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• CGO:    http://cgo.org/cgo2019/
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• I attended mostly HPCA sessions. 

• Disclaimer: I have taken most diagrams and texts from the slides available or the 
papers. 
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HPCA keynote: Towards Secure High-Performance 
Computer Architectures (Srini Devadas, MIT)

• Side channel attacks exploits microarchitectural optimizations 
like speculations to leak secrets.

• Isolation breaks because of shared microarchitectural states 
(shared last level cache, memory addresses, and cache 
addressing (set, tag), etc)
• Rollback is perfect and restores back to the previous architectural 

states

• But side channels can exploit mis-predicted branches and non-
architectural states affected

• But can’t do away with optimizations due to performance 
reasons.



• Design processors to support enclaves (processes with associated security policy, 
microarchitectural isolation).

• No other program should be able to infer anything private about the enclave process 
through it’s shared resources or shared micro-architectural states (separation of resources at 
all levels).

• All resources are isolated spatially and temporally as required by the threat model.



• Strong timing independence:  Two programs are independent if a program’s sequence and 
timing of microarchitectural events do not depend on another program.

• Strong timing independence implies architectural independence.

• Propose MI6, an out-of-order processor capable of providing secure enclaves.

• MI6 assures security in the scenario where the threat model consists of :-
• an untrusted OS 
• attacker capable of mounting any practical software attacks.

• Enclaves  run secure tasks side-by-side of ordinary processes.

• Use open source RiscyOO processor as a baseline. But RiscyOO also suffers from cache-timing 
side channels and is vulnerable to speculation based attacks like Spectre.



Architectural changes made

• Cache set partitioning (avoid cache timing side channels).

• MSHR partitioning, MSHRs sizing to prevent DRAM backpressure and isolation.

• Constant latency DRAM controller (to provide timing isolation).

• Flushing micro-architectural states (private cache, TLB, branch predictor states on context switch, restore 
later).

• Page-walk checks (DRAM region based partitioning and thus access translations in TLB).

• Turning off speculation and checking instruction fetches in the machine mode (high-level security 
monitor that helps assert resources allocated to an enclave). 

• Have other functioning like TLB shootdowns, flush to ensure that speculative loads/stores don’t violet 
the security policy.



HPCA: Session 1: Best paper nominees

• The Accelerator Wall: Limits of Chip Specialization Adi Fuchs and David Wentzlaff
(Princeton University)

• Stretch: Balancing QoS and Throughput for Colocated Server Workloads on SMT Cores 
Artemiy Margaritov (University of Edinburgh); Siddharth Gupta (EPFL); Rekai Gonzalez-
Alberquilla (Arm Ltd, Cambridge, UK); Boris Grot (University of Edinburgh)

• CIDR: A Cost-Effective In-line Data Reduction System for Terabit-per-Second Scale SSD 
Arrays Mohammadamin Ajdari (POSTECH); Pyeongsu Park, Joonsung Kim, Dongup Kwon, 
and Jangwoo Kim (Seoul National University)

• Composite-ISA Cores: Enabling Multi-ISA Heterogeneity Using a Single ISA
Ashish Venkat (UCSD/UVA); Harsha Basavaraj and Dean Tullsen (UCSD)



The Accelerator Wall: Limits of Chip Specialization 

• Applications domains like Deep learning, Graph 
Processing running on Data centers and mobile 
devices are very common these days.

• Accelerators are specialized chips that  get 
more out of the silicon than general purpose 
CPUs for particular functions (problems like 
dark silicon, End of Moore’s Law).

• No more transistors -> No more cores (in a 
single chip) -> No more parallelism (within the 
chip)



• What helps accelerators perform? Where does the benefit come from?



• Accelerators are good, but they are not solving the transistor problem.

• Use “throughput per Silicon” to build a CMOS potential model.

• Device level scaling takes into account frequency, leakage power, dynamic power 
(CMOS scaling study + Projections)

• Chip Transistor Budget using datasheets of thousands of commercial processors

• CMOS Potential= Device level scaling + Chip Transistor Budget





• Chip specialization is not a long-term remedy for the end of Moore’s Law.

• Need model to decouple transistor returns from specialization returns for 
accelerators.

