
RegionSpeak: Quick Comprehensive Spatial Descriptions
of Complex Images for Blind Users 

2Yu Zhong1, Walter S. Lasecki1, Erin Brady1, Jeffrey P. Bigham1� ,� 

Computer Science, ROC HCI1��

University of Rochester 
Rochester, NY 14627 USA  

{zyu, wlasecki, brady}@cs.rochester.edu  

ABSTRACT 
Blind people often seek answers to their visual questions 
from remote sources, however, the commonly adopted single-
image, single-response model does not always guarantee 
enough bandwidth between users and sources. This is es
pecially true when questions concern large sets of informa
tion, or spatial layout, e.g., where is there to sit in this area, 
what tools are on this work bench, or what do the buttons 
on this machine do? Our RegionSpeak system addresses this 
problem by providing an accessible way for blind users to (i) 
combine visual information across multiple photographs via 
image stitching, (ii) quickly collect labels from the crowd for 
all relevant objects contained within the resulting large visual 
area in parallel, and (iii) then interactively explore the spa
tial layout of the objects that were labeled. The regions and 
descriptions are displayed on an accessible touchscreen in
terface, which allow blind users to interactively explore their 
spatial layout. We demonstrate that workers from Amazon 
Mechanical Turk are able to quickly and accurately identify 
relevant regions, and that asking them to describe only one 
region at a time results in more comprehensive descriptions 
of complex images. RegionSpeak can be used to explore the 
spatial layout of the regions identified. It also demonstrates 
broad potential for helping blind users to answer difficult spa
tial layout questions. 

ACM Classification Keywords 
H.5.2 [Information interfaces and presentation]: User Inter
faces – Input devices and strategies.; K.4.2 [Computers and 
Society]: Social Issues – Assistive technologies for persons 
with disabilities. 
Author Keywords 
Visual questions; crowdsourcing; stitching; accessibility. 

INTRODUCTION 
Crowdsourcing answers to visual questions can help blind 
and low vision users better access the world around them [3, 
4]. However, most current approaches only permit users to 
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Figure 1. An example of a real image from a VizWiz user, submitted with 
the question “What am I looking at that is in front of me?” Questions 
like this burden crowd workers with lengthy answers, and are hard to 
answer using text-based spacial descriptors alone. Our RegionSpeak 
system allows workers to mark regions in an image and answer sub-sets 
of the questions. This makes the task more approachable for workers, 
and provides more and better information to end users, who can browse 
answers using a touchscreen interface that allows them to get a sense of 
the spacial orientation the corresponds to each label in the image. 

take a single photograph [3], which can lead to several is
sues: (i) users often have difficulties in framing the correct 
information for their questions, (ii) workers do not give con
sistent levels of details in responses —especially those which 
are broad or open ended —which means that users get unpre
dictable answers from the system (Figure 1), and (iii) because 
question complexity cannot be automatically determined a 
priori, it is hard to compensate crowd workers appropriately. 

Systems such as VizWiz [3] struggle with these aspects be
cause of their single-image, single-response model. Cho
rus:View [16] overcomes many of these problems by engag
ing users in continuous interactions with the crowd via voice 
and video to help reduce the overhead associated with multi-
turn interaction. However, video-based approaches are ex
pensive and difficult to scale. They can also be cumbersome 
for end users who must actively wait (e.g., holding the camera 
steady) while the crowd determines a response. 

Our goal is to account for the large set of tasks that fall some
where between the ideal case for single images in VizWiz, 
and the continuously-engaged interaction of Chorus:View. 
We analyze examples of 1,000 single-image visual questions 
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Figure 2. A large image of a workbench formed of many individual pictures stitched together. The important objects/regions identified by crowd 
workers within the first 2 minutes are shown. The limit is defined as a reasonable time blind users would wait for answers to most questions [6], along 
with their description and the latency for receiving the description. By parallelizing description of different regions of the image, crowd workers can 
describe the contents of large, complex images much more quickly. Blind users can explore the regions spatially to understand how their positions relate 
to one another in space and to more easily find what they want. 

collected from real blind users and find examples where these 
problems rise in practice. Types of images where our ap
proach can help include: exploratory questions (asking what 
is in an unknown scene), search questions (asking if some
thing, e.g. house keys, can be located from an image), and 
questions that many have large or multi-part answers (asking 
what is listed on a menu or bulletin board). 

In this paper, we address these problems via two approaches: 
(i) allowing users to capture more information per interaction 
by stitching multiple images together, and (ii) asking individ
ual crowd workers to focus on describing key aspects of part 
of a scene, resulting in more information being marked col
lectively. We then introduce RegionSpeak, a system that com
bines these approaches to allow users to include and receive 
more information during each interaction with the system. 

BACKGROUND 
Our work on reducing the overhead associated with getting 
answers to visual questions from sighted workers relates to 
crowdsourcing and access technology for blind users. 

