rip Report:
Principles and Practice of Parallel
Programming/High-Performance Computer
Architecture 2019

PPoPP Sat 16 - Wed 20 February 2019 Washington, DC, United States
25th IEEE International Symposium on High-Performance Computer Architecture
February 16-20 2019, Washington D.C., USA

https://ppopp19.sigplan.org/venue/PPoPP-2019-venue

* Co-located with International Symposium on Code Generation and Optimization
(CGO) and 28th International Conference on Compiler Construction (CC).

* Links:
* PPoPP: https://ppopp19.sigplan.org/track/PPoPP-2019-papers#tprogram
 HPCA: http://hpca2019.seas.gwu.edu/keynote.html
 CGO: http://cgo.org/cgo2019/
e CC: https://cc-conference.github.io/19/

| attended mostly HPCA sessions.

* Disclaimer: | have taken most diagrams and texts from the slides available or the
papers.

https://ppopp19.sigplan.org/track/PPoPP-2019-papers#program
http://hpca2019.seas.gwu.edu/keynote.html
http://cgo.org/cgo2019/
https://cc-conference.github.io/19/

HPCA keynote: Towards Secure High-Performance

Sequential Instruction Non-Sequential

. ° . Execution Instruction Execution
Computer Architectures (Srini Devadas, MIT)
I Compute Miss-Speculated
I+1: Compute Correct Branch
+2: Compute Branch ¥ p C‘ t
. +3: Compute J: Compute : ompute
* Side channel attacks exploits microarchitectural optimizations o P P E——
like speculations to leak secrets. 1+5:_Compute oo Pesrm—
I+6: Compute
. . . Way 0 Way 1 Way 2 Way 3
* |solation breaks because of shared microarchitectural states »
» Set
(shared last level cache, memory addresses, and cache proces 1~
addressing (set, tag), etc) Process2 -+ set2
* Rollback is perfect and restores back to the previous architectural
states i
* But side channels can exploit mis-predicted branches and non-
architectural states affected
, // /[;omain ofVictirr:_\ / //Domain of Attack;?\\
* But can’t do away with optimizations due to performance / | cramel [[e \
reasons.
\. / N\ /

S - e ///

If then else take secret keys as
condition and based on which
Pre-existing (RSA conditional-execution example) the control flow changes

Written by attacker (Meltdown)

Synthesized out of existing victim
code by attacker (Spectre)

» Design processors to support enclaves (processes with associated security policy,
microarchitectural isolation).

* No other program should be able to infer anything private about the enclave process
through it’s shared resources or shared micro-architectural states (separation of resources at

all levels).

* All resources are isolated spatially and temporally as required by the threat model.

Enclave Lifecycle (simplified)

Untrusted Enclave binary
software (OS) image

1) Create Enclaves, grant 4) Enter Enclave

resources

2) Load Enclave ‘ 3) Seal Enclave

(enclaves executes)

e Strong timing independence: Two programs are independent if a program’s sequence and
timing of microarchitectural events do not depend on another program.

e Strong timing independence implies architectural independence.

Propose MI6, an out-of-order processor capable of providing secure enclaves.

MI6 assures security in the scenario where the threat model consists of :-
* anuntrusted OS
» attacker capable of mounting any practical software attacks.

Enclaves run secure tasks side-by-side of ordinary processes.

Use open source RiscyOO processor as a baseline. But RiscyOO also suffers from cache-timing
side channels and is vulnerable to speculation based attacks like Spectre.

Architectural changes made

e Cache set partitioning (avoid cache timing side channels).
* MSHR partitioning, MSHRs sizing to prevent DRAM backpressure and isolation.
e Constant latency DRAM controller (to provide timing isolation).

. rlusl';ing micro-architectural states (private cache, TLB, branch predictor states on context switch, restore
ater).

* Page-walk checks (DRAM region based partitioning and thus access translations in TLB).

* Turning off speculation and checking instruction fetches in the machine mode (high-level security
monitor that helps assert resources allocated to an enclave).

* Have other functioning like TLB shootdowns, flush to ensure that speculative loads/stores don’t violet
the security policy.

HPCA: Session 1: Best paper nominees

* The Accelerator Wall: Limits of Chip Specialization Adi Fuchs and David Wentzlaff
(Princeton University)

 Stretch: Balancing QoS and Throughput for Colocated Server Workloads on SMT Cores
Artemiy Margaritov (University of Edinburgh); Siddharth Gupta (EPFL); Rekai Gonzalez-
Alberquilla (Arm Ltd, Cambridge, UK); Boris Grot (University of Edinburgh)

* CIDR: A Cost-Effective In-line Data Reduction System for Terabit-per-Second Scale SSD
Arrays Mohammadamin Ajdari (POSTECH); Pyeongsu Park, Joonsung Kim, Dongup Kwon,
and Jangwoo Kim (Seoul National University)

 Composite-ISA Cores: Enabling Multi-ISA Heterogeneity Using a Single ISA
Ashish Venkat (UCSD/UVA); Harsha Basavaraj and Dean Tullsen (UCSD)

The Accelerator Wall: Limits of Chip Specialization

* Applications domains like Deep learning, Graph —
Processing running on Data centers and mobile Appllcathns
devices are very common these days. Deep Learning

Graph Processin
Platforms
Data Centers
Mobile Devices

Transistors
Dark Silicon
End Of Moore's Law

* Accelerators are specialized chips that get
more out of the silicon than general purpose
CPUs for particular functions (problems like
dark silicon, End of Moore’s Law).

* No more transistors -> No more cores (in a

single chip) -> No more parallelism (within the
Chlp) Sources:

“Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective”, Hazelwood et al. H
“Cloud TPU", Google

Transistors Aren't
Improving? We'll Use the
Ones We Have Better!

“FPGA Accelerated Computing Using AWS F1 Instances", David Pellerin, AWS summit 2017
“IPhone XS A12 Bionic”, Apple https;//www.apple.com/iphone-xs/a12-bionic/

“Microsoft unveils Project Brainwave for real-time Al*, Doug Burger

“NVIDIA TESLA V100", NVIDIA

* What helps accelerators perform? Where does the benefit come from?

Traditional Accelerator-Centric

Application H Computation Domain (FIXED)]

Algorithm

Algorithm } .

Are Accelerators
Driven by:

Programming Language

Operating System

Programming Framework] -

ISA

SPECIALIZATION?