• Introduce Rankine: A CMOS Potential Modeling Tools
• Based on databased of thousands of commercial processor

• Evaluate one accelerator vs other based on CMOS returns

• Calculates CMOS Potential based on Physical Chip Properties  e.g., CMOS Process, Die 
Size/Number of Transistors, etc.

• GitHub Repo: https://github.com/PrincetonUniversity/accelerator-wall

https://github.com/PrincetonUniversity/accelerator-wall


Stretch: Balancing QoS and Throughput for Colocated Server 
Workloads on SMT Cores

• Data centers want to maximize performance per Watt and performance per Dollar value paid.

• To do that,  they collocate latency sensitive and batch workloads on the same CMP as well as within 
a single SMT core.

• But at lower load rates, there is significant slack available from latency-sensitive workloads (still 
maintaining target QoS).

• Batch co-runners suffer more in terms of performance when they are co-located.

• Batch and latency sensitive workloads have different sensitivity to ROB capacity.



• Latency sensitive workloads don’t benefit much from larger ROB capacity; 
• this is due to frequent cache misses and data dependent computation that limits Instruction Level 

Parallelism (ILP) and memory level parallelism (MLP).

• Batch processes benefit from higher ROB capacity by exploiting ILP and MLP.

• Stretch is a simple mechanism that helps in boosting performance by providing ROB 
partitioning configurations.

• When latency-sensitive applications are running below their peak load, the excess slack can 
be used to shift ROB capacity to the batch applications.

• System software detects when latency-critical applications are running low loads and thus 
shift to different ROB partitioning configuration. 



CIDR: A Cost-Effective In-Line Data Reduction System for Terabit-per-Second Scale 
SSD Arrays

• Cost-effective ways required to store data in SSDs as they are expensive.

• Can use accelerators (FPGAs) for data compression, but need efficient mechanism.



Existing approaches for data reduction have limitations

• SW-based approach (CPUs run data reduction operations)
• Low throughput and scalability due to CPU bottleneck

• Intra-SSD HW acceleration (accelerators in each SSD for scalable throughput)
• Low data reduction due to no inter-SSD deduplication

• Dedicated HW acceleration
• Low device utilization as separated from SSDs



• Design goals to have, throughput and scalability, high data reduction and efficient 
device utilization.

• Key ideas for CIDR:-
• Scalable FPGA array (deploy a CPU-free, scalable FPGA accelerator array)

• Centralized table management (detect all duplicate chunks in a large SSD array)

• Long-term FPGA reconfig (reconfigure FPGAs to workload’s average behavior)

• Short term request scheduler (schedule requests considering available HW resources)



Optimizations

• Use SRAM instead of slow DRAM buffer

• Cluster units to make distribution network simple

• Remove the large SRAM queue by predicting uniqueness

• Delay over-subscribed requests into the delayed buffer



Composite-ISA Cores: Enabling Multi-ISA Heterogeneity using a Single ISA

• Hardware specialization can be provided based on two basic ideas :-
• Domain-specific specialization: Accelerate the performance of a particular class of problems

• Microarchitectural heterogeneity: Use a large number of small power-efficient diverse cores

• Is it possible to benefit from this heterogeneity and specialization while preserving the 
traditional programming model?

• Some tradeoffs, Speedup vs. energy savings with performance loss.



• ISA design metrics:-
• High performance
• Low power
• Reduced code size
• Domain-specific instructions, etc.

• Different configurations should be used based on the requirements.

• Having the same ISA for all cores restricts heterogeneity and may not achieve full potential 
performance.

• Harnessing ISA Diversity helps:-
• Exploit ISA affinity (applications have preference ISAs)
• Enables ISA-microarchitecture co-design (helps overall energy consumption compared to homogeneous ones)



• Cross ISA migrations are difficult due to a variety of reasons ranging from different 
machine code, register file width, and data formats. Also there is a multi-vendor 
licensing issue.

• The paper avoids multi-vendor licensing issues by using a single vendor ( considering 
a single vendor has the best chips in all domain, not true, greatly reduces the 
challenges).