Crowdsourcing 
Crowdsourcing allows computer systems to have on-demand 
access to human intelligence, extending their capabilities be
yond what can currently be done with fully automatic ap
proaches. Human workers are given small tasks to complete, 
and their individual contributions can then be combined and 
used to complete more complex tasks. Crowd-powered sys
tems such as the ESP Game [23] have asked workers to label 

an image with tags that could be used to improve web acces
sibility. Scribe [15] uses the crowd to provide audio captions 
for deaf users within 4 seconds. Glance [14] divided tasks up 
to multiple workers to make behavioral video coding quick 
enough to be responsive to analysts (seconds instead of days). 

Using people to provide remote assistance is a well known 
and well studied practice in the disability community [5]. It is 
especially successful in solving visual access challenges un
der specific settings, e.g. public transit [1, 13]. Our work at
tempts to improve on existing crowd-powered blind question 
answering approaches that use either single images or video, 
by introducing more efficient ways for users to capture visual 
content and better ways to elicit useful information from the 
crowd workers who provide answers in order to support more 
complex and general tasks. 

VizWiz� 
VizWiz [3] is a system that allows blind users to take a pic
ture, speak a question, and get an answer in nearly real time 
(around 30 seconds on average). VizWiz was one of the first 
crowd-powered applications to rapidly elicit responses from 
the crowd to provide on-demand support to users. 

When users open the mobile app, workers are recruited to 
stand by. In the meantime, the user takes a picture of the ob
ject or setting they have a question about. After taking the pic
ture, the user is prompted to record an audio question, which 
is submitted with the picture to the crowd. Crowd workers are 
directed to the waiting task and provide a text answer which 



is read to the user via VoiceOver 1 (on iOS) or TalkBack 2 

(on Android). RegionSpeak is designed to run on and extend 
existing question answering platforms such as VizWiz, which 
has answered 70,000+ questions since May 2011. 

Chorus:View� 
VizWiz effectively answers self-contained visual questions, 
but it struggles in settings where more context is needed than 
can be provided in a single image, or where the information 
needed is hard to locate when taking an image. Prior work 
has shown that these types of questions make up 18% of the 
questions asked to VizWiz [6], and that does not account for 
all of the questions that users avoid asking because they have 
learned the system does not address them well. 

Chorus:View [16] is a system that addressed many of these 
problems by engaging users and the crowd in a continuous 
interaction by streaming video to workers and allowing chat-
style responses to be provided at any point workers felt was 
appropriate. This more conversational interaction can answer 
many questions users commonly have in a fraction of the time 
of the original VizWiz system, and as a result, was strongly 
preferred by most users in lab studies. 

Chorus:View provides users with continuous, real-time feed
back by keeping a group of workers around synchronously 
with the user. It is best for tasks that require constant at
tention, i.e., navigation. For tasks that benefit from asyn
chronous assistance, i.e., the identification and description 
questions frequently asked by blind users [6], Chorus:View 
is too expensive and heavyweight. Since Chorus:View keeps 
a group of workers active during the answering process, the 
price is prohibitive (order of $1 per question [16]) for de
ployment. RegionSpeak avoids these issues by collecting in
formation upfront (instead of interactively), and presenting a 
user interface in which a user can explore multiple answers 
spatially. By combining image stitching and labeling, Re
gionSpeak provides a tradeoff between the benefits of short 
and cheap single-question services like VizWiz, and more 
thorough but expensive services like Chorus:View. They are 
useful in different settings. 

Computer-aided photography 
Using computer vision techniques to assist blind and low-
vision camera users has been widely studied and evaluated. 
Prior work shows with appropriate interface and feedback, 
quality of photos taken by the targeted users can be substan
tially improved (over 50% in [8]). Those photography appli
cations are also easy to learn and use, therefore almost always 
preferred by study participants. [8, 22]. In addition, Kane, et. 
al. also explored the possibilities of using computer vision to 
assist screen reading and gained success[10]. 

Panoramic image stitching algorithms has been extensively 
studies by computer vision researchers, various algorithms [7, 
19, 21] excel in different performance aspects such as speed, 
seamlessness and order invariance. Built-in camera applica
tions on iOS and Android both support panorama photoshoot
ing. However, most commercially applied algorithms are not 
1http://www.apple.com/accessibility/ios/voiceover/ 
2http://goo.gl/zbdZsD 

fully automatic, requiring human input or restrictions on the 
image sequence in order to establish matching images. For 
example, when using the built-in panorama interface on iOS, 
the user has to move the camera towards one direction and 
keep the vertical center line of view port steady. When us
ing the equivalent interface on Android, the user has to move 
camera center to several fixed points on the screen. Panorama 
apps leverage these input constraints to yield high quality and 
wide angle photographs, but it is difficult for blind users to 
satisfy these constraints because available feedback has previ
ously been visual. The algorithm used in RegionSpeak stitch
ing interface is designed to be nearly-automatic, robust order 
of input images, rotation and illumination, therefore puts min
imal input restrictions on blind users. 