Microarchitecture

Accelerator Platform J -

RTL

Gate Level

OR

Chip Engineering

Circuits

Devices

mcieJ—— TRANSISTORS?

e T e D e T e T . D e DY e Y e Y . T . D G

Technology

* Accelerators are good, but they are not solving the transistor problem.

* Use “throughput per Silicon” to build a CMOS potential model.

* Device level scaling takes into account frequency, leakage power, dynamic power
(CMOS scaling study + Projections)

* Chip Transistor Budget using datasheets of thousands of commercial processors

* CMOS Potential= Device level scaling + Chip Transistor Budget

Formal Definition:

Comparing Accelerators:

Example: Gaming Throughput on GPUs
* Throughput (Gain) Improvement: 5.07x
= CMOS Scaling Contribution: 4x

Gain = Gain x CMOS Potential
W =VeMOS Potential orentia

Chip Specialization Return (CSR)

GAiNAcCELERATOR B

CSRg CMOS Potentialg

GAiNgccELERATOR A

Relative
(vs. 2012 GPU)

= Specialization Contribution: ONLY 1.27x

Data Sources: www.techpowerup.com/gpudb
https://www.anandtech.com/bench/GPU18

~ CSR, * CMOS Potential,

b6X

N
>

N
X

....................................

Throughput
=@ Chip Specialization [X D. Oﬂ

Return |, |

2012 2014 2016
GPU Release Date

CSR CMOS

e Chip specialization is not a long-term remedy for the end of Moore’s Law.

* Need model to decouple transistor returns from specialization returns for
accelerators.

* Introduce Rankine: A CMOS Potential Modeling Tools
* Based on databased of thousands of commercial processor
* Evaluate one accelerator vs other based on CMOS returns

* Calculates CMOS Potential based on Physical Chip Properties e.g., CMOS Process, Die
Size/Number of Transistors, etc.

e GitHub Repo: https://github.com/PrincetonUniversity/accelerator-wall

https://github.com/PrincetonUniversity/accelerator-wall

Stretch: Balancing QoS and Throughput for Colocated Server
Workloads on SMT Cores

Data centers want to maximize performance per Watt and performance per Dollar value paid.

To do that, they collocate latency sensitive and batch workloads on the same CMP as well as within
a single SMT core.

But at lower load rates, there is significant slack available from latency-sensitive workloads (still
maintaining target QoS).

e Batch co-runners suffer more in terms of performance when they are co-located.

* Batch and latency sensitive workloads have different sensitivity to ROB capacity.

Latency sensitive workloads don’t benefit much from larger ROB capacity;

* this is due to frequent cache misses and data dependent computation that limits Instruction Level
Parallelism (ILP) and memory level parallelism (MLP).

Batch processes benefit from higher ROB capacity by exploiting ILP and MLP.

Stretch is a simple mechanism that helps in boosting performance by providing ROB
partitioning configurations.

When latency-sensitive applications are running below their peak load, the excess slack can
be used to shift ROB capacity to the batch applications.

» System software detects when latency-critical applications are running low loads and thus
shift to different ROB partitioning configuration.

CIDR: A Cost-Effective In-Line Data Reduction System for Terabit-per-Second Scale
SSD Arrays

» Cost-effective ways required to store data in SSDs as they are expensive.

e Can use accelerators (FPGAs) for data compression, but need efficient mechanism.

F Client data chunks .
[J dabcatdddn ~ =8

— -7 Hash
Client data I Deduplication I computation
(e.g., DB, VM B[I Unique chunks ™ G
Image k
9e) Compression I | Metadata access |

[P Compressed unique chunks .]

SSD array []

Deduplication + compression 2> 60-90%0 data reduction

Existing approaches for data reduction have limitations

* SW-based approach (CPUs run data reduction operations)
* Low throughput and scalability due to CPU bottleneck

* Intra-SSD HW acceleration (accelerators in each SSD for scalable throughput)
* Low data reduction due to no inter-SSD deduplication

e Dedicated HW acceleration
* Low device utilization as separated from SSDs

— oM - S
CPU CPU V\SEDw/ : Hash _
[Dedup || |[Dedup | _Dedup J __ Comp | ASIC

| Comp |@ (Decomp|

CPU CPU - g . 1:
(comp)| |EREEHD =
Motherboard w _ ssb | [sSsb |
Intra-ssD Dedicated ASIC

SW-based - T — ==
HW acceleration

* Design goals to have, throughput and scalability, high data reduction and efficient
device utilization.

* Key ideas for CIDR:-

» Scalable FPGA array (deploy a CPU-free, scalable FPGA accelerator array)

* Centralized table management (detect all duplicate chunks in a large SSD array)

* Long-term FPGA reconfig (reconfigure FPGAs to workload’s average behavior)

e Short term request scheduler (schedule requests considering available HW resources)

1. Scalable FPGA array
= Throughput scalability

CIDR HW Engines

N

[EPGA

| EDCCA

FPGA
[Hash]
[Comp]
[Decomp]

JJUJ

)|

2. Centralized table management
= High data reduction

_

3. Long-term FPGA reconfig
= Efficient device utilization

l /7~ SSD array)
CPU

Centralized
Metadata

so] G50
Sso] Gso

Request

Scheduler

(E=0) 5s5),

4. Short-term request scheduler
= Efficient device utilization

Optimizations

* Use SRAM instead of slow DRAM buffer

* Cluster units to make distribution network simple
 Remove the large SRAM queue by predicting uniqueness

* Delay over-subscribed requests into the delayed buffer

,/ CIDR SW Support

Buffer management Client request buffer

— e | : Unique chunk predictor
VCUIP FPGA , 5 g Opportunistic batch maker - Delayed chunk buffer

Data reduction table management — Data reduction tables

Chunk store management

CIDR HW Engine

<|(I ' Xba{ . |
) 7 | % Q(ﬂ\gEe | Buffer |1 Buffer | || Bulffer |
R : <) M5 | Arbiter il Arbiter | |__Arbiter |
\ : < “ITEVANNVHEOONL 1TV CXNNIX 3 A (H_) i Ji— , —
—1 | & | Buffer| |complifashil!”|| [(Hashil” ‘Becomp?
VCU9P FPGA : ; i !
- , e T T i
Orchestrator|[Comp l%uffer |[Hash B}Jffer\ !Decom? Buffer]

{ Xbar |

Composite-ISA Cores: Enabling Multi-ISA Heterogeneity using a Single ISA

* Hardware specialization can be provided based on two basic ideas :-

* Domain-specific specialization: Accelerate the performance of a particular class of problems
* Microarchitectural heterogeneity: Use a large number of small power-efficient diverse cores

* |s it possible to benefit from this heterogeneity and specialization while preserving the
traditional programming model?