• Three basic strategies in achieving Composite ISA cores:-
• ISA feature set derivation

• Start with base ISA (x86), customize along  5 dimensions (next slide)

• 26 different composite ISAs

• Compiler Strategy

• Design Space exploration (choice of microarchitectural parameters, 4680 single core design 
points, San Diego Supercomputer Center)





• Power constrains determine performance for composite ISA



Session 3B: Emerging technologies

• The What's Next Intermittent Computing Architecture
Karthik Ganesan (University of Toronto); Joshua San Miguel (University of Wisconsin-Madison); Natalie Enright Jerger
(University of Toronto)

• eQASM: An Executable Quantum Instruction Set Architecture
Xiang Fu (QuTech, Delft University of Technology; Quantum Computer Architecture Lab, Delft University of Technology); Leon Riesebos (Quantum Computer 
Architecture Lab and QuTech, Delft University of Technology); M. A. Rol (QuTech, Delft University of Technology; Kavli Institute of Nanoscience, Delft University of 
Technology); Jeroen van Straten (Computer Engineering Lab, Delft University of Technology); Hans van Someren, Nader Khammassi, and Imran Ashraf (Quantum 
Computer Architecture Lab and QuTech, Delft University of Technology); Raymond Vermeulen (QuTech, Delft University of Technology; Kavli Institute of 
Nanoscience, Delft University of Technology); Vincent Newsum and Kelvin Loh (Netherlands Organisation for Applied Scientific Research (TNO); QuTech, Delft 
University of Technology); Jacob de Sterke (Topic Embedded Systems; QuTech, Delft University of Technology); Wouter Vlothuizen (Netherlands Organisation for 
Applied Scientific Research (TNO); QuTech, Delft University of Technology); Raymond Schouten (QuTech, Delft University of Technology; Kavli Institute of 
Nanoscience, Delft University of Technology); Carmina G. Almudever (Quantum Computer Architecture Lab and QuTech, Delft University of Technology); Leo 
DiCarlo (QuTech, Delft University of Technology; Kavli Institute of Nanoscience, Delft University of Technology); Koen Bertels (Quantum Computer Architecture Lab 
and QuTech, Delft University of Technology)

• Reliability Evaluation of Mixed-Precision Architectures
Fernando Fernandes dos Santos, Daniel Oliveira, Caio Lunardi, Fabiano Pereira Libano, and Paolo Rech (UFRGS)

• Architecting Waferscale Processors - A GPU Case Study
Saptadeep Pal (UCLA); Daniel Petrisko and Matthew Tomei (UIUC); Puneet Gupta and Subramanian S. Iyer (UCLA); Rakesh 
Kumar (UIUC)



The What’s Next Intermittent Computing Architecture

• Energy harvesting devices that run on non-conventional sources of energy like solar, RF, piezo-electricity, 
operate in the intermittent computing paradigm (frequent power outages).

• The systems use non-volatile processors or periodic checkpointing.

• When new data arrives for processing, need to decide whether to continue processing the old data or start 
with the new one.

• Provides partial answer (approximate) when energy is limited but can refine answer when more energy is 
available.

• Uses interruptibility (processing can be halted while still providing an approximate output) and flexibility (if 
greater accuracy required then can run longer) from anytime automation model.



• Process subwords from MSB to LSB, processing each subword generates 
approximate results.

• Two basic methods for supporting subword operations: subword pipelining
and subword vectorization

• Subword pipelining decomposes high-latency operations like (multiplication) 
into smaller subwords operations.

• Subword vectorization fuse low-latency instructions (add, load, store) such 
the most significant subwords of different data elements are processed in 
parallel.

• Skim points introduced to decouple restore PC from backup PC to skip 
remaining subwords if the approximate result is good enough.



eQASM: An Executable Quantum Instruction Set Architecture

• Need to provide a reliable and convenient  instruction set 
architecture for bridging the gap between quantum hardware 
and software.

• Previous suggested quantum microinstruction set (QuMIS) 
suffers from multiple issues:-
• Doesn’t support feedback on QuBit measurement results, which 

is required for active reset in circuit-model-based quantum 
computing

• Has low instruction information density
• Have limited flexibility because it is very low-level and is bound 

to electronic hardware implementation

• Thus this paper proposes eQASM based on QISA, that contains 
both quantum and classical instructions.







Contributions:-

• Can be supported using OpenCL, different 
operations SOMQ (Single Operation Multiple 
QuBits), FMR (Fetch Measurement Result)

• Runtime feedback: fast conditional execution for 
simple and fast feedback and comprehensive 
feedback control (CFC) for user-defined feedback

• Increase the quantum operation issue rate

• Configurable QISA at compile time



Reliability Evaluation of Mixed-Precision Architectures

• Floating points helps improve graphics quality, physical simulation, etc (the more precise,  
the better).