CAPTURING ADDITIONAL VISUAL INFORMATION 
We begin by addressing the information capture and image 
framing problem faced by many blind users. Prior work has 
explored how to help guide blind users to frame objects ap
propriately in images [4, 8]. However, these approaches are 
based on using computer vision to guide users to a specified 
object, which does not take into account the specific informa
tion that needs to be included to answer a given question. For 
example, they may help a user to correctly frame a container 
in an image (Figure 3), but cannot help a user know if the 
usage instructions are visible to workers. 

Stitching Images to Increase Context 
To benefit from the additional information workers are able to 
see when answering a question using video, without adding 
the additional delay, we introduce image stitching. 

Image stitching can increase information conveyed by blind 
users as objects captured in multiple images are sent to work
ers who have a better chance to locate essential information 
to answer the question in a quick, light-weight dialog turn. 

Interface Details 
RegionSpeak does not require aesthetically appealing pho
tographs, but does need to have an accessible interface. 
Therefore, we employed a nearly-automatic and the least de
manding stitching algorithm in OpenCV3 which is similar to 
[7]. Our experiments show that even when results are not 
seamless (Figure 2), our algorithm is able to create satisfac
tory panorama without loss of visual information. 

Combining the automatic stitching algorithm and Zhong et. 
al’s key frame extraction algorithm [24], we created an 
panorama interface for RegionSpeak which has no restriction 
that needs visual inspection. Users of RegionSpeak can move 
the camera in any direction, and the key frame extraction al
gorithm will detect substantial changes in view port and alert 
users to hold their position to capture a new image. Region-
Speak then takes a photo automatically when the view port 
is stabilized and gives users an audio cue to move on. Users 
can stop exploring after three photos are taken. A pilot study 
showed that some users would continue to take photos if not 
given a limit, so we added a limit of six photos to automate 
3http://opencv.org 
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Figure 3. A sequence of questions asked to VizWiz. The user has trouble framing the entire bottle in a single image while still being close enough to allow 
workers to read the instruction text. Worse, because each image is sent to a potentially different worker, different parts of the text that are captured are  
out of context for the worker trying to answer the question for each image. RegionSpeak allows users to capture more information in a single image by 
adding image�stitching�to VizWiz. In this instance, the first two images can be stitched as well as the other three. 

the process. Six photos was derived as a limit of latency tol
erance from observation of the pilot users experience. 

All the photos are then sent to our server which stitches them 
together. While the stitching algorithm could be performed 
locally on mobile devices, speed became an issue. The stitch
ing algorithm can stitch four 640x480 images in 4-5 seconds 
on a desktop with 1.3 GHz i5 CPU, but the same task takes 
approximately 20 seconds to finish on an iPhone 4S (which 
clocks at 800MHz). Remote stitching keeps users from hav
ing to wait for the process to complete on their devices, keep
ing the total time of the question-asking interaction low. 

Evaluation 
To evaluate the usfeulness of stitching, we needed to see if 
blind people would be able to learn and use this new inter
face, as it requires a certain level of camera skill. To explore 
the effectiveness and usability of the stitching interface, we 
conducted a study with 10 blind people (9 male, 1 female) 
to compare it with single picture approaches. The study was 
conducted remotely from the blind participants’ home using 
their own iPhones. The phones used were iPhone 4S (2), 
iPhone 5 (3), and iPhone 5S (5). Participants were recruited 
via mailing lists from previous studies and Twitter announce
ments, they were each paid $10, consented online, and are not 
otherwise affiliated with this project. 

In order to fairly compare stitching with the single photo in
terface, we developed an experimental application which re
places the single photo interface of VizWiz with the stitching 
interface to compare both. All of our participants had used 
VizWiz before the study and reported experiences of having 
trouble capturing enough information with VizWiz to get an 
answer. Before the study, participants were briefed on how 
to use the stitching interface with a ∼5 minute introduction 
session. Then we allowed the participant to familiarize him
self with the stitching interface by asking a random question 

about a stitched image of immediately surrounding environ
ment, followed by a controlled experiment to compare the 
stitching interface with conventional single photo interface. 
At the end of each session, a questionnaire was issued to col
lect preference data. Each session lasted 30-50 minutes de
pending on individual camera skills. 

The experiment was a 2×3 within-subjects factorial design. 
The first factor was the capturing interface: single photo ver
sus stitching. The second factor was three tasks: 

•� Printed document: Asking for the author of a book. 
•� Screen: Reading user name off a faked log in window. 
•� Description: Getting description of on-table objects. 

We chose these three tasks because reading information and 
getting descriptions are documented visual challenges blind 
people face everyday [6]. Additionally, these objects tend 
to have wide flat surfaces which users often find difficult to 
capture. In order to limit interactions to a reasonable length, 
we set a maximum task time of 10 minutes, as was done in 
[16]. Trial duration was recorded with second timestamps. 
If the correct information was not found by the time limit, 
the task was considered incomplete. For these tasks, the user 
expects an answer immediately, e.g., the user wouldn’t want 
to wait spend more than 10 minutes to find out a user name 
(classified as “urgent“ in [6]). 

