
More than Meets the Eye:
A Survey of Screen-Reader Browsing Strategies

Yevgen Borodin*

Jeffrey P. Bigham#

Glenn Dausch†

I.V. Ramakrishnan*

* Stony Brook University, Comp. Sci. Department, Stony Brook, NY 11794, {borodin, ram}@cs.sunysb.edu
University of Rochester, Dpt. of Comp. Sci. & Eng., Rochester, NY 14618, jbigham@cs.rochester.edu
† Stony Brook University, Disability Support Services, Stony Brook, NY 11794, gdausch@notes.cc.sunysb.edu

ABSTRACT
Browsing the Web with screen readers can be difficult and
frustrating. Web pages often contain inaccessible content that is
expressed only visually or that can be accessed only with the
mouse. Screen-reader users must also contend with usability
challenges encountered when the reading content is designed with
built-in assumptions of how it will be accessed – generally by a
sighted person on a standard display. Far from passive consumers
of content who simply accept web content as accessible or not,
many screen-reader users are adept at developing, discovering,
and employing browsing strategies that help them overcome the
accessibility and usability problems they encounter. In this paper,
we overview the browsing strategies that we have observed
screen-reader users employ when faced with challenges, ranging
from unfamiliar web sites and complex web pages to dynamic and
automatically-refreshing content. A better understanding of
existing browsing strategies can inform the design of accessible
websites, development of new tools that make experienced users
more effective, and help overcome the initial learning curve for
users who have not yet acquired effective browsing strategies.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces; H.5.4 [Information Interfaces and Presentation]:
Hypertext/Hypermedia – architectures, navigation

General Terms
Design, Human Factors

Keywords
Accessibility, Blind, Usability, Screen Reader, Browsing Strategy

1. INTRODUCTION
Browsing the Web with screen readers can be a frustrating and
challenging experience because of persistent accessibility and
usability problems. Some content simply cannot be accessed non-
visually with a screen reader. For instance, the content contained
within images lacking alternative text cannot be conveyed to
screen-reader users; widgets that assume a specific input device

(e.g., the mouse) cannot be easily used non-visually; and
technology pushing the cutting-edge of web content (e.g., Flash,
Silverlight, SVG, HTML 5, etc.) is often incorrectly exposed by
the APIs on which screen readers rely.

Many web accessibility problems are better characterized as
usability problems that are encountered by screen-reader users.
For instance, a web page with an excessive number of links
embedded into its content (e.g., Wikipedia) may be difficult to
listen to because the screen reader seems to constantly interrupt
the flow with an announcement about another link that it has
encountered. A web page may be technically possible to access
with a screen reader, but the access can be so cumbersome as to
be almost unusable (e.g., solving audio CAPTCHAs with
common interfaces [7]). When usability problems reach a certain
threshold of severity, they may entirely prevent access to content
that is technically “accessible” [33] .

Despite the advances in screen-reading software, new web
technologies appear on a regular basis, and new kinds of
inaccessible content often emerge with them. As an example,
screen readers were once unable to work correctly with the
content changed by JavaScript, and now it also became important
to interpret the semantics of dynamic content. For years the
multimedia content in Flash was completely inaccessible to
screen-reader users, and just as this is becoming less of an issue,
HTML 5 (particularly the canvas) threatens to reintroduce similar
problems. Screen readers have gotten better at updating their off-
screen buffers with content affected by JavaScript, while ARIA
have provided semantics to dynamic content. Some members of
the HTML 5 working group are passionately arguing for
accessibility to be included from the start. Screen-reader and
browser developers, as well as those of us in the accessibility
space, are constantly struggling to catch up, but usually remain
months or years behind.

In the meantime, advanced end users who do not want to wait for
the assistive technology to catch up develop a portfolio of
browsing strategies for dealing with content that is inaccessible or
unusable. These browsing strategies help mitigate the usability
problems and overcome the shortcomings of current screen
readers. In this paper, we provide a detailed overview of existing
web accessibility problems and describe the coping strategies
employed by screen-reader users to overcome these problems.
We do not attempt to compare the efficiency of the strategies
because the efficiency largely depends on the design of web sites
and proficiency of users. Quantitative comparison would also be
impractical, given the large scope of the strategy reviews.
However, we believe that careful consideration of these strategies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
W4A2010, April 26-27, 2010, Raleigh, USA. Co-Located with the 19th
International World Wide Web Conference.
Copyright 2010 ACM 978-1-4503-0045-2 ...$5.00.

will not only expose neglected problems, but also suggest new
research directions for improving usability for screen reader users.

We hope that this paper will be of interest to:

 Researchers wishing to expand their knowledge of browsing
strategies and to identify open problems in this space;

 Web developers who want to design their web sites in a way
that will enable the use of effective browsing strategies;

 Screen-reader users who want to learn new browsing strategies
and make their web access more efficient.