• Precision comes with a cost, including area (circuit complexity), power consumption and 
execution time.

• Approximate computing proves that some operations in some algorithms can be 
approximated without affecting the results significantly.

• Mixed-precision architectures improve performance and energy savings. Helpful mostly 
in neural network training and execution.



• How is system reliability affected in Mixed-precision environments?

• Cosmic rays produce Muons, protons, neutrons, Gamma rays, etc, that can intorduce
soft errors (bit-flips in memory/logic error, not permanent)

• Use FPGA, X86(Xeon Phi) and GPU (Volta V100) for evaluation

• Fault injection using Neutron beam, measure Failure in time (FIT)



Observations

• Doubles have a much larger area than half, thus more likely to be corrupted.

• However, a fault in double value is much less critical than a fault in half
• Double 81% bits are mantissa, half 60% are mantissa

• Case study for FPGA, Xeon Phi, and GPU (find the rate of decrement of FIT rate)
• FPGA Half-precision FIT reduction is slower: faults are more critical

• Xeon Phi doesn’t have dedicated HW for double/single precision, the compiler decides how to use the 
functional units, single has higher error rates, but criticality is similar

• GPUs, error criticality increases with a decrease in precision

• In general low precision can improve reliability: more data can be processed before 
experiencing an error.



Architecting Waferscale Processors – A GPU Case Study

• Parallel hardware needs low overhead communication, but the area and power overhead for chip-to-
chip communication is 25-30%

• Waferscale processors help alleviate issues of communication overheads while scaling.

• Historically had yield issues, but with recent integration technology such as Silicon-Interconnect Fabric 
(Si-IF) (pre-manufactured dies are bonded to a silicon wafer) it seems possible.

• The wafer is the processor, either monolithic processor or a set of processors are designed on the 
wafer and are connected using low-cost on-wafer interconnect. 



Contributions of the paper

• Answers the question whether building a waferscale the GPU system on 300mm wafer with 
100 GPU modules possible.

• Waferscale GPUs are area-constrained due to power delivery network overheads, not 
thermally-constrained.

• Techniques for thread group scheduling and data partitioning. 



• Performance and energy efficiency depends on how the compute threads and data is 
placed on the waferscale chip.

• Consecutive Thread Block (TB) can benefit from data locality; distributed scheduling used 
rather than centralized round-robin scheduling.

• TBs placed on GPM array starting from the corner and moving row-wise.

• First memory access to a page moves that page to the local DRAM of the GPM.



Session 4B: Industry Session 1, Mobile and Low power 
• Killi: Runtime Fault Classification to Deploy Low Voltage Caches without MBIST

Shrikanth Ganapathy (AMD Research), John Kalamatianos (AMD Research), Brad 
Beckmann (AMD Research), Steven Raasch (AMD Research), Lukasz Szafaryn (Intel)

( SRAM cells fail exponentially at low-voltages, Memory Built-in-Self Tests are not scalable for large 
shared L2 , completely rely on on-line adaptive Low-voltage technique to classify faults)

• Gables: A Roofline Model for Mobile SoCs with Many Accelerators and Ceilings
Mark Hill (Google), Vijay Janapa Reddi (Google) (“From a department chair to an intern at 
Google is a promotion”, roofline model for accelerators, pre-silicon model for understanding usage of 
IPs and maximum performance that can be achieved for workloads)

• Machine Learning at Facebook: Understanding Inference at the Edge
Carole-Jean Wu (Facebook), David Brooks (Facebook), Kevin Chen (Facebook), Douglas Chen (Facebook), Sy 
Choudhury (Facebook), Marat Dukhan (Facebook), Kim Hazelwood (Facebook), Eldad Isaac (Facebook), Yangqing Jia 
(Facebook), Bill Jia (Facebook), Tommer Leyvand (Facebook), Hao Lu (Facebook), Yang Lu (Facebook), Lin Qiao
(Facebook), Brandon Reagen (Facebook), Joe Spisak (Facebook), Fei Sun (Facebook), Andrew Tulloch (Facebook), 
Peter Vajda (Facebook), Xiaodong Wang (Facebook), Yanghan Wang (Facebook), Bram Wasti (Facebook), Yiming
Wu (Facebook), Ran Xian (Facebook), Sungjoo Yoo (Facebook), Peizhao Zhang (Facebook)



PPoPP keynote: When Moore met Feynman: Ultra-dense data storage and extreme 
parallelism with electronic-molecular systems  (Karin Strauss, Microsoft Research)

• Data storage for huge data centers is becoming a 
concern, need high-density storage devices that 
can alleviate the real-estate needs of data 
storage.

