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Speculative Execution

● Feature to improve processor performance
– Equipped in x86, ARM, POWER, etc

● Execute instructions prior to knowing if they 
are needed
– Restore and re-execute on mis-speculation
– Leave observable side effects

● Vulnerable to sophisticated attacks!
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Spectre Attacks

(*func_ptr)(); // return;

if (x < arr1_size) {
  load_fence();
  y = arr1[x];
}

● Variant 1: exploit conditional branches
– Direction prediction using PHT
– Mitigations: fence, data dependence

● Variant 2: exploit indirect branches
– Target prediction using BTB and RSB
– Mitigations: microcode, Retpoline

if (x < arr1_size) {
  y = arr1[x];
}
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What if direct branch 
targets can also be 

poisoned?

2:

1:
pause
jmp  1

mov  %r11, (%rsp)

call 2

ret
...

malicious_target:

Retpoline becomes vulnerable too!
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Venkman: Our Solution!

● Defense against BTB & RSB poisoning
– Aligned control-flow transfer targets
– Protective instructions not bypassed

● Broad threat model
– Any program can be a potential attacker!
– Require whole-system instrumentation
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Outline

● Design
● Implementation
● Security Evaluation
● Space & Performance Evaluation
● Conclusions & Future Work
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Venkman System Architecture
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Venkman Transformations

● Alignment transformations
– Code padding & alignment
– Bit-masking control data

● Protection transformations
– Spectre protection

} Core of Venkman
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Code Padding & Alignment

● Transform basic blocks 
into bundles
– Groups of Instructions sized 

and aligned at 2S bytes
– Split large BBs
– Pad NOPs to small BBs

● Function calls at the 
end of bundle
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Code Padding & Alignment

Honor co-location requirements

…

Protective instruction(s)

...

Protected instruction

Bundle 1

Bundle 2

…

Protective instruction(s)

Protected instruction

Bundle 1

✔
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Bit-Masking Control Data

● Clear lower S bits
● Clear higher (64 – T) bits

● Transform branches w/ in-memory target

Protective
Protected

Protective
Protected
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Spectre Protection

● Insert Spectre-resistant SFI [1]

…

…

Load [ptr]

Bundle 1

…

...

Load [new_ptr]

Bundle 1

new_ptr = mask(ptr, cc)

cc = bounds_check(ptr)

[1] X. Dong et al. Spectres, Virtual Ghosts, and Hardware Support. In HASP’18.
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Spectre Protection

● Insert fences

…

…

...

First load

Bundle 1

Second load

…

…

...

Bundle 1

First load

Second load

Fence
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Outline

● Design
● Implementation
● Security Evaluation
● Space & Performance Evaluation
● Conclusions & Future Work
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Implementation

● Implemented on POWER architecture
● Extended LLVM with MachineFunctionPasses
● 32-byte bundles (S = 5)
● Code segment at first 32 TB (T = 45)
● Use EIEIO as fence
● Use dummy SFI

Enforce In-order Execution of I/O
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Outline

● Design
● Implementation
● Security Evaluation
● Space & Performance Evaluation
● Conclusions & Future Work
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Security Evaluation

● Proof-of-concept Spectre V2 attack on POWER
Attacker:

For all secret bytes:

For N iterations:

Train BTB

Victim execution

Probe secret byte value
via cache side channel

Record most likely
byte values

Victim:

Perform an indirect branch
to malicious code address

chosen by attacker

...

...
Access secret byte

speculatively

With Venkman, such attack
no longer works!
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Outline

● Design
● Implementation
● Security Evaluation
● Space & Performance Evaluation
● Conclusions & Future Work
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Experimental Setup

● Hardware specifications
– 64-bit IBM POWER8
– 20 cores, 8 threads/core
– 4.1 GHz
– 64 GB RAM

● Software specifications
– CentOS 7 w/ Linux 3.10.0
– LLVM/Clang 4.0.1

● Configurations
– Baseline
– Alignment only
– Alignment + CFI (Venkman)
– Venkman + Fence
– Venkman + SFI-Load

● Benchmarks & applications
– SPEC CPU 2017
– Nginx 1.15.8
– GnuPG 1.4.23
– ClamAV 0.92
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Code Size Overhead on SPEC CPU 2017
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Performance Overhead on SPEC CPU 2017



22

Nginx File Transfer Rate

Baseline Venkman Normalized to Baseline
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GnuPG & ClamAV Overhead

GnuPG Encryption ClamAV
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Outline

● Design
● Implementation
● Security Evaluation
● Space & Performance Evaluation
● Conclusions & Future Work
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Conclusions

● Venkman mitigates BTB & RSB poisoning
● When protecting fences, Venkman exhibits

– 1.64x average space overhead
– 2.97x average performance overhead

● When protecting SFI, Venkman exhibits
– 2.13x average space overhead
– 1.43x average performance overhead

● 61.3% space and 8.6% performance overhead for 
non-victim programs
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Future Work

● Reduce overhead
● Port to x86 & ARM



Thank you!
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