* Some tradeoffs, Speedup vs. energy savings with performance loss.

Homogeneous multicore
* |SA design metrics:- Same ISA
Same Microarchitecture x86-64 x86-64 x86-64 x86-64
° High performa nce core-i7 core-i7 core-i7 core-i7
* Low power
. Single-ISA heterogeneous multicore
* Reduced code size came I1SA :) e
. oo ARM ARM Cortex Cortex =
« Domain-specific instructions, etc. Different Microarchitectures || A A5 =
ALS ARM Cortex Al2
14 T
Heterogeneous-ISA multicore
Different ISAs Th:]l'mb x86-64 ev6 -
Different Microarchitectures MIPS Cortex-A7 ;I
R10000
x86-64 core-i7
y]

* Having the same ISA for all cores restricts heterogeneity and may not achieve full potential
performance.

* Harnessing ISA Diversity helps:-
* Exploit ISA affinity (applications have preference ISAs)
* Enables ISA-microarchitecture co-design (helps overall energy consumption compared to homogeneous ones)

* Cross ISA migrations are difficult due to a variety of reasons ranging from different
machine code, register file width, and data formats. Also there is a multi-vendor
licensing issue.

e The paper avoids multi-vendor licensing issues by using a single vendor (considering
a single vendor has the best chips in all domain, not true, greatly reduces the
challenges).

* Three basic strategies in achieving Composite ISA cores:-

* |ISA feature set derivation
» Start with base ISA (x86), customize along 5 dimensions (next slide)
e 26 different composite ISAs

e Compiler Strategy

* Design Space exploration (choice of microarchitectural parameters, 4680 single core design
points, San Diego Supercomputer Center)

[Vectorization J

$

Type Legalization

[Instruction Selection }

$

[Register Allocation

\ 2

Simple, Triangle, Diamond If-Conversion

$

[Machine Code Generation (LLVM-MC) }

Composite-ISA Features:

Data Parallelism: {SIMD, no SIMD}

Register Width: {32-bit, 64-bit}

Addressing Mode Options: {x86, microx86}
Register Depth: {8, 16, 32, 64 registers}
Predication: {partial (CMOV), full predication}

Composite-ISA Encoding Prefixes and Options

* Power constrains determine performance for composite ISA

B Homogeneous (x86-64)

MW Single-ISA Heterogeneous (x86-64 + Hardware Heterogeneity)
Heterogeneous-ISA (x86-64 + Alpha + Thumb + Hardware Heterogeneity)

B Composite-ISA (x86-64 + Hardware Heterogeneity + Full Feature Diversity)

1.4 Tight constraints Liberal constraints
<

40 60

Peak Power Budget

Unlimited

20

Session 3B: Emerging technologies

* The What's Next Intermittent Computing Architecture
Karthik Ganesan (University of Toronto); Joshua San Miguel (University of Wisconsin-Madison); Natalie Enright Jerger
(University of Toronto)

* eQASM: An Executable Quantum Instruction Set Architecture
Xiang Fu (QuTech, Delft University of Technology; Quantum Computer Architecture Lab, Delft University of Technology); Leon Riesebos (Quantum Computer
Architecture Lab and QuTech, Delft University of Technology); M. A. Rol (QuTech, Delft University of Technology; Kavli Institute of Nanoscience, Delft University of
Technology); Jeroen van Straten (Computer Engineering Lab, Delft University of Technology); Hans van Someren, Nader Khammassi, and Imran Ashraf (Quantum
Computer Architecture Lab and QuTech, Delft University of Technology); Raymond Vermeulen (QuTech, Delft University of Technology; Kavli Institute of
Nanoscience, Delft University of Technology); Vincent Newsum and Kelvin Loh (Netherlands Organisation for Applied Scientific Research (TNO); QuTech, Delft
University of Technology); Jacob de Sterke (Topic Embedded Systems; QuTech, Delft University of Technology); Wouter Vlothuizen (Netherlands Organisation for
Applied Scientific Research (TNO); QuTech, Delft University of Technology); Raymond Schouten (QuTech, Delft University of Technology; Kavli Institute of
Nanoscience, Delft University of Technology); Carmina G. Almudever (Quantum Computer Architecture Lab and QuTech, Delft University of Technology),; Leo
DiCarlo (QuTech, Delft University of Technology; Kavli Institute of Nanoscience, Delft University of Technology); Koen Bertels (Quantum Computer Architecture Lab
and QuTech, Delft University of Technology)

* Reliability Evaluation of Mixed-Precision Architectures
Fernando Fernandes dos Santos, Daniel Oliveira, Caio Lunardi, Fabiano Pereira Libano, and Paolo Rech (UFRGS)

* Architecting Waferscale Processors - A GPU Case Study
Saptadeep Pal (UCLA); Daniel Petrisko and Matthew Tomei (UIUC); Puneet Gupta and Subramanian S. lyer (UCLA); Rakesh
Kumar (UIUC)

The What’s Next Intermittent Computing Architecture

* Energy harvesting devices that run on non-conventional sources of energy like solar, RF, piezo-electricity,
operate in the intermittent computing paradigm (frequent power outages).

* The systems use non-volatile processors or periodic checkpointing.

 When new data arrives for processing, need to decide whether to continue processing the old data or start
with the new one.

* Provides partial answer (approximate) when energy is limited but can refine answer when more energy is
available.

» Uses interruptibility (processing can be halted while still providing an approximate output) and flexibility (if
greater accuracy required then can run longer) from anytime automation model.

=—Tf(D)

- (A ey f(B3) o (<)

™ T irne.'
= F
(a) conventional
[] 1 n |] |]
—fr(Aa)—; -—f(B)—; = f(C)> l=f(D)>} l=f’(E)>! lef(F)- dctive
' = = - no power
T T T ™ T T
F- B c D E F

(b)) What's Next

Process subwords from MSB to LSB, processing each subword generates
approximate results.