We do not pretend to offer a comprehensive list of all possible
browsing strategies; we rather start off a list and begin a
classification of browsing strategies. Such a categorization is
likely to fade over time – new web technologies change the notion
what strategies are needed, and new assistive technologies change
what strategies are necessary or possible. It is our hope that, in
time, only the most effective strategies will persist. The authors
welcome everyone to suggest new strategies via e-mail or by
adding them directly to the strategies document available at:
http://www.sbhearsay.net/resources.htm.

2. Related Work
In this section we give a broad overview of related work on Web
Accessibility. Work that impacts the usability experienced by
screen-reader users can be broadly divided into the following
categories overviewed in this section: (i) existing screen readers,
(ii) accessibility guidelines and verification, and (iii) research
focused on understanding and/or improving accessibility.

2.1 Screen Readers
Most screen readers that are in popular use today are rather
similar, and most have common insufficiencies that result in
similar problems for users.

Desktop screen readers. Traditionally, screen-reader users have
used Windows operating system. Although Microsoft Windows
provides a choice of accessibility options such as the magnifying
glass, text narration, etc., the majority of screen-reader users do
not use the built-in accessibility features, giving preference
instead specialized screen-readers1 [21, 31, 36, 46] and
magnification software [23, 47], that limit users mostly to the
Windows platform. The recent improvement of Apple's built-in
VoiceOver screen reader [40] has boosted the number of Mac
users [45].

The name “screen reader” quite accurately describes how these
tools first operated and, to a large extent, how they continue to
operate today. Screen readers provide keyboard shortcuts that
allow navigation of the content to be rendered to the screen in a
non-visual way. In Section 3, we give more details on a typical
screen-reader interface. Although popular due to their ability to
make access to most content possible, they can often be severely
limited in the usability they deliver, leading to the popularity of
non-visual web browsers in the research and open source
communities.

Non-visual web browsers. While enabling computer interfaces to
the fullest is a challenging engineering effort, a number of

1 A comprehensive listing is available at:

 http://en.wikipedia.org/wiki/Comparison_of_screen_readers

projects have taken an easier approach and targeted only web
browsing. The general goal of non-visual web browsers is to
make a first-class aural interface to web browsers, drawing from
the work of T.V. Raman’s emacspeak [34].

Voice browsers are often implemented by augmenting existing
web browsers [19]. One of the oldest representatives of voice
browsers is IBM's Home Page Reader [3]. The latest IBM's
prototype aiBrowser [28] implemented as a plug-in for the
Microsoft Internet Explorer has mostly been targeting multimedia
web content. FireVox [38] supported by Google is a Firefox
browser extension enabling the basic browsing functionalities, as
well as the support of ARIA on Windows, OsX, and Linux
platforms. More recent work in this space includes the HearSay
web browser [13] which integrates into various browsers on
multiple platforms and converts web content into a VoiceXML
dialog for aural interaction. WebAnywhere [10] is a server-side
solution for remote web browsing from any computer terminal.
Although voice browsers typically fare better than screen readers
when it comes to web browsing, they typically copy the screen-
reader interface and offer only minor improvements to the
effectiveness of non-visual web browsing.

The state of assistive technologies. This section gives a
representative overview of the modern-day assistive technologies
that enable non-visual computer access and web access, in
particular. Although these technologies empower blind users to
browse the Web, most of the assistive tools available today
perform minimal content analysis that could enable more
intelligent non-visual interfaces; as a result the assistive tools limit
their functionalities to navigation over the visual interface.
Modern assistive technologies mostly leverage simple heuristics,
such as determining labels for form elements by considering the
labels located visually to the left. The latest version of Apple's
VoiceOver does page-segmentation making it easier to navigate
between segments. Overall however, the majority of assistive
technology developers have been trying to make the Web more
accessible, rather than trying to make non-visual web browsing
more efficient.

If content were truly designed from the start for non-visual use,
then many of the strategies that are common and necessary when
using today’s screen readers may not be required. Nevertheless,
we believe that, for the advantages mentioned previously, screen
readers will be here for some time; therefore, it is worthwhile to
understand how screen-reader users are coping with the
accessibility problems.
2.2 Accessibility Guidelines and Verification
The importance of promoting Web accessibility for individuals
who are blind or visually impaired has prompted the World Wide
Web Consortium [41] to launch the Web Accessibility Initiative
[43] resulting in a number of web accessibility guidelines, e.g.,
Web Content Accessibility Guidelines [44] addressing
information in a web site, Accessible Rich Internet Applications
[42] dealing with dynamic web content and web applications,
Authoring Tool Accessibility Guidelines [5] attending to web
development tools, User Agent Accessibility Guidelines [39]
focusing on web browsers and media players, etc.