• Digital files are segmented and encoded into 
different sequences.

• Individual files can be retrieved from a mixed 
database using PCR (Polymerase chain reaction)-
based random access.



A Content-Addressable DNA Database with Learned Sequence Encoding

• Pair-wise matching forms complete double helix structure as some of the (A, G, T, C) attract 
and some repel.



Session 5B: Memory Hierarchy management
• Bingo Spatial Data Prefetcher Mohammad Bakhshalipour (Sharif University of 

Technology); Mehran Shakerinava (Sharif University of Technology); Pejman Lotfi-
Kamran (Institute for Research in Fundamental Sciences (IPM)); Hamid Sarbazi-Azad 
(Sharif University of Technology)

• NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory
Thomas Shull and Jiho Choi (University of Illinois Urbana-Champaign); Maria Garzaran
(Intel); Josep Torrellas (University of Illinois Urbana-Champaign)

• FUSE: Fusing STT-MRAM into GPUs to Alleviate Off-Chip Memory Access Overheads 
Jie Zhang and Myoungsoo Jung (Yonsei University); Mahmut Kandemir (Penn State 
University)

• Featherlight Reuse-distance Measurement Qingsen Wang (College of William & 
Mary); Millind Chabbi (Uber); Xu Liu (College of William & Mary)



Bingo Spatial Data Prefetcher

• Spatial data prefetchers exploit spatial locality patterns to 
prefetch data.

• Relies on spatial address correlation: the similarity of access 
patterns among multiple pages of memory.

• Record accesses to a page (record a footprint), footprints 
associated to event(s).

• Using  a single event (say PC) instead of (PC+offset, PC+Address
, etc) can be efficient but may not be highly accurate.

• TAGE (TAgged GEometric length)-like tables occupy space and 
may have redundant information.

• Propose a single history table that is looked up multiple times 
to find prediction with the longest event sequence.



• The idea is that short events are carried in long events.

• History table stores history of long events but is looked up 
using both short and long events.

• Table indexed with the hash of short events but tagged with 
the longest event.

• The history table is looked up with the longest event if match 
found then the prediction is made, otherwise, the table is 
looked up again with the next-longest event in the same set 
as the set is indexed using short events.



FUSE: Fusing STT-MRAM into GPUs to Alleviate Off-Chip Memory Access Overheads

• GPUs achieve outstanding performance with low power, they employ streaming multiprocessors (SMs) with 
large private register files.

• Register files occupy 62% of the total private memory. The on-chip L1D cache also suffers from thrashing due 
to irregular access patterns and task switches.

• Employing a larger L1D cache can help in reducing off-chip access to the DRAM and improve performance, 
but on-chip area remains a bottleneck.

• Use NVM technology like Spin-Transfer Torque Magnetic RAM which offer higher density to build bigger L1D 
caches.



Contributions of the paper

• Efficient heterogeneous GPU Caches: STT-MRAM banks along with SRAM banks. STT-MRAM suffer from 
high write latency, thus require swapping mechanism to faster SRAM when hot blocks are detected.

• WORM (Write once read multiple) blocks can be speculatively predicted and kept in the larger STT-
MRAM banks, the majority of data blocks (90%) under GPU applications experience this.

• Smart data placement strategy: use a read-level predictor that detects WORM data blocks.

• Approximate STT-MRAM as fully set-associative, use a counting bloom filter for  faster lookup. 



Featherlight Reuse-distance Measurement

• Reuse distance: the number of distinct memory location between two consecutive uses of 
the same memory location.

• Reuse distance used in quantifying data locality (cache simulation, code optimization, 
program phase prediction, etc).

• But profiling reuse distance for the whole program is costly (instrumentation 100x to 1000x 
slow down).

