr

42
43
113
71

91
43

lock

an array

another_safe_ptr

0x1004
key

lock_addr

0x100C
key

lock_addr

34

Algorithm of Dynamic Checking

load the ID from the a safe_pointer to a register

Dynamic Checking

load the ID from the memory object to a register

compare the two registers

same?

Abortcontinue executing

No

Yes

35

Algorithm of Dynamic Checking

load the ID from the a safe_pointer to a register

Dynamic Checking

load the ID from the memory object to a register

compare the two registers

same?

Abortcontinue executing

No

Yes

execution overhead:

 less than 6 instructions

memory overhead:

 one word for each object

 at most two words for each pointer

35

Multithreading Issue

load the ID from the a safe_pointer to a register

Dynamic Checking

load the ID from the memory object to a register

compare the two registers

same?

Abortcontinue executing

No

Yes

free(safe_pointer);

free(safe_pointer);

36

Multithreading Issue

load the ID from the a safe_pointer to a register

Dynamic Checking

load the ID from the memory object to a register

compare the two registers

same?

Abortcontinue executing

No

Yes

free(safe_pointer);

free(safe_pointer);

Time-Of-Check-Time-Of-Use (TOCTOU) bug!

36

Prevent TOCTOU Bugs

Transactional Memory: make pointer dereference atomic
Option 1:

37

Prevent TOCTOU Bugs

Periodic Free: delay normal free, and periodically free
the accumulated memory

Transactional Memory: make pointer dereference atomic
Option 1:

A fact: free() is much less frequent than pointer dereference.

Option 2:

37

Periodic Free

free()

free()

Execution

delay free

delay free

real free

put in the free-queue

put in the free-queue

38

Periodic Free

free()

free()

Execution

delay free

delay free

real free
stop normal execution,

free memory based on

the free-queue

put in the free-queue

put in the free-queue

38

Backward Compatibility

Aspects What we want Checked C’s Choice

Performance Overhead as low as possible

Memory Overhead as low as possible

Backward Compatibility compatible with legacy code

Generality general

Programmer Control high

Programmer Efforts as little as possible medium

Soundness sound

Completeness complete

Require Source Code no

39

Backward Compatibility

target_addr
key

lock_addr
target_addr

ptr
safe_ptr

void foo(void *p);

40

Outline

❖ Existing Solutions to UAF

❖ Checked C Solution to UAF

❖ Demo (if time permits)

41

Why Not Using Rust?

- backward compatibility

- programmer efforts  

(financial concerns)

42

