
Restricting Control Flow During Speculative

Execution with Venkman

Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell

Department of Computer Science
University of Rochester

Picture from the Internet

2

Speculative Execution

● Feature to improve processor performance
– Equipped in x86, ARM, POWER, etc

● Execute instructions prior to knowing if they
are needed
– Restore and re-execute on mis-speculation
– Leave observable side effects

● Vulnerable to sophisticated attacks!

3

Spectre Attacks

(*func_ptr)(); // return;

if (x < arr1_size) {
 load_fence();
 y = arr1[x];
}

● Variant 1: exploit conditional branches
– Direction prediction using PHT
– Mitigations: fence, data dependence

● Variant 2: exploit indirect branches
– Target prediction using BTB and RSB
– Mitigations: microcode, Retpoline

if (x < arr1_size) {
 y = arr1[x];
}

4

What if direct branch
targets can also be

poisoned?

2:

1:
pause
jmp 1

mov %r11, (%rsp)

call 2

ret
...

malicious_target:

Retpoline becomes vulnerable too!

5

Venkman: Our Solution!

● Defense against BTB & RSB poisoning
– Aligned control-flow transfer targets
– Protective instructions not bypassed

● Broad threat model
– Any program can be a potential attacker!
– Require whole-system instrumentation

6

Outline

● Design
● Implementation
● Security Evaluation
● Space & Performance Evaluation
● Conclusions & Future Work

7

Venkman System Architecture

LLVM Code for
Unprotected

Program

Binary Code

Native Code
Generation

Execute
Binary Code

Alignment
Verifier

Fail

Alignment
Transform

LLVM Code for
Potential Victim

Native Code
Generation

Deny
Binary

Execution

Pass

Protection
Transform

TCB

8

Venkman Transformations

● Alignment transformations
– Code padding & alignment
– Bit-masking control data

● Protection transformations
– Spectre protection

} Core of Venkman

9

Code Padding & Alignment

● Transform basic blocks
into bundles
– Groups of Instructions sized

and aligned at 2S bytes
– Split large BBs
– Pad NOPs to small BBs

● Function calls at the
end of bundle

10

Code Padding & Alignment

Honor co-location requirements

…

Protective instruction(s)

...

Protected instruction

Bundle 1

Bundle 2

…

Protective instruction(s)

Protected instruction

Bundle 1

✔

11

Bit-Masking Control Data

● Clear lower S bits
● Clear higher (64 – T) bits

● Transform branches w/ in-memory target

Protective
Protected

Protective
Protected

12

Spectre Protection

● Insert Spectre-resistant SFI [1]

…

…

Load [ptr]

Bundle 1

…

...

Load [new_ptr]

Bundle 1

new_ptr = mask(ptr, cc)

cc = bounds_check(ptr)

[1] X. Dong et al. Spectres, Virtual Ghosts, and Hardware Support. In HASP’18.

13

Spectre Protection

● Insert fences

…

…

...

First load

Bundle 1

Second load

…

…

...

Bundle 1

First load

Second load

Fence

14

Outline

● Design
● Implementation
● Security Evaluation
● Space & Performance Evaluation
● Conclusions & Future Work

15

Implementation

● Implemented on POWER architecture
● Extended LLVM with MachineFunctionPasses
● 32-byte bundles (S = 5)
● Code segment at first 32 TB (T = 45)
● Use EIEIO as fence
● Use dummy SFI

Enforce In-order Execution of I/O

16

Outline

● Design
● Implementation
● Security Evaluation
● Space & Performance Evaluation
● Conclusions & Future Work

17

Security Evaluation

● Proof-of-concept Spectre V2 attack on POWER
Attacker:

For all secret bytes:

For N iterations:

Train BTB

Victim execution

Probe secret byte value
via cache side channel

Record most likely
byte values

Victim:

Perform an indirect branch
to malicious code address

chosen by attacker

...

...
Access secret byte

speculatively

With Venkman, such attack
no longer works!

18

Outline

● Design
● Implementation
● Security Evaluation
● Space & Performance Evaluation
● Conclusions & Future Work

19

Experimental Setup

● Hardware specifications
– 64-bit IBM POWER8
– 20 cores, 8 threads/core
– 4.1 GHz
– 64 GB RAM

● Software specifications
– CentOS 7 w/ Linux 3.10.0
– LLVM/Clang 4.0.1

● Configurations
– Baseline
– Alignment only
– Alignment + CFI (Venkman)
– Venkman + Fence
– Venkman + SFI-Load

● Benchmarks & applications
– SPEC CPU 2017
– Nginx 1.15.8
– GnuPG 1.4.23
– ClamAV 0.92

20

Code Size Overhead on SPEC CPU 2017

21

Performance Overhead on SPEC CPU 2017

22

Nginx File Transfer Rate

Baseline Venkman Normalized to Baseline

23

GnuPG & ClamAV Overhead

GnuPG Encryption ClamAV

24

Outline

● Design
● Implementation
● Security Evaluation
● Space & Performance Evaluation
● Conclusions & Future Work

25

Conclusions

● Venkman mitigates BTB & RSB poisoning
● When protecting fences, Venkman exhibits

– 1.64x average space overhead
– 2.97x average performance overhead

● When protecting SFI, Venkman exhibits
– 2.13x average space overhead
– 1.43x average performance overhead

● 61.3% space and 8.6% performance overhead for
non-victim programs

26

Future Work

● Reduce overhead
● Port to x86 & ARM

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