• Solution use RDX :-
• Sampling based profiler

• Low overhead (5% performance (time)) (7% memory)

• High accuracy > 90%



• Three basic components:-
• Sample Memory access address

• Use Performance Monitoring Units to sample loads and stores 

• Record effective address of each access

• Measure time distance  (number of memory accesses since last use)
• Use debug registers to detect the reuse position

• Time distance -> reuse distance
• Each data location is accessed independently

• Statistically estimate reuse distance histogram from time distance



Challenges:-

• Sampling may miss opportunities.

• Deal with limited number of debug registers, use Reservoir sampling, if a free 
register is available use it otherwise probabilistically replace one of the 
monitored addresses.



Session 6A: Industry Session 2, Microarchitecture

• Efficient Load Value Prediction using Multiple Predictors and Filters
Rami Sheikh (Qualcomm), Derek Hower (Qualcomm)

• BRB: Mitigating Branch Predictor Side-Channels
Ilias Vougioukas (ARM Research/U. of Southampton), Nikos Nikoleris (ARM Research), 
Andreas Sandberg (ARM Research), Stephan Diestelhorst (ARM Research), Bashir M. 
Al-Hashimi (U. of Southampton), Geoff V. Merrett (U. of Southampton)

• Elastic Instruction Fetching
Arthur Perais (Qualcomm), Rami Sheikh (Qualcomm), Luke Yen (Qualcomm), Michael 
McIlvaine (Qualcomm), Robert D. Clancy (Qualcomm)



Efficient load value predictor using Multiple predictors and filters

• Value prediction helps in breaking true data dependency, thus improving performance.

• Most value predictors have high budget requirements, and no single value prediction 
scheme can predict all load values effectively.

• Variations in value prediction schemes:-
• Direct: predict value

• Indirect: predict address, and read the value from that address

• Context-aware

• Context unaware



• A composite value predictor design by Predictor Fusion and heterogeneous predictors.

• Optimizations on top of that:-
• Accuracy monitors: Mitigate pathological cases

• Track prediction accuracy

• Squash predictions if inaccurate

• Smart training: Eliminate overlap
• Train all predictors, if mispredicts training is necessary

• Prefer value over address and context-unaware over aware

• Predictor fusion: improve utilization
• Identify under delivering predictors and re-purpose them



Mitigating Branch Predictor Side-Channels

• Threat model, victim and attacker run on the same core share the 
same branch predictor.

• An attacker can poison branch predictor entries (BTBs and other 
tables) to have victim execute vulnerable code or mispredict.

• Flush BP contents on context switch (expensive) and degrades 
performance.

• Use Branch Retention Buffer (BRB) to store partial states

• Retain states per context

• Activated on ASID



• Focus on components of the TAGE (Tagged Geometric length predictor), and check, saving which 
components of the predictor help to mitigate performance issues the most (no need to store all states)

• Retaining no states doubles mispredictions, need to reduce that by selecting which of the components 
bimodal, loop predictor, stats corrector or the Tage tables.

• Found that the bimodal component helps in saving the most transient states, use branch retention 
buffer to save it.

• But still, accuracy is not great, need to get a better bimodal component that can retain steady states.

• ParTAGE swaps bimodal for a perceptron. 

• Better than TAGE with BRB.



Elastic Instruction Fetching

• Two primary modes of instruction fetching:-
• Coupled Instruction fetching: On a I-Cache miss next PC generation is stalled.

• Decoupled Instruction fetching: Branch predictor used to generate next PC, decoupled queue is 
filled up 

• Workloads which have large I-cache footprint benefit from Decoupled instruction 
fetching.

• But the ones which have smaller I-cache footprint don’t benefit much from the 
presence or absence of decoupled fetching.

• Thus propose Elastic fetching (ELF) which alternates between two modes of fetching.



Idea behind ELF

• When branch misprediction is corrected, the next correct PC is already available, no 
need to wait for BP to catch up

• Restart both branch prediction and instruction fetch concurrently
• Front end behaves in “coupled mode” after pipeline restart

• Switch to “decoupled mode” when branch predictor catches up

• Counters to change mode

• Two versions L-ELF (limited) upon decoding a branch fetch stalls, U-ELF (Unlimited)



Session 7B: Microarchitecture

• R3-DLA (Reduce, Reuse, Recycle): A More Efficient Approach to Decoupled Look-Ahead 
Architectures
Sushant Kondguli and Michael Huang (University of Rochester) 