Although these guidelines are not backed by law, governments
around the world are enacting accessibility regulations based on
them. In the United States, the rights of people with disabilities
are protected by Section 508 of the Rehabilitation Act of 1973,

further amended in 1998 to address Web accessibility and
mandate that “electronic and information technology
developed, procured, used, or maintained by all agencies and
departments of the Federal Government be accessible both to
Federal employees with disabilities and to members of the
public with disabilities, and that these two groups have equal
use of such technologies as federal employees and members of
the public that do not have disabilities.” Similar laws now exist
in a number of other countries [32].

A 2006 case of the National Federation of the Blind [30] vs.
Target Corporation has shown that laws go beyond paper.
Based on the NFB's allegations that the inaccessibility of the
target.com website violated the Americans With Disabilities
Act, the California Unruh Civil Rights Act, and the California
Disabled Persons Act, the U.S. Federal District Court for the
Northern District of California certified the case as a class
action lawsuit, which was later settled by Target. Major
software companies, in an attempt to comply with these laws,
have formed divisions that regulate internal compliance with
industry standards and accessibility guidelines, for example,
IBM's Human Ability and Accessibility Center [18], Sun
Microsystems' [35], and Microsoft Corporation's [27].

Automated accessibility verification. Because understanding
accessibility guidelines and verifying compliance of web pages
can be difficult [22], a number of automated accessibility checkers
were created to help web developers verify the accessibility of
their websites, e.g., [1, 2, 11, 29]. While automated verification
can check websites' adherence to simple rules, it cannot check the
semantics of accessibility metadata, e.g., it cannot check whether
the alternative text for images is meaningful, or whether an image
used for design purposes should or should not have alternative
text, because not all problems can be resolved automatically.

Manual accessibility verification and improvement. Upon
encountering multiple accessibility problems, screen-reader users
often report these problems to website administrators.
Regrettably, it may take months before any changes are made, if
at all. In an attempt to overcome this problem, the Social
Accessibility (SA) Project [37] has created a social network that
joins end-users and supporters, who collaboratively create
external accessibility metadata and, in this way, improve the
accessibility of web sites. The SA network enables screen-reader
users to submit requests describing accessibility problems, and the
supporters create accessibility metadata to resolve the problems.

A comparative study of various accessibility verification methods
[25] has shown that using a screen reader as part of an evaluation
process can help web developers perform better validation.
Screen-reader users, however, are not always able to identify
accessibility problems unless these problems prevent the users
from completing their current task. This suggests the following
subtlety of browsing strategies: if an effective strategy exists to
overcome an accessibility problem, the effect of the accessibility
problem is diminished. Nevertheless, developers should not
expect the screen-reader users to know which appropriate strategy
to use, because users have vastly different experiences.

Even when a web site is created according to standards, it can still
be difficult or impossible to use. As a result, many screen-reader
users are left behind as they cannot or will not visit the web sites
plagued by numerous accessibility problems. Achieving usable

accessibility remains a subjective task, giving rise to browsing
strategies overviewed in this paper.
2.3 Improving Web Accessibility
Web accessibility research has attempted to improve accessibility
and usability for screen-reader users. Although the approaches
and targeted improvements differ, the end goal for many of these
systems is either to simulate user browsing strategies or enhance
web content so that the browsing strategies already employed by
web users are possible, or are easier to use.

Automatic transcoding approaches. The continuing problems
with web accessibility have led to attempts to automatically
improve accessibility of web sites. One popular approach is
transcoding – automatic modification of the original content
before it reaches end-users. Transcoding of web sites was
originally developed to adapt them for mobile devices [6] and to
personalize pages [24]. To date, this technique has been
extensively explored for web accessibility [4]. Many transcoding
approaches are based on a proxy server performing the
transcoding. Some representative examples include WebInSight
[9] that automatically adds alternative text to images, SADIe [20]
that uses an ontology and CSS to make pages more accessible,
and AxsJAX [15] that transcodes web pages by injecting ARIA
metadata.

2.3.1 Handling Dynamic Content
Most Rich Internet Applications (RIA) are currently accessible
only to users who visually interact with the dynamic content. If
web developers properly exposed states and transitions of their
websites, screen-readers would be able to interact with rich
content. Unfortunately, interactive web applications are built with
a variety of technologies and toolkits, many of which make RIA
web sites partially or completely inaccessible. Over the last few
years, there have been several efforts to improve the accessibility
of dynamic content by manual and automatic authoring of
accessibility metadata.

