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PLDI 2018

• 55 papers accepted out of 245 submitted (22.4%) — PLDI

9 papers accepted out of 21 submitted (42.9%) — ISMM 

• Co-located with ISMM, LCTES, ARRAY, DeepSpec, FMS, MAPL


• Covers Multiple Topics

Hardware, Optimization, Concurrency, Synthesis and Learning, Transaction, 
Program Analysis, Verification, Probabilistic program et al.

Overview

https://pldi18.hotcrp.com/ 
https://ismm18.hotcrp.com/!4



PLDI 2019

• Hold at Phoenix Convention Center, Phoenix, Arizona


• Co-located with COLT, E-energy, EC, HPDC, ICS, ISCA, 
IWQoS, SIGMETRICS, SPAA and STOC


• June 22 - 28, 2019 
•

Federated Computing Research Conference

https://fcrc.acm.org/
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PLDI 2019

• Fri 16 Nov, 2018

Research Papers Submission Deadline 

• Tue 29 - Thu 31 Jan, 2019

Author Response Period 

• Fri 15 Feb, 2019

Author Notification 

• Tue 16 Apr, 2019

Camera-Ready Deadline 

• Mon 24 - Wed 26 Jun, 2019

Main Conference

Important Dates

https://pldi19.sigplan.org/dates
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• Extends and/or applies programming-
language concepts to advance the field of 
computing. 

• Novel system designs, thorough empirical 
work, well-motivated theoretical results. 

• New application areas. 

• …
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Introduction

• GOAL: Reduce the On-chip Network Latency in NUCA system


• METHOD: Compiler-aid Computation-to-Core Mapping

- The execution time can be saved (14% and 17.1% for Private LLCs and 

Shared LLCs on average) when maximizing the on-chip network performance 

•  PLATFORM: gem5 simulator and Intel KNL system
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Computation to Core Mapping
Example (P-NUCA)
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• Memory affinity of iterations (MAI)

Fraction of the data requests of iteration set I to all memory controller in the system 

• Memory affinity of cores (MAC)

The Manhattan Distance between core and memory controller 

• Cache affinity of iterations (CAI) [S-NUCA only]


• Cache affinity of cores (CAC) [S-NUCA only]


• Vector Similarity Coefficient


Computation to Core Mapping
Definition
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MAI, MAC, CAI, CAC Calculation
Example

For i = 1, 2, 3, 4 … N

      A[i] = B[i] + C[i] + D[i]
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if misses (MC) if hits (region)

A(i) MC 3 R2
B(i) MC 1 R4
C(i) MC 1 R4
D(i) MC 2 R8

MAI (0.5, 0.25, 0.25, 0)
CAI (0, 0.25, 0, 0.5, 0, 0, 0, 0.25, 0)



Methodology
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• STEP 1: Compute MAI, MAC, CAI, CAC 
Refined using Cache Miss estimation strategy via PLUTO compilation framework. 

• STEP 2: Determine the α parameter 


• STEP 3: Calculate the vector similarity ηm(MAI, MAC), ηc (CAI, 
CAC) and the overal all error η


• STEP 4: Do the computation-to-core assignment based on η

Computation to Core Mapping



Setup
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Evaluation

• gem5 Simulator

36 Cores(6*6), 16KB L1, 512K L2, Iteration Set Size 0.25% of iterations  

• 21 multi-threaded benchmarks (OpenMP)


• Compare their result to default computation mapping



Speed Up
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Evaluation

Metrics P-NUCA S-NUCA

Reduction of Network Latency 38.4% 43.8%

Performance Improvement 10.9% 12.7%

Overhead 2.9% (0.7% - 19.5%)

MAI(CAI) error 7.9% 11%(14%)
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Introduction

• GOAL: Reduce the Power Consumption


• METHOD: Neurons/Nodes to Cores Mapping

- Energy cost for propagating a spike 4pJ [Previous Work] 
- Energy cost for local update 50pJ 

•  PLATFORM: Intel Loihi processor
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SNN Mapping
Example
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SNN Mapping
Mapping Algorithm
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• Cut Penalty Matrix

In which each elements pαβ represent the cost of assigning 
compartments(a basic building block of nodes) α and ß to different cores.



SNN Mapping
Mapping Algorithm

!19

• STEP 1: Initialization

Calculate the cut-penalty matrix, put all available cores, compartments into set. 

• STEP 2: Find an “anchor” compartment c*

The anchor compartment should be the one with the highest “fan-in” (most inbound edges) 

• STEP 3: Find the first available core k


• STEP 4: Assign c* to k and co-locate all its one-hop neighbors

The neighbor with the higher cut-penalty will be considered first 

• STEP 5: Repeat STEP 2 to 5 until no more un-assigned compartments left


• STEP 6: Check if the core can support the requested number of Input Mapping

If the core assigned cannot support the number of Input Mapping required, remove the compartments with the 
least cut-penalty and repeat STEP 2-5



Setup
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Evaluation

• Intel Loihi

Announced in September 2017, contains 128 neuromorphic cores, each 
implements 1,024 primitive spiking neural units (compartments)  

• Watts-Strogatz model with randomness parameter ß

small-world network, rich class of graphs for evaluation 

• Compare their result to default mapping

https://en.wikichip.org/wiki/intel/loihi/



Efficiency Gain
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Evaluation

100 Graphs was generated
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Questions or Suggestions?
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Spiking Neural Network
Introduction

N

N

N

Input nodes Output layer

• Node -> Neuron


• Edge -> Synapse


• Each neuron and synapse 
has its own local state


• Local state will be 
evolved according to 
local rules, which is a 
function of spike arrival 
and departure times
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