(Look ahead thread helps warm up structures associated with running the main thread, lighter look-ahead 
thread (36%))

• Recycling Data Slack in Out-of-Order Cores
Gokul Subramanian Ravi and Mikko Lipasti (University of Wisconsin - Madison)

(Clock cycle dedicated to data and environment safety, harness data slack from different operations depending on 
data width and type, accumulate slack and use efficient scheduling techniques by introducing new entries in 
reservation stations)

• Freeway: Maximizing MLP for Slice-Out-of-Order Execution
Rakesh Kumar (Norwegian University of Science and Technology (NTNU), Norway); Mehdi 
Alipour and David Black-Schaffer (Uppsala University, Sweden)



Session 8A: Memory

• Enabling Transparent Memory-Compression for Commodity Memory Systems
Vinson Young, Sanjay Kariyappa, and Moinuddin Qureshi (Georgia Institute of 
Technology)

• D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers 
with Low Latency and High Throughput
Jeremie S Kim (Carnegie Mellon University; ETH Zurich); Minesh Patel and Hasan 
Hassan (ETH Zurich); Lois Orosa (ETH Zurich; Universidade Estadual de Campinas); 
Onur Mutlu (ETH Zurich; Carnegie Mellon University)

• PageSeer: Using Page Walks to Trigger Page Swaps in Hybrid Memory Systems
Apostolos Kokolis, Dimitrios Skarlatos, and Josep Torrellas (University of Illinois, 
Urbana-Champaign)



Enabling Transparent Memory-Compression for Commodity Memory Systems

• Need practical and efficient solutions for scaling memory bandwidth.

• Compression helps with memory bandwidth scaling but would need OS support as memory 
requirement and compressibility varies.

• Transparent Memory Compression (TMC): HW compression for Bandwidth scaling without OS 
support.

• Challenges with TMC:-

• Transfer in chunks (64 Bytes each) even if data acquiring less space due to compression.

• If able to relocate lines together then would help reduce bandwidth issues (pair-wise remapping).



• Can use metadata to store information about the compressed/uncompressed lines, 
suffers from performance issue as you always need to read meta-data first and then 
read the appropriate line.

• Storing metadata within the line helps single access reads.

• Use 4-byte maker to denote compressibility of lines (whether the entire line has been 
used or not)

• But uncompressed lines can collide with marker tags, store small SRAM based 
Collision table for this purpose.



• But how do you find a line with? Reading all possible lines is not a  solution.

• Predict location and compressibility of line to enabling reading in a single access.

• Use a hash-based prediction table.



D-Range: Using commodity DRAM devices to generate true random numbers with 
low latency and high throughput

• Random numbers are used for a variety of security and randomized algorithm applications.

• There is a need for hardware based True Random Number Generator (TRNG) with existing 
devices.

• True Random Numbers can only be generated using a physical process example radioactive 
decay, thermal noise, etc.

• Goal is to provide TRNG using DRAM devices, using cell’s latency failure probability.

• Latency failure is related to random process variation during manufacturing. 



• Random values can be extracted by sampling DRAM cells that fail truly and the cell’s 
latency failure probability.

• Access cells with reduced tRCD (time from activation to read) cause more cells to latency 
fail.

• Use multiple DRAM banks in parallel to generate high throughput random numbers.

• Exclusive access to RNG cells and reserve rows that have RNG cells to minimize 
interference.



PageSeer: Using Page Walks to Trigger Page Swaps in Hybrid Memory Systems

• Memory capacity becoming a bottleneck with ever-evolving memory intensive applications.

• DRAM can no longer provide capacity while being power efficient.

• Non-volatile Memory (NVMs) are becoming more and more common due to high density 
and low power requirements.

• But they suffer for high access latency; thus hybrid memory system design is required to 
harness the best of both worlds.



Challenges involve:-

• Managing pages (decide which pages to swap to or from the faster DRAM based 
region compared to the slower NVM based one)

• Track page activity (frequently written pages, hot pages etc)

• Record the page mapping/remapping

• Swap is costly, need to predict future access patterns accurately and as early as 
possible

• Can take hints at translation time for memory access



• Use page-walks to trigger swaps

• Use page-correlation mechanism to prefetch page swaps

• Track hot pages

• Hybrid Memory Control (HMC) leverages information from MMU after about forth 
coming memory operations