In order to evaluate performance, task completion time was 
measured as mean trial duration, calculated as the elapsed 
time from the opening of application to reception of a sat
isfiable answer (including time taken to capture photos). If a 
trial timed out, the task completion time is undefined and ex
cluded from analysis. Iterations were defined as the number 
of times the participant had to repeat the process of question 
asking before the task was completed or timed out. 



Figure 4. Mean target completion times and iteration numbers show the 
stitching interface outperformed the single photo interface. 

Task completion time data were logarithmically transformed 
to correct for violations of normality as common practice. We 
analyzed the time data using ANOVA, with interface and task 
type modeled as fixed effects. 

Results 
All participants completed the tasks using the stitching in
terface within the 10 minute limit, with an average time of 
121.1 seconds, while VizWiz failed 1 of the user name read
ing tasks, with an average time of 187.4 seconds. The dif
ference was significant, F1,51� = 8.424, p< .01. The average 
number of Q&A iterations it took for stitching (mean =�1.48) 
to yield right answers was also significantly lower than single 
photo interface (mean =�2.24), F1,52� = 7.04, p=� .01. The 
results confirmed that with the stitching interface blind users 
were likely to capture more visual information in each dialog 
turn and save time (by 35.4%) and iterations (by at least 1 on 
average) in subsequent interactions, detailed means of time 
and iteration numbers are shown in Figure 4. There were no 
interaction effects found on either task completion time or 
number of iterations required. 

When the stitching algorithm fails to produce a panorama (be
cause of insufficient overlap between input images), the ap
plication sends all captured images and shows them together 
to web workers. The success rate of our stitching algorithm 
during experiments was 83.3%, suggesting most blind peo
ple’s camera skill is enough to operate the stitching interface. 

User�Feedback� 
Participants were asked to answer a survey about the stitch
ing app and to provide their feedback after the experiments. 
All of them expressed that stitching is easy to understand, 
learn and use. The participants also all preferred using the 
stitching interface when taking photos for all task types in 
our study. Although we did not quantify objects identified 
in the description tasks, it was noted by multiple participants 
that with stitching interface they received more comprehen
sive descriptions of the content of the images. All partici
pants also showed desire to continue using stitching interface 
after the experiments and “look forward to seeing it released 
to the general public”. The feature participants liked most in 
the stitching interface was the audio guidance which allows 
“easy identifying of many things” and really helps with blind 
people’s photo taking troubles, especially when looking for a 
specific but small piece of information. It was also mentioned 
that the fact our stitching interface “cleverly put different im
ages together figures out the orientation of them” gave them 
more freedom of interaction. 

Discussion 
As seen in both related work [24] and our experiments, blind 
people usually have worse phototography skills than sighted 
people, so an accessible camera interface with few restric
tions and rich guidance is crucial to help them take better 
photos. Existing camera interfaces often fail to provide assis
tance, resulting in poor performance of photo-based assistive 
applications. We observed that when users of a single-photo 
interface followed crowd workers’ instructions to adjust the 
camera, they often overdid the adjustments, having to retake 
photos for several times until they succeeded. With the stitch
ing interface, however, users felt much easier and less stress
ful to follow framing instructions. 

Several further improvements to the stitching interface were 
directly derived from participants’ feedback. One suggestion 
from the participants was to include a a button or gesture to 
pause and resume the stitching process, to make the interac
tion more natural. Another technical limitation discovered in 
the experiments was the application’s difficulty with stitching 
photos of non-flat surfaces, e.g., cylinders. 

While participants appreciated the stitching interface, and 
preferred it for all tasks in the study, they suggested that 
stitching should not replace the existing single photo cam
era interface, but should exist as an option that can be used 
when needed, especially for those blind users whose camera 
skill is good enough to capture visual information most of the 
time without using assistive technology. 

ELICITING COMPLETE VISUAL DESCRIPTIONS 
Image stitching allows users to capture more context to show 
to workers, while still maintaining a lightweight interaction. 
However, additional visual information is not useful unless 
sighted workers describe it completely back to the blind user. 
To improve the question-asking interaction further and in
crease bandwidth of visual information in Q&A interations, 
we focus on how to elicit more detailed responses and spatial 



 

 

 

 

 

Figure 5. Images used to evaluate both iterative and parallel labeling approaches, which cover a range of scenarios observed in VizWiz usage. 

information from the crowd, while being able to accurately 
compensate them for their efforts. 

Queries are defined by users, and thus have a wide range of 
variance. For example, an image of a menu could be associ
ated with the question “how much does the 6” Turkey Breast 
sandwich cost?” (to which the answer could be “$4.99”) or
with the question “What does this board say?” (to which the 
best answer likely involves transcribing the entire menu from 
the image). Because it is not possible to reliably classify the 
amount of information required or provided for a given query 
automatically, both VizWiz and Chorus:View pay a standard
ized fee for each answer, and do not have a means of scaling 
payments to match worker effort. In the long term, this could 
lead to disincentivizing the available workforce. 

