
%
�
��D(+%A!F
%F!�H!:��8%AIF!�
�HD(%�%HL�"DF�.DCJDA8H%A!�-!(DFL

1%C#FI% ,%I�� �D-!+$��MF8!A!J%HM� 3!&1DC ,!!�

-%�$8!A�,��3�DHH� 38(����.D$� �$8C#$!! �IC#�

��%F#%C%8��!�$�����C%J!F-%HL�D"�2D�$!-H!F ��.�3�

�
0��DF&-$D+����3��.����H�����	
�F%#%C8AAL�+F!-!CH!:�8H�-��2�����	

Nonvolatile Memory (NVM)

2

• DRAM near the end of its evolutionary life
• power hungry; limited density

• Replacements likely to be nonvolatile
(PCM, memristors, STT-MRAM)

• Envision machines with volatile registers and
(for now) caches; nonvolatile DIMMs
(maybe some DRAM, too)

• Tempting to leave long-lived data “in memory,” or to
resume a crashed application from the NVM state

• Want to tolerate the same sorts of failures that file
systems tolerate today

3

Volatile
CPU

Caches

Non-volatile
Memory

Non-volatile

The Problem: Crash (In)Consistency

struct {
int data;
bool valid;

}

STORE data = 0x1111
STORE valid = true

Partial Solution: Ordering Writes

STORE data = 0x1111
CLWB data
SFENCE
STORE valid = true
CLWB valid
SFENCE

x86 Instructions (other ISAs are similar):
1. Write back (CLFLUSH, CLFLUSHOPT, CLWB)

or through –– non-temporal store (MOVNTQ)
2. Fence –– memory fence (MFENCE or SFENCE)

4

5

But Ordering is Not Enough

LOCK L
store x = 3
WB x
fence
store y = 3
WB y
fence
UNLOCK L

Need failure atomicity!

Suppose x must always equal y

6

We assume lock-based source code

“FASE” (Failure-Atomic SEction)
[Chakraborti et al., OOPSLA’14]

7

Undo Logging
log old value of x
WB & fence
store x; WB
log old value of y
WB & fence
store y; WB
...
fence
mark log finished
WB & fence

Must track dependences
across FASEs

Redo Logging
log new value of x
WB & fence
log new value of y
WB & fence
...
mark log complete
WB & fence
store x; WB
store y; WB
...
mark log finished
WB & fence

Must arrange to read our
own writes

8

JUSTDO Logging [Izraelevitz et al., ASPLOS’16]

log new value of x, &x, PC
WB & fence
store x
WB & fence
log new value of y, &y, PC
WB & fence
store y
WB & fence
...

• Log size is O(T+L) for T threads and L locks
• Must treat all data as “volatile” in FASEs
• WB & fence operations can be elided if caches are nonvolatile;

expensive on conventional machines

On recovery, pick up at the most
recent store: use code of original
program to execute from logged
PC through end of FASE;
release all locks.

9

x = 1
y = x
z = 3

A region of code is idempotent iff its prefixes can be
re-executed multiple times and it will still produce
the same result.

Don’t have to log at every store!

Output: x = y = 1; z = 3

∞

Key Observation for iDO

10

iDO Logging ≈ JUSTDO + Idempotence

log recently-written still-live registers, PC
WB & fence
store; WB
store; WB
...
fence
log recently-written still-live registers, PC
WB & fence
store; WB
store; WB
...
fence
...

region

region

FASE

Log space is still O(T+L)

11

On recovery, resume FASE at the beginning
of the interrupted idempotent region

Region 0

Region 1

FASE
§ No need for happens-before

FASE tracking
§ No need to take care to read

own writes
§ Small bounded log per thread

12

Idempotent Regions

FASE{
for (int i = 0; i < len; ++i)
array[i] = i

}

• Leverage analysis of deKruif et al. [PLDI’12]
• Typical region is just a few stores
• Can be very large:

• Could be extended with better alias analysis
or code restructuring

13

Compare iDO with:
• ATLAS [OOPSLA’14]: FASE + undo logging

• JUSTDO [ASPLOS’16]: FASE + resumption

• NVThreads [EuroSys’17]: FASE + copy-on-write

• Mnemosyne [ASPLOS’11]: Txns + redo logging

• NVML [FAST’15]: Txns + undo logging

Run on 4-socket, 64-core AMD Opteron 6276 server

Assume CLFLUSH+SFENCE over DRAM ≈ CLWB+SFENCE over NVM;
MICRO paper includes sensitivity analysis

Evaluation

14

Performance

Redis throughput for databases with 10K, 100K,
and 1M-element key ranges (single threaded)

Hash map
15

Scalability

• Compiler-directed failure atomicity for
data in nonvolatile memory

• Makes resumption-based recovery
practical on machines w/ volatile caches

• Better performance than FASE-based
undo and redo

• Excellent scalability
• Fast recovery

16

Conclusion

www.cs.rochester.edu/research/synchronization/
www.cs.rochester.edu/u/scott/

MICRO paper available at:

18

ACID properties:
• Atomicity: All or nothing execution.
• Consistency: defined by program semantics;

when complete, transaction transitions from one
consistent memory state to another.

• Isolation: transactions cannot see each other’s
updates until their commit time.

• Durability (Persistency): updates of transactions
survive crashes.

Failure-Atomic NVM systems