L] [y] i y
a[Msb] b[MSb]
Two basic methods for supporting subword operations: subword pipelining [] [] i f
and subword vectorization] \ (f Cf
Subword pipelining decomposes high-latency operations like (multiplication) X y
into smaller subwords operations. | fams] [[psn]
' ' \
!
Subword vectorization fuse low-latency instructions (add, load, store) such G G]
the most significant subwords of different data elements are processed in /
parallel.] Ly - y /
(a) before (b) after

Skim points introduced to decouple restore PC from backup PC to skip

remaining subwords if the approximate result is good enough. Figre : R bansiomiaton for anytie SWE

More Less : : : Word 1 /AN

word 1 @EC = Wordi@@ ' @ 'O 'O _More Word1.. D D .

Word 2 el W @ @ O O | wors2 @' @00

Word 3 ﬂ Word 3 . : . : [:] : C] Less WOI’d 3 . - I[:] [:]
Significant

Application progress Application progress Application progress Application progress

-—.-— Skim points

Restore point

-—--— Skim points Restore point

(a) conventional (b) subword pipelining (c) conventional (d) subword vectorization

Figure 4: Anytime subword pipelining and vectorization for long-latency and short-latency operations.

eQASM: An Executable Quantum Instruction Set Architecture

* Need to provide a reliable and convenient instruction set

architecture for bridging the gap between quantum hardware Hybrid
Program
and software.)
e Previous suggested quantum microinstruction set (QuMIS) Hybrid . :
Classical

suffers from multiple issues:- Compilation

Quantum Compiler

Compiler
« Doesn’t support feedback on QuBit measurement results, which Infrastructure | |
is required for active reset in circuit-model-based quantum | |
computing Quantum Code (eQASM)
* Has low instruction information density Binary Classical Code oy, Quantum
. . T ey . . Instructions Instructions
* Have limited flexibility because it is very low-level and is bound
to electronic hardware implementation
Heterogeneous
* Thus this paper proposes eQASM based on QISA, that contains Ar(Cth:AC;\‘;re LS Quantum Coprocessor

both quantum and classical instructions.

Fig. 1. Heterogeneous quantum programming and compila-
tion model.

Non-deterministic Timing Domain Deterministic Timing Domain

A
\J

- ADI
o Qubit Measurement Result Register
= e c
(b} - - S o
S [. Timing Control Unit S
Timestamp Manager aE.) g
L) — L. 2 E
o Sl s = 7
O
2 — = : % —F'@ventl Queue 1 ()‘V .8 | L »
v 3 VLIW pipelane - s 8 5 s
Q. @ o =4 — L (- 8 %)
e = = = o
o) e s S E B G romen (=5 Lol S [T b
< S Target o S @ b4 = - o)
-) = Registers © S & c < =
(@] by g > Q c : : o c -
%] = = © () ' : O o -8 = O
ARER E g [5 Ha 2 = E 7 8¢
> 6 E Microcode g kS 5] o _..(Evekaueuel (}’ I= '8 — g Eﬂ'
- =) S ‘S = o = O
g — g ks = 8‘ 8 § —PGventhueutEZ C)‘P = O > _: QCJ
- © = o 1% > 5O
© &> Q Control 2 S - ()= ® g 0
g Store 3 < o | B2
—»(Event k Queue n o QO
& o ™ O
Synchronization Clock

Fig. 9. Quantum microarchitecture implementing the instantiated eQASM for the seven-qubit superconducting quantum pro-
cessor.

Table 1. Overview of eQASM Instructions.

Type

Syntax

Description

Control

CMP Rs, Rt

Compare GPR Rs and Rt and store the result into the comparison flags.

BR <Comp. Flag>, Offset

Jump to PC + Offset if the specified comparison flag is 1.

Data Transfer

FBR <Comp. Flag>, Rd Fetch the specified comparison flag into GPR Rd.
LDI Rd, Imm Rd = sign_ext(Imm[19..0], 32).
LDUI Rd, Imm, Rs Rd = Imm[14..0]::Rs[16..0].

LD Rd, Rt(Imm)

Load data from memory address Rt + Imminto GPR Rd.

ST Rs, Rt(Imm)

Store the value of GPR Rs in memory address Rt + Imm.

FMR Rd, Qi

Fetch the result of the last measurement instruction on qubit i into GPR Rd.

AND/OR/XOR Rd, Rs, Rt

Logical Logical and, or, exclusive or, not.
NOT Rd, Rt
Arithmetic ADD/SUB Rd, Rs, Rt Addition and subtraction.
Waiting QWAIT ~ Imm Specify a timing point by waiting for the number of cycles indicated by the immediate
QWAITR Rs value Imm or the value of GPR Rs.
SMIS Sd bit List>
Target Specify <Qubit Lis Update the single- (two-)qubit operation target register Sd (Td).
SMIT Td, <Qubit Pair List>
Q. Bundle [PI,1 QOp [Q_Opl* Applying operations on qubits after waiting for a small number of cycles indicated by PI.

Contributions:-

4 | Data Memory PC | Instruction Memory

e Can be supported using OpenCL, different

operations SOMQ (Single Operation Multiple ‘g : the?al B legistert Timing Labe
QuBits), FMR (Fetch Measurement Result) gg 1
= | rgonogman”
R
* Runtime feedback: fast conditional execution for Qubit easurement | | Tining g Event Queues

simple and fast feedback and comprehensive
feedback control (CFC) for user-defined feedback

A

Execution Flag
Registers

'

Quantum Register

Deterministic
Timing Domain |

-4

* Increase the quantum operation issue rate

Fig. 2. Architectural state of eQASM. Arrows indicates the
possible information flow. The thick arrows represent quan-
tum operations, which reads information from the modules
passed through.

* Configurable QISA at compile time

Reliability Evaluation of Mixed-Precision Architectures

Floating points helps improve graphics quality, physical simulation, etc (the more precise,
the better).

Precision comes with a cost, including area (circuit complexity), power consumption and
execution time.

Approximate computing proves that some operations in some algorithms can be
approximated without affecting the results significantly.

Mixed-precision architectures improve performance and energy savings. Helpful mostly
in neural network training and execution.

* How is system reliability affected in Mixed-precision environments?

e Cosmic rays produce Muons, protons, neutrons, Gamma rays, etc, that can intorduce
soft errors (bit-flips in memory/logic error, not permanent)

Use FPGA, X86(Xeon Phi) and GPU (Volta V100) for evaluation

Fault injection using Neutron beam, measure Failure in time (FIT)

Xilinx / NVlDlA
FPGA \" Volta V100

Observations

* Doubles have a much larger area than half, thus more likely to be corrupted.