Below, we first describe the set of 5 images used to test Re
gionSpeak, and initial worker responses to them. Then, we 
present two methods to increase the amount of detail in an
swers without overloading any one worker: an iterative work-
flow so that workers can build on one another’s responses [2], 
and a parallelized workflow where users can focus on small 
portions of the image at once. 

Methodology and Initial Responses 
We analyzed ∼1,000 questions VizWiz couldnt answer be
cause the single photo submitted with the question did not 
contain enough information or had too much information for 
a single worker. Five representative photos were created to 
simulate those questions (Figure 5): a set of five packages of 
food (simulation of Figure 1), a simple diagram on a white-
board, a set of buttons on a microwave, a menu from a restau
rant, and a picture of an outdoor scene in a commercial area. 

We began by asking workers on Mechanical Turk to describe 
five different images (Figure 5) with general questions such as 
“Can you describe what you see in this image?” We sampled 
a broad set of workers by running experiments with minimum 
qualification and during various periods of the day. 

We collected responses from ten workers for each of these im
ages (for a total of 50 data points). We began by counting the 
character length of answers, to provide a quantitative measure 
of answer detail. To measure the content more accurately than 
using answer length alone, we also had 2 researchers code the 
answers for all images. The following attributes were coded 
for, and the Cohen’s Kappa scores for 50% (25 answers) of 
the initial dataset are shown beside each: 

Validity: If an object is described as being in the image,
is it actually shown? Answers could be completely cor

rect (no incorrect element named in the answer), partially 
correct (at least one correct and one incorrect element), or 
incorrect (no correct elements). Cohen’s kappa of 0.95. 
Minimalist: Does the answer appear to be the answer re
quiring the least effort, even if valid (e.g., answering “can” 
when describing a can of Del Monte green beans)? Co
hen’s kappa of 0.69. 
Distinct Items: How many distinct items are named in the
answer? Cohen’s kappa of 0.85.

Details: How many explanatory details provided beyond
the core description (e.g., answering “mug” counts as 0 ad
ditional details, answering “a green mug that doesn’t have
any liquid” counts as two additional details details)? Co
hen’s kappa of 0.88.

Spatial Information: How many spatial cues are provided
in the answer? Cues can be either object locations or rela
tive layouts, i.e., a cup on the table would yield one spatial
descriptor. Cohen’s kappa of 0.8.

Results� 
For our initial examination of the 5-image dataset, answers 
had an average length of 53.7 characters (median 33, σ� =�
53.0), with a minimum of 3 characters and a maximum of 
217. The crowd’s answers yielded 37 valid answers, 5 partial 
answers, and 8 invalid; 13 were minimal; an average of 2.69 
objects described (median 2, σ� = 2.18); an average of 1.4 
detailed descriptions (median 0, σ� = 2.28); and an average 
of 0.46 pieces of spatial information (median 0, σ�= 1.13). 

Iterative Responses 
Our most complex scene (the outdoor image, Figure 5(e)) had 
a minimum length of 3 characters (“car”), a maximum length 
of 44 characters, and an average of 21.4 characters (median 
23.5, σ� =� 15.1). We used this image and these descriptions 
to explore increasing the descriptive level of the answers. 

In initial responses, workers tended towards shorter, more 
generic initial answers due to the complexity of describing 
any more detailed version of the image. In this study, we 
seeded workers with the 10 initial responses about Figure 
5(e), then had workers iteratively improve the last worker’s 
answer (with questions like “Can you improve the descrip
tion of this image?”). Each of the 10 initial responses was 
iterated on 3 times, for a total of 30 additional data points. 

In a pilot version of this tool, we showed workers the prior 
results from other workers and asked them to write a more de
scriptive version of the answer. Unfortunately, because work
ers had to take the extra step of copying or rewriting the initial 
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answer, the resulting responses were often even more brief 
than the original, or simply did not build off of the prior con
tent. For our final version of the iterative response tool, we 
pre-populated the prior answer into the response area so that 
workers could more easily expand on the existing responses. 

Results� 
We found that when responses were pre-populated into the 
answer field, workers provided strictly more detail in each it
eration. In terms of length, there was a monotonic increase in 
the length of the descriptions (Figure 6). Interestingly, while 
the relative length of each sequential iteration of a descrip
tion was correlated with the length of the prior step (average 
pairwise R2� = 0.74, σ� =� .096), the final length after 3 ad
ditional iterations was not meaningfully correlated with the 
initial length (R2� =�.099). 

