Secure Guest Virtual Machine
Support in Apparition

Ethan Johnson
Department of Computer Science
University of Rochester

In collaboration with Komail Dharsee and John Criswell

Two kinds of “VMs”

“Compiler-based VM”

* Restricts expressivity of
architecture through virtual
Instruction set

* Enforces policy through
Instrumentation and run-time
checks

— Examples: CLR,

Secure Virtual Architecture
(Criswell et al., SOSP ‘07)

“Guest VM”

* A simulated full system
* Managed by a hypervisor
* Runs its own OS, apps

Independently
— VMX supports these

Compiler-based VMs:
Secure Virtual Architecture

e Virtual ISA for secure low-level

Virtual Instruction Set

software
* OS kernel in C/C++ compiles to Applications
extension of LLVM IR OS Kernel
SVA VM
Processor

e Special virtual instructions
replace kernel assembly code

«— Native Instruction Set

Protecting applications from the OS

 Compiler-based VM can enforce many policies

 Virtual Ghost lets user-space apps hide memory from kernel
(Criswell et al., ASPLOS ‘14)

Virtual Ghost

* Performance overhead only on kernel mode, not user mode

Protected by
Software Fault Isolation (SFI)

3
User Ghost Kernel
Memory Memory Memory

0 264-1

Side-channel protections

Apparition

* Apparition added side-channel

protections to Virtual Ghost
(Dong et al., Usenix Security ‘18)

* Prevents kernel, other apps from
attacking ghost memory via:
e Last-level-cache side channels
* Page-fault side channels

The other kind of VMs, in Apparition

 Want to run hypervisors under
Apparition

e ...but VMXisn’t part of the V-ISA

* OK, so just extend the V-ISA.
“How hard can it be?”

Software

V-ISA

HOe@e[] mOe[] HOO[]

Native ISA

HOO[HOO[] mOe[J mOe[]

Introducing “Shade”

* Adds hardware virtualization support to
Apparition

* Preserves protections for ghost memory
on the host

* Mitigates side-channel attacks by guests
and compromised kernel/hypervisor

Shade architecture

Guest Guest
Host Anolicat Applications Applications
ost Applications | | (Native Code) | | (Native Code)
(Native Code) (— Cuest VMs
(SVA V-ISA Code) Guest OS Guest OS
(Native Code) | | (Native Code)
Hypervisor Driver
Host OS
(SVA V-ISA Code)
, ; Virtual ISA
Shade Virtual Machine ,
Native [SA
Processor

Key challenges we address

* Control flow integrity across VM entry/exit
* Hypervisor manages EPT but must not access ghost memory
* Over-powered guest could allow OS/hypervisor to escape Shade

* Side-channel mitigations

Control flow integrity on VM entry/exit

* VMX allows hypervisor to set arbitrary host state on exit

e ...including RIP

e ...and RSP, processor mode, segment registers...

e Easy for hypervisor to corrupt CFl, defeat enforcement

Normal Control Flow
Host

|

VMLAUNCH

Guest

Hijacked Control Flow
Host

l

l Guest
VMLAUNCH l

l Skips over SFI, CFl checks

10

Control flow integrity on VM entry/exit

* Shade must take control of VM entry/exit

e Single virtual instruction for running a guest
 Function call semantics

e State saved/loaded from protected memory

* VMCS lives in ghost memory
* Virtual instructions for reading and writing
* Checks on values written

* Virtual instructions to access saved/loaded guest registers

Virtual instructions

* Allocate/free VMCS

e Load/unload VMCS onto processor

* Get/set guest registers managed by Shade
* Read/write VMCS fields

* Run VM guest

Protecting ghost memory

* Hypervisor must be able to add/remove EPT mappings

* But EPT could map protected memory into a guest

EPT

FW
User Ghost Kernel
Memory Memory Memory

2641

Guest Guest
VM VM
|<n><u>
Hypervisor

Host OS

13

Protecting ghost memory

e Similar problem exists for host OS page table config
* Page tables stored in ghost memory

e Virtual instructions for MMU config
* Shade tracks metadata on physical frame usage

* Checks prevent insecure EPT mappings

* Ghost memory
* Host page-table pages (regular + extended)

Virtual instructions for EPT

* Declare/undeclare PTP
* Update mapping

* Load root EPT pointer

Preventing over-powered guests

* VMX allows guests to run native privileged code
* Not normally permitted in an SVA-based system
* No opportunity to add instrumentation

* Guest effects on privileged state must be contained to guest

* Nothing host kernel not allowed to do should persist after VM exit

Preventing over-powered guests

* Some privileged state virtualized by hardware
* CR3 with extended paging
* Control registers saved/loaded atomically on entry/exit

* Other privileged state must be managed by hypervisor
* Kernel MPX registers used by Shade for SFI
* Shade must handle save/load during entry/exit

 Unused features can still be a threat

 New processor features, MSRs
 Shade checks VMCS writes to enforce safe defaults (VM exit)

Side-channel attacks

e Cache partitioning with Cache Allocation Technology (CAT)
* Host kernel

 Shade VM
* Ghosting apps L3 Cache Partitions
Host Kernel + Guest VMs
* Must switch partition on VM entry/exit Shade VM
* VMs run in kernel/hypervisor partition Ghosting | Ghosting] Ghosting | Ghosting
« Possible to give each VM its own partition AL R G

* VMCS checks prevent guest access to CAT MSRs

Empirical evaluation

Benchmarks

* Extended Apparition prototype
* FreeBSD 9.0 kernel ported to V-ISA
* LLVM passes for SFI, CFl unmodified

* LMBench kernel latency benchmarks
* Verify no new impact on host applications over Apparition

* Hypervisor microbenchmarks
* Overheads of virtual instructions over native VMX operations
* Hypothesis: hypervisor latency dominated by other factors

Host kernel benchmarks

 Kernel execution

. 2 an 1 only; lower

:, overhead for

E 3 I | applications

2 . _ _ _ _ _

* No new overheads
_ o || H over Apparition
FreeBSD 9.0 H Apparition Apparition (ghosting)
W Shade Shade (ghosting)

21

160

140

120

100

80

60

40

20

0

FreeBSD 9.0

W Shade

pipe

Host kernel benchmarks - outliers

fentl forkExit forkExit forkShell

B Apparition

Shade (ghosting)

Apparition (ghosting)

* Only affect ghosting applications
* No new overheads over Apparition

* Due to side-channel protections
* Pre-allocating ghost memory
affects fork()
* Cache partitioning

Hypervisor microbenchmarks

VMCS write l.
Overheads
VMCS read l should not
noticeably affect
[— nypervisor
VM entry/exit | performance

Create/destroy VM -

Execution Time (us)

M Baseline (unsafe VMX in Apparition) Shade

Future work

* Port full commodity hypervisor
* FreeBSD’s bhyve
* VirtualBox

* Protect guests from malicious hypervisor
* Mitigate cloud compromise scenarios
* VM exit handling, device virtualization pose challenges

* Prevent exploitation of hardware bugs
* Processor bugs in VMX implementations

Summary

e Using VMX in existing Apparition system
would compromise security

* We extend V-ISA to expose VMX in a
“clean” way

 Minimal impact on hypervisor performance

25