* However, a fault in double value is much less critical than a fault in half
* Double 81% bits are mantissa, half 60% are mantissa

e Case study for FPGA, Xeon Phi, and GPU (find the rate of decrement of FIT rate)

* FPGA Half-precision FIT reduction is slower: faults are more critical

» Xeon Phi doesn’t have dedicated HW for double/single precision, the compiler decides how to use the
functional units, single has higher error rates, but criticality is similar

* GPUs, error criticality increases with a decrease in precision

* In general low precision can improve reliability: more data can be processed before
experiencing an error.

Architecting Waferscale Processors — A GPU Case Study

Parallel hardware needs low overhead communication, but the area and power overhead for chip-to-
chip communication is 25-30%

Waferscale processors help alleviate issues of communication overheads while scaling.

Historically had yield issues, but with recent integration technology such as Silicon-Interconnect Fabric
(Si-IF) (pre-manufactured dies are bonded to a silicon wafer) it seems possible.

The wafer is the processor, either monolithic processor or a set of processors are designed on the
wafer and are connected using low-cost on-wafer interconnect.

Interconnect Wire

Copper pillar _’! = I = !

W e)

Bare Silicon Wafer Interconnect and Copper Bare die placement and
Pillar Patterning bonding on patterned Si-IF

Fig. 3: The system assembly process flow is shown. Interconnect
layers and copper pillars are made by processing the bare
silicon wafer. Bare dies are then bonded on the wafer using TCB

\J/Zum

0

Contributions of the paper

* Answers the question whether building a waferscale the GPU system on 300mm wafer with
100 GPU modules possible.

* Waferscale GPUs are area-constrained due to power delivery network overheads, not
thermally-constrained.

* Techniques for thread group scheduling and data partitioning.

o >
T~ Interfaces

2z, Edge Connector
—
—

=

/ ~- o — = = Other External
1

Heatsink

Fig. 10: An Si-IF system assembly is shown with the primary
and backside secondary heat sinks. The whole system is bolted
to a chassis. The host CPU could either be connected externally
or reside on the wafer itself.

Performance and energy efficiency depends on how the compute threads and data is
placed on the waferscale chip.

Consecutive Thread Block (TB) can benefit from data locality; distributed scheduling used
rather than centralized round-robin scheduling.

TBs placed on GPM array starting from the corner and moving row-wise.

First memory access to a page moves that page to the local DRAM of the GPM.

3D-stacked
System 1/O System 1I/O 3 DRAM

ass as
Connections eeas S53%. Connec tions gem5S gpu ll Global Memory | Global Memory
E s | 4 Access Access

\- - ’_ gemS gpu il Atomic Memory | Global Memory
H - SM 4 B Access Access

H H
i

3522 . - : .EEEE GPM GPM gemS5 gpu Global Memory | Atomic Memory Global Memory
§§§§ == - ; : = = : 'IEEEE I sm Access cc Acce

S288 3833

HH H 1 i i

253 I L I H

Cycle Level Simulation

VRM + DeCap

“ii £ GPM GPM
H H Cu Cu Ccu cu CU CUu Ccu cu
eanasas) sesans | \ GPM L2 GPM L2
1111 == - \fint
< > GPM GPM
Regulator
P . GPM L2 GPM L2
e CU CU CU cu CU CU CuU cu

Fig. 11: Waferscale GPU with 25 GPM Fig. 12: Waferscale GPU with 42 GPM
units (1 redundant unit) comprising of units (2 redundant units) comprising of
two 3D-stacked DRAM per unit, VRM two 3D-stacked DRAM per unit, VRM
unit and decoupling capacitors. unit and decoupling capacitors.

Fig. 13: Simulator Workflow

Session 4B: Industry Session 1, Mobile and Low power

* Killi: Runtime Fault Classification to Deploy Low Voltage Caches without MBIST
Shrikanth Ganapathy (AMD Research), John Kalamatianos (AMD Research), Brad
Beckmann (AMD Research), Steven Raasch (AMD Research), Lukasz Szafaryn (Intel)

(SRAM cells fail exponentially at low-voltages, Memory Built-in-Self Tests are not scalable for large
shared L2, completely rely on on-line adaptive Low-voltage technique to classify faults)

* Gables: A Roofline Model for Mobile SoCs with Many Accelerators and Ceilings

Mark Hill (Google), Vijay Janapa Reddi (Google) (“From a department chair to an intern at
Google is a promotion”, roofline model for accelerators, pre-silicon model for understanding usage of
IPs and maximum performance that can be achieved for workloads)

* Machine Learning at Facebook: Understanding Inference at the Edge
Carole-Jean Wu (Facebook), David Brooks (Facebook), Kevin Chen (Facebook), Douglas Chen (Facebook), Sy
Choudhury (Facebook), Marat Dukhan (Facebook), Kim Hazelwood (Facebook), Eldad Isaac (Facebook), Yangqing Jia
(Facebook), Bill Jia (Facebook), Tommer Leyvand (Facebook), Hao Lu (Facebook), Yang Lu (Facebook), Lin Qiao
(Facebook), Brandon Reagen (Facebook), Joe Spisak (Facebook), Fei Sun (Facebook), Andrew Tulloch (Facebook),
Peter Vajda (Facebook), Xiaodong Wang (Facebook), Yanghan Wang (Facebook), Bram Wasti (Facebook), Yiming
Wu (Facebook), Ran Xian (Facebook), Sungjoo Yoo (Facebook), Peizhao Zhang (Facebook)

PPoPP keynote: When Moore met Feynman: Ultra-dense data storage and extreme
parallelism with electronic-molecular systems (Karin Strauss, Microsoft Research)

P 0 1 y a

e Data storage for huge data centers is becoming a Binary data | 51910000|01101111|01101100|01111001| 01100001 50111@11
concern, need high-density storage devices that Beses Fagm oo el oo101] 222111] o1112] 220021
can alleviate the real-estate needs of data ONA

nucleotides GCGAG TGAGT ATCGA TGCTCT AGAGC ATGTGA
storage.

(a) Translating binary data to DNA nucleotides via a Huffman code.
Previous Nucleotide

* Digital files are segmented and encoded into ®0O0 060

different sequences. % % % %

* Individual files can be retrieved from a mixed @ @ @ @

database using PCR (Polymerase chain reaction)- (b) A rotating encoding to 'nucleoti'des avolds homopolymers (repe-
itions of the same nucleotide), which are error-prone.
based random access titions of th leotide), which p

o

N

Ternary Digit
To Encode

Figure 5. Encoding a stream of binary data as a stream of
nucleotides. A Huffman code translates binary to ternary
digits, and a rotating encoding translates ternary digits to
nucleotides.