For our outdoor scene, the initial answers yielded 9 valid an
swers and 1 invalid; 3 minimal answers; an average of 1.95 
objects described (median 1.5, σ� = 1.46); an average of 0.3 
detailed descriptions (median 0, σ�=�.95); and an average of 
0.3 pieces of spatial information (median 0, σ� =� .48). In
terestingly, despite being our most complex image, this scene 
resulted in a much lower number of objects described and 
less detailed descriptions than the rest of the set. These dif
ferences were not significant, but the reduction in the number 
of descriptive details was near-significant (p�=�.088). 

After 3 iterations on the initial answer, all 10 responses were 
rated as valid; there were no minimal answers; an average of 
8.3 distinct objects described (median 8.5, σ�= 2.71); an av
erage of 6.3 detailed descriptions (median 6, σ� = 3.02); and 
an average of 6.5 pieces of spatial information (median 6.5, 
σ�= 2.12). This indicates a significant increase in the number 
of objects described (p < .001), details provided (p < .001), 
and spatial information provided (p < .0001) (Table 1). The 
reduction in the number of minimal answers was also near-
significant (p� =� .081), but the sample size was too small to 
confirm this with higher confidence. 

Figure 6. Response length increases as answers are sequentially iterated 
on and converges after the third iteration. An example path is shown. 

Objects Details Spatial cues 
Before 1.95 0.3 0.3 
After 8.3 6.3 6.5 

Table 1. Means of response codings before and after 3 iterations. 

Limitations�of�Iteration� 
Our results show that iteration is an effective way to more 
consistently get reliable answers in terms of validity and 
avoiding minimalist answers (which is backed up by the 
crowdsourcing literature on such workflows), but is also a 
good way to increase the number of details and amount of 
spatial layout information provided by workers. Unfortu
nately, because iteration on these responses cannot be par
allelized, there is a necessary decrease in response speed. To 
reach the point of any of our final results, we would have had 
to recruit a total of four consecutive workers, meaning the 
response would take roughly 4×�as long to return. 

In addition to time costs, using an iterative workflow to ex
pand the details of a scene can result in lengthy descriptions 
that are unwieldy for users to listen to. In our test, the longest 
answer was 708 characters. Tracking this much information 
from a text description can put extra cognitive strain on a user 
trying to understand what is in a scene and how it is laid out. 
Furthermore, the ability for users to scan quickly through ob
jects in a space is severely limited if presented in a manner 
where they must listen to audio sequentially. 

In practice, the workload provided to each worker in an it
erative approach can also be hard to predict - initial workers 
may be provided with a simple image (such as Figure 5(a)), 
and not have many objects to describe, or a complex image 
(such as Figure 5(e)) and have to write a detailed descrip
tion of many objects. Additionally, each subsequent workers’ 
workload depends on what work has been done - if a previ
ous worker did not describe the image well, the subsequent 
worker may have a lot more work to complete than if the pre
vious worker had done a good job. This inequality in work
load makes fairly compensating workers difficult, and may 
lead to frustration from workers if they cannot accurately es
timate the hourly rate they will make from a task [17]. 

Parallelized Responses 
Based on the results from our evaluation of the iterative ap
proach, we wanted to find a way to elicit more complete, de
tailed, and spatially informative answers from workers, while 
also more fairly compensating them for the work they con
tribute. To do so we implemented a parallelizable approach 
that simultaneously collects multiple answers from workers, 
with each answer concretely grounded to be associated with 
a specific region of the image. 

As shown in Figure 7, when crowd workers first begin a task, 
they select a region of the image that they will provide a la
bel for. The goal is to have this be a region that contains 
an important object. Workers are left to select this region on 
their own, just as they would be left to choose what level of 
description to give in a typical VizWiz task. Previously la
beled regions are also shown to the current worker to prevent 



Figure 7. The parallelized crowd worker interface of RegionSpeak. 
Workers select a key region of the image with a bounding box, then pro
vide a label for that region. Each region and label is aimed at helping to 
answer the user’s question, which is provided just as in VizWiz. 

duplications. The worker interface uses a Javascript plug-in, 
JCrop4, to support region selection. 

Our selection process is similar to LabelMe [18], which asked 
crowd workers to carefully select objects and areas in an im
age by outlining them. LabelMe’s goal was to train a com
puter vision system to recognize objects in a scene – as such, 
its boundary precision needed to be much higher than to get 
general layout information. Our parallelized approach uses 
simple rectangles to simplify the task for workers. 

The rectangular regions that we get from workers can be av
eraged and combined by clustering the rectangles and using 
approaches such as the Generalized Intersection Over Maxi
mum metric. This metric was initially introduced for use in 
ShareCam [20], a collaboratively controlled webcam that let 
multiple viewers select their preferred viewing area and then 
found an optimal region based on that input. However, in 
practice, high levels of redundancy are often not possible or 
not practical due to cost and latency constraints. VizWiz also 
successfully uses an unfiltered response model, where users 
are able to evaluate the plausibility of answers themselves and 
determine if they should wait for additional responses. 

