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Two kinds of “VMs”

“Compiler-based VM”
• Restricts expressivity of 

architecture through virtual 
instruction set

• Enforces policy through 
instrumentation and run-time 
checks

“Guest VM”
• A simulated full system

• Managed by a hypervisor

• Runs its own OS, apps 
independently
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→ Examples: CLR,

Secure Virtual Architecture
(Criswell et al., SOSP ‘07)

→ VMX supports these



Compiler-based VMs:
Secure Virtual Architecture

• Virtual ISA for secure low-level
software

• OS kernel in C/C++ compiles to 
extension of LLVM IR

• Special virtual instructions 
replace kernel assembly code
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Protecting applications from the OS

• Compiler-based VM can enforce many policies

• Virtual Ghost lets user-space apps hide memory from kernel
(Criswell et al., ASPLOS ‘14)

• Performance overhead only on kernel mode, not user mode
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Side-channel protections

• Apparition added side-channel 
protections to Virtual Ghost
(Dong et al., Usenix Security ‘18)

• Prevents kernel, other apps from
attacking ghost memory via:

• Last-level-cache side channels

• Page-fault side channels
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Apparition



The other kind of VMs, in Apparition

• Want to run hypervisors under 
Apparition

• …but VMX isn’t part of the V-ISA

• OK, so just extend the V-ISA. 
“How hard can it be?”
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Introducing “Shade”

• Adds hardware virtualization support to 
Apparition

• Preserves protections for ghost memory 
on the host

• Mitigates side-channel attacks by guests 
and compromised kernel/hypervisor
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Shade architecture

8



Key challenges we address

• Control flow integrity across VM entry/exit

• Hypervisor manages EPT but must not access ghost memory

• Over-powered guest could allow OS/hypervisor to escape Shade

• Side-channel mitigations
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Control flow integrity on VM entry/exit

• VMX allows hypervisor to set arbitrary host state on exit
• …including RIP
• …and RSP, processor mode, segment registers…

• Easy for hypervisor to corrupt CFI, defeat enforcement
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Control flow integrity on VM entry/exit

• Shade must take control of VM entry/exit

• Single virtual instruction for running a guest

• Function call semantics

• State saved/loaded from protected memory

• VMCS lives in ghost memory

• Virtual instructions for reading and writing

• Checks on values written

• Virtual instructions to access saved/loaded guest registers
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Virtual instructions

• Allocate/free VMCS

• Load/unload VMCS onto processor

• Get/set guest registers managed by Shade

• Read/write VMCS fields

• Run VM guest
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Protecting ghost memory

• Hypervisor must be able to add/remove EPT mappings

• But EPT could map protected memory into a guest
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Protecting ghost memory

• Similar problem exists for host OS page table config

• Page tables stored in ghost memory

• Virtual instructions for MMU config
• Shade tracks metadata on physical frame usage

• Checks prevent insecure EPT mappings
• Ghost memory

• Host page-table pages (regular + extended)
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Virtual instructions for EPT

• Declare/undeclare PTP

• Update mapping

• Load root EPT pointer
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Preventing over-powered guests

• VMX allows guests to run native privileged code

• Not normally permitted in an SVA-based system

• No opportunity to add instrumentation

• Guest effects on privileged state must be contained to guest

• Nothing host kernel not allowed to do should persist after VM exit
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Preventing over-powered guests

• Some privileged state virtualized by hardware
• CR3 with extended paging

• Control registers saved/loaded atomically on entry/exit

• Other privileged state must be managed by hypervisor
• Kernel MPX registers used by Shade for SFI

• Shade must handle save/load during entry/exit

• Unused features can still be a threat
• New processor features, MSRs

• Shade checks VMCS writes to enforce safe defaults (VM exit)
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Side-channel attacks

• Cache partitioning with Cache Allocation Technology (CAT)
• Host kernel

• Shade VM

• Ghosting apps

• Must switch partition on VM entry/exit
• VMs run in kernel/hypervisor partition

• Possible to give each VM its own partition

• VMCS checks prevent guest access to CAT MSRs
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Empirical evaluation



Benchmarks

• Extended Apparition prototype
• FreeBSD 9.0 kernel ported to V-ISA

• LLVM passes for SFI, CFI unmodified

• LMBench kernel latency benchmarks
• Verify no new impact on host applications over Apparition

• Hypervisor microbenchmarks
• Overheads of virtual instructions over native VMX operations

• Hypothesis: hypervisor latency dominated by other factors
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Host kernel benchmarks
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Host kernel benchmarks - outliers
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• Only affect ghosting applications

• No new overheads over Apparition

• Due to side-channel protections

• Pre-allocating ghost memory 

affects fork()
• Cache partitioning



Hypervisor microbenchmarks
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Future work

• Port full commodity hypervisor

• FreeBSD’s bhyve

• VirtualBox

• Protect guests from malicious hypervisor

• Mitigate cloud compromise scenarios

• VM exit handling, device virtualization pose challenges

• Prevent exploitation of hardware bugs

• Processor bugs in VMX implementations
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Summary

• Using VMX in existing Apparition system 
would compromise security

• We extend V-ISA to expose VMX in a 
“clean” way

• Minimal impact on hypervisor performance
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