IDO: Compiler-Directed Failure
Atomicity for Nonvolatile Memory

Qingrui Liut Joseph Izraelevitz? Sekwon Lee3
Michael L. Scott? Sam H. Noh3 Changhee Jung!

Virginia Tech 2University of Rochester 3UNIST

CDP Workshop, CASCON, Oct. 2018
Originally presented at MICRO 2018

—p UNIVERSITY of l_l rl i E .r
ROCHESTER ULSAN NATIONAL INSTITUTE OF

SCIENCE AND TECHNOLOGY

iroinia
Virg [Tech
$F

Nonvolatile Memory (NVM)

DRAM near the end of its evolutionary life
 power hungry; limited density

Replacements likely to be nonvolatile

(PCM, memristors, STT-MRAM)

Envision machines with volatile registers and

(for now) caches; nonvolatile DIMMs

(maybe some DRAM, too)

Tempting to leave long-lived data “in memory,” or to
resume a crashed application from the NVM state
Want to tolerate the same sorts of failures that file
systems tolerate today

The Problem: Crash (In)Consistency

CPU

[Caches]

Non-volatile

struct {
int data;
bool valid;

J

STORE data =0x1111
STORE valid = true

Partial Solution: Ordering Writes

Xx86 Instructions (other ISAs are similar):
1. Write back (CLFLUSH, CLFLUSHOPT, CLWB)

or through — non-temporal store (MOVNTQ)
2. Fence — memory fence (MFENCE or SFENCE)

STORE data = 0x1111

STORE valid = true

But Ordering is Not Enough

Suppose x must always equal y

LOCK L
storex=3

storey =3

UNLOCK L

Need failure atomicity!

We assume lock-based source code

“FASE” (Failure-Atomic SEction)
[Chakraborti et al., OOPSLA’14]

FASE with nested locks: FASE with cross locks:

mutex_lock(lock1) mutex_lock(lock1)
.r;\utex_lock(lockZ) mL.J.’;ex_Iock(IockZ)
.r.r;utex_unlock(lockZ) mL.J.;cex_unIock(Iockl)

ml.J.’;ex_unIock(Iockl) mL.J.’;ex_unIock(IockZ)

Undo Logging

log old value of x
WB & fence
store x; \WB
log old value of y
WB & fence
storey; \WB

fence
mark log finished
WB & fence

Must track dependences
across FASEs

Redo Logging

log new value of x
WB & fence
log new value of y
WB & fence

mark log complete
WB & fence
store x; \WB
storey; \WB

mark log finished
WB & fence

Must arrange to read our
own writes

JUSTDO Logging [izraelevitz et al., ASPLOS’16]

log new value of x, &x, PC
store x

log new value of y, &y, PC On recovery, pick up at the most

recent store: use code of original

program to execute from logged
PC through end of FASE;
release all locks.

store y

 Logsizeis O(T+L) for T threads and L locks

* Must treat all data as “volatile” in FASEs

 WB & fence operations can be elided if caches are nonvolatile;
expensive on conventional machines

Key Observation for iDO

A region of code is idempotent iff its prefixes can be
re-executed multiple times and it will still produce
the same result.

1
W X

| Q0

|
Output: x=y=1;z=3

X
Y
Z

Don’t have to log at every store!

IDO Logging = JUSTDO + I[dempotence

FASE ——

region —

region —

1

log recently-written still-live registers, PC
WB & fence

store; \WB

store; \WB

fence

log recently-written still-live registers, PC
WB & fence

store; \WB

store; \WB

fence N
Log space is still O(T+L)

10

On recovery, resume FASE at the beginning
of the interrupted idempotent region

" No need for happens-before

FASE tracking FASE
= No need to take care to read
own writes Region O

= Small bounded log per thread

<§
Region 1
g "

ldempotent Regions

* Leverage analysis of deKruif et al. [PLDI'12]
* Typical region is just a few stores
 Can be very large:

FASE{
for (int 1
array[1]
}

 Could be extended with better alias analysis
or code restructuring

O; 1 < len; ++1)
;

Evaluation

Compare iDO with:

e ATLAS [oopsia14): FASE + undo logging
* JUSTDO [aspios'16]: FASE + resumption
* NVThreads [curosys'17]: FASE + copy-on-write
* Mnemosyne [aspos'11]: TXns + redo logging

* NVML [rast15): Txns + undo logging

Run on 4-socket, 64-core AMD Opteron 6276 server

Assume CLFLUSH+SFENCE over DRAM = CLWB+SFENCE over NVM;
MICRO paper includes sensitivity analysis

Performance

- WEE ORIGIN ~WEN JUSTDO WSS DO
X10° wmm ATLAS = NVML

Throughput (ops/sec)

R e e T
S W o © N

small med large

Redis throughput for databases with 10K, 100K,

and 1M-element key ranges (single threaded)
14

Scalability

| 9 x 107
' —#— NVTHREADS ~—>¢~ MNEMOSYNE —#— ATLAS —@-— JUSTDO -~ IDOJ
50.8-
EH v
e
© (.41
=
0.0 — — — — — — — — —
1 2 3 4 8 12 16 20 24 32 40 48 56 63
Threads
Hash map

15

Conclusion

* Compiler-directed failure atomicity for
data in nonvolatile memory

 Makes resumption-based recovery
practical on machines w/ volatile caches

* Better performance than FASE-based
undo and redo

* Excellent scalability

* Fast recovery

l@ 1

L O
ROCHESTER

www.cs.rochester.edu/research/synchronization/
www.cs.rochester.edu/u/scott/

Failure-Atomic NVM systems

ACID properties:

* Atomicity: All or nothing execution.

* Consistency: defined by program semantics;

when complete, transaction transitions from one
consistent memory state to another.

* |solation: transactions cannot see each other’s
updates until their commit time.

* Durability (Persistency): updates of transactions
survive crashes.