Evaluation� 
We ran our evaluation of the parallized approach on all five 
images collected before (Figure 5). For each of the five 
images, we collected region tags and descriptions from five 
unique workers in one session. We repeated each session five 
times to obtain five different sets of responses, for a total of 
125 data points. We coded the same five features as before 
(validity, minimalism, number of objects identified, num
ber of details given, and number of spatial cues provided). 
For number of objects identified and number of spatial cues, 

4http://deepliquid.com/content/Jcrop.html 

bounding boxes were counted as both object identifiers (as
suming they contained a valid label for a subsumed portion 
of the image). Additional object and details could be identi
fied within the tag as well (for instance, a label for a section 
of a menu may identify multiple entrées). 

We also added one additional feature, bound tightness, to de
termine how well workers did when selecting the appropri
ate region for a given label. We redundantly coded all 125 
marked segments with two coders. There was a strong inter-
rater agreement on a subset of 25 images (Cohen’s kappa .74). 

Results� 
The combined answer lengths for each of the 25 sessions were 
higher than in the iterative approach, with an average of 305.2 
characters (median 149, σ� =� 282.3), a minimum of 50 and 
maximum of 935. Overall, these tasks resulted in no minimal 
answers; an average of 5.0 distinct items marked per session 
(median 5, σ� = 1.81); an average of 4.8 descriptive details 
(median 6, σ� = 2.07); and an average of 4.6 spatial cues 
(median 5, σ�= 1.63). Additionally, 72% of the 125 segments 
marked by workers were rated as being a “tight bound” on 
the object they were framing, 18% were considered a “loose 
bound”, and just 10% (12 marking) was rated as incorrect. 

However, because the validity of tags was marked per-image, 
as would be the case with a single description from a worker 
in our baseline labeling example, just 44% of our images were 
rated as containing a completely valid label set, with the re
maining 56% being rated partially correct. None of the label 
sets were entirely wrong. This highlights an important as
pect of aggregating answers from the crowd: by using aggre
gated answers, it is more likely the some error is introduced, 
but the chances of an answer containing entirely errors falls 
similarly. In our case, “partially correct” ratings were almost 
always small errors in one or two labels. 

Using parallelization also resulted in more evenly distributed 
workload for the crowd workers completing the tasks. We 
analyzed the length of the 125 individual image descriptions 
from the paralellized workflow, and compared them to the 
descriptions from the iterative workflow using Levenshtein 
edit distance5. The initial response’s distance was the length 
of the answer, and each subsequent response’s distance was 
the number of edits made. A homogeneity of variance test 
revealed that the standard deviation of parallelized responses 
(σ� =�70.19) was signficantly less than the standard devation 
of iterative responses (σ�=�106.13), with a Levene’s statistic 
of W�(1,�163)�=�11.867, p�=� .001. By giving workers small 
portions of the image to focus on, their workloads were more 
fair and resulted in less variance in response length. 

While individual answers in a parallelized session might have 
lower validity than iterative answers, the speed at which re
sponses were collected is much improved since each object 
descripiton requires only one worker, and descriptions can be 
collected in parallel. Additionally, asking users to select a 
bounding box containing the object they are describing pro
vides spatial information that can be used separately. 
5The Levenshtein edit distance is the number of character additions, 
deletions, or modifications in a piece of text. 

http:��=�106.13


Figure 8. Interaction flow of a common RegionSpeak dialog turn. 

REGIONSPEAK 
By combining the image stitching algorithm and the paral
lelized object description presented in previous sections, we 
are able to create a tool which allows for quick but thorough 
visual descriptions of complex images. We applied these 
methods to create RegionSpeak, a mobile application that al
lows blind users to compose panoramic images to accompany 
a question, and then perform spatial exploration of the space. 

Workers are given the panoramic images and asked to de
scribe objects in them as described above. When the answers 
are forwarded back to users, they can explore the the space 
by sliding their finger over the regions and having the system 
speak the label. By doing this, users can get a better sense of 
where objects in a scene are located relative to one another. 
This also reduces the search space that users have to process 
and preserves spatial information, which has the potential to 
reduce cognitive load [12]. Since this interaction is similar 
to established screen reader behavior on touch screen mobile 
devices, which users are already familiar with, it is easier to 
learn and more acceptable for blind people [11]. 

Implementation and User Interface 
A dialog turn of RegionSpeak interaction has three steps (Fig
ure 8). First, the user begin by opening the RegionSpeak app 
and either taking a single photo or a stitched image with the 
RegionSpeak stitching interface. The user then sets the phone 
down and waits for responses from crowd workers. When 
the first response comes back, RegionSpeak notifies the user 
to launch RegionSpeak which opens up the real-time camera 
view port and starts aligning regions marked by workers in 
the view port. This functionality is supported by an existing 
real-time object tracking algorithm (OpenTLD [9]). 