A Content-Addressable DNA Database with Learned Sequence Encoding

* Pair-wise matching forms complete double helix structure as some of the (A, G, T, C) attract
and some repel.

ATTGCAGTGATCG ATTGCAGT-GATCG

Query Feature

CLLEE Tl L L T j el
g el RS I
ATTGCGTCGATCG ATTGC-GTCGATCG . 1) e e
e 1 -—)
. : l . Que Feature) | Distance Feature /| ,
Nearest Neighbors Nearest Neighbors Q | Synthesis |#— Seqr.y i | Computation :"&ddl.’ﬁ'ss | -CU
0.74 Query 071 0.76 077 081 5 ! | ! | Pairs || =
5 Query Strands l <
PCA 100 PCA 100 L0 . i Distance / M
LE | ' Address Pairs 8
S | : =
010 0.16 0.17 017 017 S Feature / | l | S
| ; 3 Address —— o
* 0! Oligos : anking !
PCA 10 ‘ : “ PCA 10 S v | Thresholding .
ol
8
>
I

Matching Strands -~ i ”””””””””””””” I
0.00 0.00 0.01 | Matching Image

: . ; 0.00 ¢ !
PCA2 : ! :
H H . E ﬁ . E E [e i oume

Fig. 1: A pair of sample queries from the Caltech-256 dataset, showing the
four nearest neighbors in three different feature spaces. Each neighbor is
annotated with its Euclidean distance to the query in that space.

Fig. 7: Stack diagram for a hybrid and a purely electronic
content-based image retrieval system. Electronic components
are green; molecular components are pink.

Session 5B: Memory Hierarchy management

e Bingo Spatial Data Prefetcher Mohammad Bakhshalipour (Sharif University of
Technology); Mehran Shakerinava (Sharif University of Technology), Pejman Lotfi-
Kamran (Institute for Research in Fundamental Sciences (IPM)); Hamid Sarbazi-Azad
(Sharif University of Technology)

 NoMap: Speeding-Up JavaScript Using Hardware Transactional Memory
Thomas Shull and Jiho Choi (University of Illinois Urbana-Champaign); Maria Garzaran
(Intel); Josep Torrellas (University of lllinois Urbana-Champaign)

* FUSE: Fusing STT-MRAM into GPUs to Alleviate Off-Chip Memory Access Overheads
Jie Zhang and Myoungsoo Jung (Yonsei University); Mahmut Kandemir (Penn State
University)

* Featherlight Reuse-distance Measurement Qingsen Wang (College of William &
Mary),; Millind Chabbi (Uber); Xu Liu (College of William & Mary)

@ Accuracy i Match Probability

Bingo Spatial Data Prefetcher o0

* Spatial data prefetchers exploit spatial locality patterns to
prefetch data.

Metric of Interest
Now =
@] Ul @])]
X R R R
1] 1
1 1 1
1]
1 1
1]
1] 1
1 1 1
1 1 1
1
1
1 1
1 1
1 1
1 1

P\@d@%% c B M&e’%% < B
. . . T o ol
* Relies on spatial address correlation: the similarity of access ¥ Longest Event Shortest
patte rns among mU|t|p|e pages Of memory, Figure 2. Accuracy and match probability of various heuristics as the
event to which access history of pages are associated.
* Record accesses to a page (record a footprint), footprints - (a) Baseline ~, _ _(9)Bingo .
: , [z
associated to event(s). :*L eni[Pred] | | L EIE\;JQZHES P;?d. J
| Eé i; ;: : [E2.E3.E4 | P2 a:
* Using asingle event (say PC) instead of (PC+offset, PC+Address | : —1E | : : _‘ 2]
, etc) can be efficient but may not be highly accurate. o ")\ e
Dty 77 R
1 [[\
: : Event| Pred Event| Pred Event |[Pred. \
[J -
TAGE (TAgged GEome.trlc Ieng’Fh) like tables occupy space and II FT 71 o[e2] T e e] 7 e |
may have redundant information. \ E2 | P2 |[¢ [E2E3] P2 | [[EzE3.E4] P2 | [E
\ : B : B : FolE/
~N _//

* Propose a single history table that is looked up multiple times ™ yp i TAGE Like Predictors
to find prediction with the longest event sequence.

Figure 1. Comparison of proposals for predictor-based hardware optimiz-
ers.

The idea is that short events are carried in long events.

History table stores history of long events but is looked up
using both short and long events.

Table indexed with the hash of short events but tagged with
the longest event.

The history table is looked up with the longest event if match
found then the prediction is made, otherwise, the table is
looked up again with the next-longest event in the same set
as the set is indexed using short events.

Trigger V| Tag | Recency | Footprint
Access ~_ -

Hash of B | |
PC+Offset

S 3
— +

& — Q

= 73

g &

Z e

s Any Match? Yes » Footprint

p-

0 2

3 SR IS I

o N

7

Any Match?)'/

No Prefetch<«—No A5 Yes Footprint

Figure 5. The details of the history table lookup in Bingo prefetcher. Gray
parts indicate the case where lookup with long event fails to find a match.
Each large rectangle indicates a physical way of the history table.

FUSE: Fusing STT-MRAM into GPUs to Alleviate Off-Chip Memory Access Overheads

 GPUs achieve outstanding performance with low power, they employ streaming multiprocessors (SMs) with
large private register files.

* Register files occupy 62% of the total private memory. The on-chip L1D cache also suffers from thrashing due
to irregular access patterns and task switches.

 Employing a larger L1D cache can help in reducing off-chip access to the DRAM and improve performance,
but on-chip area remains a bottleneck.

 Use NVM technology like Spin-Transfer Torque Magnetic RAM which offer higher density to build bigger L1D

caches.

ST A e [TS ———
L Compute Unit |~ ™| Compute Unit /| Register File |
+— v il —p — [Private Memory | * * *|[Private Memory | |
S| & . . Interconnect Network) ' L1Data| | Shared |,

. \ |Fixed Layea lFixed Layea E 3 E 3 E 3 £ Cache | [Memory
— B > - eee | |
(a) (c) | DRA(I\)/Iff hl' [_DRAM _] \‘l Mem Port (s MSHR
Figure 4: (a) SRAM memory cell, (b) STT-MRAM chip Memory] V== === ===

memory cell and (c) MTJ structure. Figure 2: GPU baseline architecture.

