
Secure Guest Virtual Machine 
Support in Apparition

Ethan Johnson

Department of Computer Science

University of Rochester

In collaboration with Komail Dharsee and John Criswell



Two kinds of “VMs”

“Compiler-based VM”
• Restricts expressivity of 

architecture through virtual 
instruction set

• Enforces policy through 
instrumentation and run-time 
checks

“Guest VM”
• A simulated full system

• Managed by a hypervisor

• Runs its own OS, apps 
independently

2

→ Examples: CLR,

Secure Virtual Architecture
(Criswell et al., SOSP ‘07)

→ VMX supports these



Compiler-based VMs:
Secure Virtual Architecture

• Virtual ISA for secure low-level
software

• OS kernel in C/C++ compiles to 
extension of LLVM IR

• Special virtual instructions 
replace kernel assembly code

3



Protecting applications from the OS

• Compiler-based VM can enforce many policies

• Virtual Ghost lets user-space apps hide memory from kernel
(Criswell et al., ASPLOS ‘14)

• Performance overhead only on kernel mode, not user mode

4

Virtual Ghost

User

Memory

Kernel

Memory

Ghost

Memory

0 264-1

Protected by

Software Fault Isolation (SFI)



Side-channel protections

• Apparition added side-channel 
protections to Virtual Ghost
(Dong et al., Usenix Security ‘18)

• Prevents kernel, other apps from
attacking ghost memory via:

• Last-level-cache side channels

• Page-fault side channels

5

Apparition



The other kind of VMs, in Apparition

• Want to run hypervisors under 
Apparition

• …but VMX isn’t part of the V-ISA

• OK, so just extend the V-ISA. 
“How hard can it be?”

6

Native ISA
■○●□ ■○●□ ■○●□ ■○●□

V-ISA

■○●□ ■○●□ ■○●□

Software



Introducing “Shade”

• Adds hardware virtualization support to 
Apparition

• Preserves protections for ghost memory 
on the host

• Mitigates side-channel attacks by guests 
and compromised kernel/hypervisor

7



Shade architecture

8



Key challenges we address

• Control flow integrity across VM entry/exit

• Hypervisor manages EPT but must not access ghost memory

• Over-powered guest could allow OS/hypervisor to escape Shade

• Side-channel mitigations

9



Control flow integrity on VM entry/exit

• VMX allows hypervisor to set arbitrary host state on exit
• …including RIP
• …and RSP, processor mode, segment registers…

• Easy for hypervisor to corrupt CFI, defeat enforcement

10

Host

Guest
VMLAUNCH

Normal Control Flow
Host

Guest
VMLAUNCH

Hijacked Control Flow

Skips over SFI, CFI checks



Control flow integrity on VM entry/exit

• Shade must take control of VM entry/exit

• Single virtual instruction for running a guest

• Function call semantics

• State saved/loaded from protected memory

• VMCS lives in ghost memory

• Virtual instructions for reading and writing

• Checks on values written

• Virtual instructions to access saved/loaded guest registers

11



Virtual instructions

• Allocate/free VMCS

• Load/unload VMCS onto processor

• Get/set guest registers managed by Shade

• Read/write VMCS fields

• Run VM guest

12



Protecting ghost memory

• Hypervisor must be able to add/remove EPT mappings

• But EPT could map protected memory into a guest

13

Host OS

Hypervisor

Guest 

VM

Guest 

VM

EPT



Protecting ghost memory

• Similar problem exists for host OS page table config

• Page tables stored in ghost memory

• Virtual instructions for MMU config
• Shade tracks metadata on physical frame usage

• Checks prevent insecure EPT mappings
• Ghost memory

• Host page-table pages (regular + extended)

14



Virtual instructions for EPT

• Declare/undeclare PTP

• Update mapping

• Load root EPT pointer

15



Preventing over-powered guests

• VMX allows guests to run native privileged code

• Not normally permitted in an SVA-based system

• No opportunity to add instrumentation

• Guest effects on privileged state must be contained to guest

• Nothing host kernel not allowed to do should persist after VM exit

16



Preventing over-powered guests

• Some privileged state virtualized by hardware
• CR3 with extended paging

• Control registers saved/loaded atomically on entry/exit

• Other privileged state must be managed by hypervisor
• Kernel MPX registers used by Shade for SFI

• Shade must handle save/load during entry/exit

• Unused features can still be a threat
• New processor features, MSRs

• Shade checks VMCS writes to enforce safe defaults (VM exit)

17



Side-channel attacks

• Cache partitioning with Cache Allocation Technology (CAT)
• Host kernel

• Shade VM

• Ghosting apps

• Must switch partition on VM entry/exit
• VMs run in kernel/hypervisor partition

• Possible to give each VM its own partition

• VMCS checks prevent guest access to CAT MSRs

18

Host Kernel + Guest VMs

Shade VM

Ghosting 

App

Ghosting 

App

Ghosting 

App

Ghosting 

App

L3 Cache Partitions



Empirical evaluation



Benchmarks

• Extended Apparition prototype
• FreeBSD 9.0 kernel ported to V-ISA

• LLVM passes for SFI, CFI unmodified

• LMBench kernel latency benchmarks
• Verify no new impact on host applications over Apparition

• Hypervisor microbenchmarks
• Overheads of virtual instructions over native VMX operations

• Hypothesis: hypervisor latency dominated by other factors

20



Host kernel benchmarks

21

• Kernel execution 

only; lower 

overhead for 

applications

• No new overheads 

over Apparition



Host kernel benchmarks - outliers

22

• Only affect ghosting applications

• No new overheads over Apparition

• Due to side-channel protections

• Pre-allocating ghost memory 

affects fork()
• Cache partitioning



Hypervisor microbenchmarks

23

0 1 2 3 4 5 6 7

Create/destroy VM

VM entry/exit

VMCS read

VMCS write

Execution Time (μs)

Baseline (unsafe VMX in Apparition) Shade

Overheads 

should not 

noticeably affect 

hypervisor 

performance



Future work

• Port full commodity hypervisor

• FreeBSD’s bhyve

• VirtualBox

• Protect guests from malicious hypervisor

• Mitigate cloud compromise scenarios

• VM exit handling, device virtualization pose challenges

• Prevent exploitation of hardware bugs

• Processor bugs in VMX implementations

24



Summary

• Using VMX in existing Apparition system 
would compromise security

• We extend V-ISA to expose VMX in a 
“clean” way

• Minimal impact on hypervisor performance

25


