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Nonvolatile Memory (NVM)

DRAM near the end of its evolutionary life
 power hungry; limited density

Replacements likely to be nonvolatile

(PCM, memristors, STT-MRAM)

Envision machines with volatile registers and

(for now) caches; nonvolatile DIMMs

(maybe some DRAM, too)

Tempting to leave long-lived data “in memory,” or to
resume a crashed application from the NVM state
Want to tolerate the same sorts of failures that file
systems tolerate today



The Problem: Crash (In)Consistency

CPU

[Caches]

Non-volatile

struct {
int data;
bool valid;

J

STORE data =0x1111
STORE valid = true



Partial Solution: Ordering Writes

Xx86 Instructions (other ISAs are similar):
1. Write back (CLFLUSH, CLFLUSHOPT, CLWB)

or through — non-temporal store (MOVNTQ)
2. Fence — memory fence (MFENCE or SFENCE)

STORE data = 0x1111

STORE valid = true



But Ordering is Not Enough

Suppose x must always equal y

LOCK L
storex=3

storey =3

UNLOCK L

Need failure atomicity!



We assume lock-based source code

“FASE” (Failure-Atomic SEction)
[Chakraborti et al., OOPSLA’14]

FASE with nested locks: FASE with cross locks:

mutex_lock(lock1) mutex_lock(lock1)
.r;\utex_lock(lockZ) mL.J.’;ex_Iock(IockZ)
.r.r;utex_unlock(lockZ) mL.J.;cex_unIock(Iockl)

ml.J.’;ex_unIock(Iockl) mL.J.’;ex_unIock(IockZ)




Undo Logging

log old value of x
WB & fence
store x; \WB
log old value of y
WB & fence
storey; \WB

fence
mark log finished
WB & fence

Must track dependences
across FASEs

Redo Logging

log new value of x
WB & fence
log new value of y
WB & fence

mark log complete
WB & fence
store x; \WB
storey; \WB

mark log finished
WB & fence

Must arrange to read our
own writes



JUSTDO Logging [izraelevitz et al., ASPLOS’16]

log new value of x, &x, PC
store x

log new value of y, &y, PC On recovery, pick up at the most

recent store: use code of original

program to execute from logged
PC through end of FASE;
release all locks.

store y

 Logsizeis O(T+L) for T threads and L locks

* Must treat all data as “volatile” in FASEs

 WB & fence operations can be elided if caches are nonvolatile;
expensive on conventional machines



Key Observation for iDO

A region of code is idempotent iff its prefixes can be
re-executed multiple times and it will still produce
the same result.

1
W X

| Q0

|
Output: x=y=1;z=3

X
Y
Z

Don’t have to log at every store!



IDO Logging = JUSTDO + I[dempotence

FASE ——

region —

region —

1

log recently-written still-live registers, PC
WB & fence

store; \WB

store; \WB

fence

log recently-written still-live registers, PC
WB & fence

store; \WB

store; \WB

fence N
Log space is still O(T+L)
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On recovery, resume FASE at the beginning
of the interrupted idempotent region

" No need for happens-before

FASE tracking FASE
= No need to take care to read
own writes Region O

= Small bounded log per thread

<§
Region 1
g "




ldempotent Regions

* Leverage analysis of deKruif et al. [PLDI'12]
* Typical region is just a few stores
 Can be very large:

FASE{
for (int 1
array[1]
}

 Could be extended with better alias analysis
or code restructuring

O; 1 < len; ++1)
;



Evaluation

Compare iDO with:

e ATLAS [oopsia14): FASE + undo logging
* JUSTDO [aspios'16]: FASE + resumption
* NVThreads [curosys'17]: FASE + copy-on-write
* Mnemosyne [aspos'11]: TXns + redo logging

* NVML [rast15): Txns + undo logging

Run on 4-socket, 64-core AMD Opteron 6276 server

Assume CLFLUSH+SFENCE over DRAM = CLWB+SFENCE over NVM;
MICRO paper includes sensitivity analysis



Performance
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Redis throughput for databases with 10K, 100K,

and 1M-element key ranges (single threaded)
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Scalability
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Conclusion

* Compiler-directed failure atomicity for
data in nonvolatile memory

 Makes resumption-based recovery
practical on machines w/ volatile caches

* Better performance than FASE-based
undo and redo

* Excellent scalability

* Fast recovery



l@ 1

L O
ROCHESTER

www.cs.rochester.edu/research/synchronization/
www.cs.rochester.edu/u/scott/



Failure-Atomic NVM systems

ACID properties:

* Atomicity: All or nothing execution.

* Consistency: defined by program semantics;

when complete, transaction transitions from one
consistent memory state to another.

* |solation: transactions cannot see each other’s
updates until their commit time.

* Durability (Persistency): updates of transactions
survive crashes.