Contributions of the paper

* Efficient heterogeneous GPU Caches: STT-MRAM banks along with SRAM banks. STT-MRAM suffer from
high write latency, thus require swapping mechanism to faster SRAM when hot blocks are detected.

« WORM (Write once read multiple) blocks can be speculatively predicted and kept in the larger STT-
MRAM banks, the majority of data blocks (90%) under GPU applications experience this.

 Smart data placement strategy: use a read-level predictor that detects WORM data blocks.

 Approximate STT-MRAM as fully set-associative, use a counting bloom filter for faster lookup.

—

Cache Hit

Placemen

Cache Miss ——— {0 [[w: Wo Ro
>

Replacement

Figure 9: Decision tree of the arbitrator.

0.7GHz 1288 -t
H Core||Core||Corel|Core 4.3—.2.> Cor¢ M
* o0

$

Arbitrator

Controller

STT-MRAM

Associ apwtr .
Approximation Logic

<
T
=

q:---

Interconnect
Networ

-
-

Depacketize

DATA BUS
64B @ 1.4GHz

‘--.-,-.-----‘

Off-chip

‘e

Memory

Figure 5: High-level view of the proposed FUSE.

Featherlight Reuse-distance Measurement

Reuse distance: the number of distinct memory location between two consecutive uses of
the same memory location.

Reuse distance used in quantifying data locality (cache simulation, code optimization,
program phase prediction, etc).

But profiling reuse distance for the whole program is costly (instrumentation 100x to 1000x
slow down).

Solution use RDX :-
e Sampling based profiler
* Low overhead (5% performance (time)) (7% memory)
* High accuracy > 90%

* Three basic components:-

* Sample Memory access address
e Use Performance Monitoring Units to sample loads and stores
* Record effective address of each access
* Measure time distance (number of memory accesses since last use)
* Use debug registers to detect the reuse position
e Time distance -> reuse distance
* Each data location is accessed independently
 Statistically estimate reuse distance histogram from time distance

Locality Approximation Using Time (POPL’07)

. A data element is accessed independently from
Assumption - 4 - .
others, which is a Bernoulli process.

Input Time distance histogram, max working size
Output Stack distance histogram

Challenges:-

* Sampling may miss opportunities.

e Deal with limited number of debug registers, use Reservoir sampling, if a free

register is available use it otherwise probabilistically replace one of the
monitored addresses.

Session 6A: Industry Session 2, Microarchitecture

 Efficient Load Value Prediction using Multiple Predictors and Filters
Rami Sheikh (Qualcomm), Derek Hower (Qualcomm)

* BRB: Mitigating Branch Predictor Side-Channels
llias Vougioukas (ARM Research/U. of Southampton), Nikos Nikoleris (ARM Research),

Andreas Sandberg (ARM Research), Stephan Diestelhorst (ARM Research), Bashir M.
Al-Hashimi (U. of Southampton), Geoff V. Merrett (U. of Southampton)

* Elastic Instruction Fetching
Arthur Perais (Qualcomm), Rami Sheikh (Qualcomm), Luke Yen (Qualcomm), Michael

Mcllvaine (Qualcomm), Robert D. Clancy (Qualcomm)

Efficient load value predictor using Multiple predictors and filters

* Value prediction helps in breaking true data dependency, thus improving performance.

* Most value predictors have high budget requirements, and no single value prediction
scheme can predict all load values effectively.
m Indlrect

* Variations in value prediction schemes:- —

* Direct: predict value
* Indirect: predict address, and read the value from that address Last VP
Unaware

* Context-aware
* Context unaware

Strlde

Context Context Context
Aware AP

* A composite value predictor design by Predictor Fusion and heterogeneous predictors.

* Optimizations on top of that:-

e Accuracy monitors: Mitigate pathological cases
e Track prediction accuracy
e Squash predictions if inaccurate

* Smart training: Eliminate overlap
* Train all predictors, if mispredicts training is necessary
* Prefer value over address and context-unaware over aware

* Predictor fusion: improve utilization
* |dentify under delivering predictors and re-purpose them

Mitigating Branch Predictor Side-Channels

* Threat model, victim and attacker run on the same core share the
same branch predictor.

Predictor

* An attacker can poison branch predictor entries (BTBs and other Lo
tables) to have victim execute vulnerable code or mispredict. 5 Other Preictor| | Aderess Space ID

Components

SRAM CAM

‘Retention | BRB Entry 1| Bank 0

* Flush BP contents on context switch (expensive) and degrades
performance.

" Active| BRB Entry 2|Bank 1

iRetention BRB Enfry N|Bank N:

e Use Branch Retention Buffer (BRB) to store partial states ,
) * | Current Entry Selector [«
* Retain states per context S ———— Entry ID

e Activated on ASID

Focus on components of the TAGE (Tagged Geometric length predictor), and check, saving which
components of the predictor help to mitigate performance issues the most (no need to store all states)

Retaining no states doubles mispredictions, need to reduce that by selecting which of the components
bimodal, loop predictor, stats corrector or the Tage tables.

Found that the bimodal component helps in saving the most transient states, use branch retention
buffer to save it.

But still, accuracy is not great, need to get a better bimodal component that can retain steady states.

ParTAGE swaps bimodal for a perceptron.

Better than TAGE with BRB. 4

Imnactive ity

| T
Predictar

Inmnactive Entry

Elastic Instruction Fetching

e Two primary modes of instruction fetching:-
* Coupled Instruction fetching: On a I-Cache miss next PC generation is stalled.

* Decoupled Instruction fetching: Branch predictor used to generate next PC, decoupled queue is
filled up

* Workloads which have large I-cache footprint benefit from Decoupled instruction
fetching.

e But the ones which have smaller I-cache footprint don’t benefit much from the
presence or absence of decoupled fetching.

* Thus propose Elastic fetching (ELF) which alternates between two modes of fetching.