When a region labeled by the crowd is recognized, it is added 
as an overlay on the camera view port and tracked in real time 
as the camera is being re-framed. A region can be re-detected 
if it was lost and reappears, this way RegionSpeak can keep 
the interaction light weight by allowing users to leave and 
resume. Given the single object limitation of the OpenTLD 
algorithm, if there are multiple regions returned, we use the 
largest region as our tracking target and apply the transforma
tion of primary target to other region overlays. To help ensure 
that regions are not subject to occlusion by other regions, we 
filter smaller regions to the top layer. 

In addition to projecting overlays on real time view port, we 
also give users the option to explore multiple regions and la
bels in the initial static frame they captured in the very be
ginning of each dialog turn. The advantage of exploring in 
live camera view port is that users can find the direction of 

objects marked by crowd by pointing at the corresponding re
gion. Audio and haptic feedback are both provided, when the 
user moves a finger into a labeled area the phone vibrates and 
reads out the description provided by web workers. This kind 
of single-finger scan interaction in exploratory interface has 
been studied in prior projects and proven successful [4, 11]. 

Timing and Live Trial 
Following our main trials, we then ran another trial to see how 
a “real” run would look. We captured a stitched image of a 
long workbench that contained multiple tools (Figure 2), then 
recruited workers to mark regions. While workers were in
tended to be recruited in parallel, we did not explicitly accel
erate recruitment, and if workers joined the task after others 
had finished, they were able to see the marked regions. 

For this live trial, we also measured the time it took workers to 
mark regions and to provide descriptions. The time workers 
took to complete the task ranged from 0:38 seconds to 1:58 
minutes. On average, the task completion time was 1:05 min
utes. For perspective, this is on the same order of the speed at 
which VizWiz gets responses during live usage (∼133.3s for 
the first answer [3, 6]). 

Regarding the quality of the ten responses collected in the 
live trial, the total length was 566 characters; no description 
of regions was minimal or invalid; 11 distinct objects were 
described with 11 descriptive details and 12 spatial cues pro
vided; 7 of the bounding boxes drawn by web workers were 
tight while the other 3 were loose and none was incorrect. 

Limitations of RegionSpeak 
While, unlike iterative response generation, RegionSpeak is 
able to elicit answers from workers in parallel, there is the 
chance that workers will provide overlapping or redundant 
answers (as we saw cases of in our experiments). This is 
especially problematic in situations where there may be one 
or a small set of very salient objects in a scene (for example, 
a bookshelf with a television on it may attract many workers’ 
attention to label the television first and ignore other objects 
on the shelf or the shelf itself). 

While this is typically not harmful and did not happen fre
quently in our experiments as RegionSpeak shows previous 
labels, it does waste worker effort and complicates responses. 
Although RegionSpeak shows workers the entire set of ob
jects that others have labeled up to that point, this approach 
does not guarantee prevention of duplication unless tasks are 
run in series. However, as with the iterative answer case, this 
leads to significantly increased latency. A more sophisticated 
way to avoid these issues within the context of a synchronous 
task is to maintain a shared state of each task so that work
ers can see what others are annotating in real time. Future 
versions of RegionSpeak will include this functionality. 

DISCUSSION 
Our results suggest that the responses we get from Region-
Speak are much more closely aligned with our intended out
comes: we get shorter responses that contain more details 
and information about the spatial layout of objects, and can 
be run in parallel to avoid high latency. Workers generally 



did a great job correctly framing their labels, and the interac
tion with the task was simple enough that workers were able 
to complete it in roughly the same amount of time as a more 
traditional labeling task. Although the iterative approach was 
proven unsuitable for RegionSpeak, it could be useful in less 
time-sensitive context in which longer descriptive responses 
are favored. For instance, when transcribing or summarizing 
reading materials for later review, it could be viable. 

By focusing on a specific region, RegionSpeak elicits more 
fine-grained information from web workers, without the po
tentially problematically long responses that resulted from 
multiple iterations. Because the spatial information is con
tained in a non-text portion of the response, workers can focus 
on describing the object, and users are able to get information 
through two channels: audio from the screen reader, as well 
as location from the object’s on-screen position. 

Our results show that RegionSpeak’s image stitching provides 
a faster and easier means for blind users to capture visual in
formation, and that spatial region labeling encourages crowd 
workers to provide more descriptive results than traditional 
labeling. In the future, we plan to integrate RegionSpeak into 
the existing crowd-powered question answering platforms so 
that blind users have access to these features. We will also 
explore additional functionality suggested in user feedback 
from our image stitching study. 

CONCLUSION 
In this paper, we describe our accessible image stitching 
application and parallelized visual description workflows, 
then we introduce how we combine them to create Region-
Speak. RegionSpeak fills an important role between ex
isting lightweight visual question answering tools such as 
VizWiz, which use a single photo and elicit individual re
sponses from workers, and conversational approaches such 
as Chorus:View, which engage users in longer conversational 
interactions for questions that require maintaining context 
across multiple questions. RegionSpeak allows users to send 
and receive more information with the crowd with each inter
action, significantly reducing the number of interactions and 
the total time spent finding answers. 
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