Idea behind ELF

 When branch misprediction is corrected, the next correct PC is already available, no
need to wait for BP to catch up

e Restart both branch prediction and instruction fetch concurrently
* Front end behaves in “coupled mode” after pipeline restart
* Switch to “decoupled mode” when branch predictor catches up
e Counters to change mode

* Two versions L-ELF (limited) upon decoding a branch fetch stalls, U-ELF (Unlimited)

Session 7B: Microarchitecture

* R3-DLA (Reduce, Reuse, Recycle): A More Efficient Approach to Decoupled Look-Ahead
Architectures
Sushant Kondguli and Michael Huang (University of Rochester)

(Look ahead thread helps warm up structures associated with running the main thread, lighter look-ahead
thread (36%))

* Recycling Data Slack in Out-of-Order Cores
Gokul Subramanian Ravi and Mikko Lipasti (University of Wisconsin - Madison)

(Clock cycle dedicated to data and environment safety, harness data slack from different operations depending on
data width and type, accumulate slack and use efficient scheduling techniques by introducing new entries in
reservation stations)

* Freeway: Maximizing MLP for Slice-Out-of-Order Execution
Rakesh Kumar (Norwegian University of Science and Technology (NTNU), Norway), Mehdi
Alipour and David Black-Schaffer (Uppsala University, Swedeni

Session 8A: Memory

* Enabling Transparent Memory-Compression for Commodity Memory Systems
Vinson Young, Sanjay Kariyappa, and Moinuddin Qureshi (Georgia Institute of
Technology)

* D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers
with Low Latency and High Throughput
Jeremie S Kim (Carnegie Mellon University; ETH Zurich); Minesh Patel and Hasan
Hassan (ETH Zurich); Lois Orosa (ETH Zurich; Universidade Estadual de Campinas);
Onur Mutlu (ETH Zurich; Carnegie Mellon University)

* PageSeer: Using Page Walks to Trigger Page Swaps in Hybrid Memory Systems
Apostolos Kokolis, Dimitrios Skarlatos, and Josep Torrellas (University of Illinois,
Urbana-Champaign)

Enabling Transparent Memory-Compression for Commodity Memory Systems

Need practical and efficient solutions for scaling memory bandwidth.

Compression helps with memory bandwidth scaling but would need OS support as memory
requirement and compressibility varies.

Transparent Memory Compression (TMC): HW compression for Bandwidth scaling without OS
support.

Challenges with TMC:-
* Transfer in chunks (64 Bytes each) even if data acquiring less space due to compression.
 If able to relocate lines together then would help reduce bandwidth issues (pair-wise remapping).

Compressed Commodity Memory
Approach: Relocate lines together in one location

Line A

Line B
EERNRNRNNENNRNRRNNND

Can use metadata to store information about the compressed/uncompressed lines,
suffers from performance issue as you always need to read meta-data first and then
read the appropriate line.

Storing metadata within the line helps single access reads.

Use 4-byte maker to denote compressibility of lines (whether the entire line has been
used or not)

But uncompressed lines can collide with marker tags, store small SRAM based
Collision table for this purpose.

C d
Read Metadata, ompresse

informs compressed
mappir?g Cm | m | m | m]
Read Line Line A Line B

Read Line and metadata

4-byte marker
Line A Line B Oxdeadbeef

Single-access, avoid metadata lookup Invalid marker

* But how do you find a line with? Reading all possible lines is not a solution.

* Predict location and compressibility of line to enabling reading in a single access.

* Use a hash-based prediction table. Correct prediction
Access Line B
Compressed
page Add \ Correct pred, ™1 [Line A Line B Oxdeadbeef | Line B found
ageAld Location
ash :
Predictor 2 Invalid Marker
M=0 Single-access, avoid metadata lookup
Store last- o 1» Predict Compressed indexing |ncorrect prediction
compressibility seen =~ | 5N\ Predict Base indexing Access Line B
He Compressed
; \ Incorrect pred 1 Line A Line B Oxdeadbeef
i Location) . Line B not
M=0 Predictor ‘ 2 Invalid Marker P

Double-access, some bandwidth overhead

D-Range: Using commodity DRAM devices to generate true random numbers with
low latency and high throughput

« Random numbers are used for a variety of security and randomized algorithm applications.

* There is a need for hardware based True Random Number Generator (TRNG) with existing
devices.

 True Random Numbers can only be generated using a physical process example radioactive
decay, thermal noise, etc.

* Goal is to provide TRNG using DRAM devices, using cell’s latency failure probability.

* Latency failure is related to random process variation during manufacturing.

 Random values can be extracted by sampling DRAM cells that fail truly and the cell’s
latency failure probability.

* Access cells with reduced t;, (time from activation to read) cause more cells to latency
fail.

* Use multiple DRAM banks in parallel to generate high throughput random numbers.

* Exclusive access to RNG cells and reserve rows that have RNG cells to minimize
interference.

PageSeer: Using Page Walks to Trigger Page Swaps in Hybrid Memory Systems

Memory capacity becoming a bottleneck with ever-evolving memory intensive applications.

DRAM can no longer provide capacity while being power efficient.

Non-volatile Memory (NVMs) are becoming more and more common due to high density
and low power requirements.

But they suffer for high access latency; thus hybrid memory system design is required to
harness the best of both worlds.

Challenges involve:-

* Managing pages (decide which pages to swap to or from the faster DRAM based
region compared to the slower NVM based one)

Track page activity (frequently written pages, hot pages etc)

Record the page mapping/remapping

Swap is costly, need to predict future access patterns accurately and as early as
possible

Can take hints at translation time for memory access

At this point we know the
page that will be accessed

<SP) B (wh29ew, | (2 (tic) Memony) [Qaihig[iisj

Translation Timeline

Replay

Request] [TLB] [L1] [L2] ['—'—C] [Memory]

Data Access Timeline

Use page-walks to trigger swaps

Use page-correlation mechanism to prefetch page swaps

Track hot pages

Hybrid Memory Control (HMC) leverages information from MMU after about forth

coming memory operations

Processor Chip

Core

L1

L1 TLB

(1]

| L1 TLB |

¥

¥

2

L2

L2 TLB

2 | |

2TLB |

MMU

¥

MMU

Shared L3

Hybrid Memory
Controller (HMC)

Path to
Memaries

Crossbar interconnect

| LogicLayer || LogicLayer |

DRAM

NVM

N —

MMU signals the HMC
HMC finds physical
page number

HMC prepares its HW
structures

Starts swapping

L2 TLB @ DRAM
MMU @
@
Shared L3 HMC NVM
CPU
ecauesy TE)P

|G MR e T (e e B

Replay
Request

! Translation Timeline

(TtB) [L1] [2] [Le] [HMC]E[Memory]

Data Acces?.s Timeline