ARIA markup. The use of the W3C standard for Accessible
Rich Internet Applications [42] was one of the first attempts to
make RIAs accessible. ARIA markup is intended to be used by
screen-readers to improve the accessibility of web applications for
screen-reader users. ARIA metadata can be embedded into web
pages and can be used to describe live areas, roles, and states of
dynamic content; e.g., “<p id='tag' aaa:live='rude'>Interrupting

Message</p>” instructs screen readers to immediately read the
content of the paragraph tag when it changes dynamically. Other
possible values include “off, ” “polite, ” and “assertive.”
Regrettably, most of the dynamic content available today does not
implement the ARIA standard. Likewise, web developers are
unlikely to follow ARIA consistently, for they have not followed
other accessibility guidelines. ARIA can also be supplied as part
of reusable components or widgets; for example, Dojo Dijit [16]
provides ARIA-enabled widgets and a toolkit to build custom
accessible widgets. However, Dijit is only one of many available
toolkits for building RIAs, and web developers continue creating
new inaccessible custom widgets of their own.

Unfortunately, ARIA only helps users navigate content when web
developers have included the markup. Screen-reader users have
developed strategies for dealing with dynamic content that has not
been assigned ARIA markup (Section 5).

Transcoding approaches. ARIA can also be dynamically
applied through transcoding. Originally targeting Google's own
web pages, the Google AxsJAX project [15] now enables any
programmer to write scripts that will automatically inject ARIA
markup into existing web applications, eliminating the
requirement that the creator of the content provide the markup.
The downside of this approach is that it still requires manual
effort.

2.3.2 Screen-Reader Support of Dynamic Content
Most voice browsers and screen-readers integrate themselves with
regular web browsers such as Internet Explorer or Mozilla
Firefox, to obtain web content in the form of HTML DOM trees.
Web browsers often give access to extensive APIs through plug-
ins, add-ons, or extensions, which provide an easy way to track
changes in web pages by exposing DOM mutations (dynamic
changes) and page-load events. For example, when a new web
page finishes loading, a screen reader can use the page-load event
as a clue to start reading the new page. Similarly, when a DOM
mutation event occurs, a screen reader could identify and present
changed content to the users.

Traditional screen-readers, such as JAWS, maintain a static
representation of web content, or off-screen buffer, and allow
users to browse within it. Until recently, screen readers did not
update their view of a web page except when a new page loaded.
Although this buffer can be refreshed manually or automatically
at certain time intervals, a survey described in [8] has shown that
screen-reader users prefer to suppress updates and often end up
browsing and acting upon stale content. On the other hand, the
FireVox [38] browser, reading directly from the HTML DOM,
announces the content updates as they occur. However, without
ARIA attributes, FireVox is unable to filter out irrelevant updates
and often interrupts and distracts users from the tasks they are
working on. HearSay-Dynamo dynamically updates its reading
buffer and can optionally notify its users of dynamic events by
playing earcons [14], which are less distracting than reading out
changed content.

Part of the reason why dynamic content is still inaccessible to
current assistive technologies is the difficulty of distinguishing
between important content changes (e.g., dynamic form
validation) and irrelevant updates (e.g., dynamic ads). While
dynamic web pages can be confusing even to sighted users,
screen-reader users have to interact with dynamic content through
a serial audio interface; therefore, even important content changes
can be distracting to users if the changes are presented as they
arrive. ARIA [42] markup, as was previously discussed, allows
web developers to specify the importance of updates, and whether
they should be ignored, delivered at a convenient time, or
announced to users. To the best of our knowledge, no usable
interface currently exists for browsing dynamic content without
ARIA markup.

Other types of inaccessible content include Flash and Java
Applets. Screen-readers currently provide limited support for
Java Applets and Flash objects. Flash often remains inaccessible
to users because web developers forget to add alternative text to
flash controls such as buttons. aiBrowser [28] helps improve the
usability of Flash content.

2.4 Remaining Problems
Despite the extensive research in this area, the screen-reader
interfaces commonly in use have not changed all that much.

Contrary to the advice of usability experts, screen readers still act
as an imperfect interface to content that is often fundamentally
designed for visual use. This situation seems unlikely to change in
the near term because most web content is still produced in a
similar way, and it is difficult to adapt it for interfaces targeting
audible display.

3. SCREEN-READER INTERFACE
Most state-of-the-art screen readers employ a shortcut-driven
interface, which allows users to navigate between webpage
elements in a serial manner. For instance, “Up” and “Down”
arrow keys are often used to skip between adjacent elements in
the order they appear in the HTML source page. To navigate
between elements of a specific type, e.g., links, buttons, edit
fields, headings, etc., users can press [Shift+] A | B | E | H | etc.,
to go to the [previous] next item of the respective type.

Screen readers typically read out text content, as well as the types
and states of complex web page elements, e.g., “textbox blank”,
“list with 10 items”, etc. Optionally, many screen readers can also
narrate text formatting and colors. “Left” and “Right” arrow keys
allow users to spell out letters and numbers, when necessary,
which is especially useful for reading unusual combinations of
characters and editing web forms.

Screen readers often have one or more edit modes that allow users
to interact with different types of form elements. For example, in
the navigational mode, pressing “E” on the textbox simply moves
the screen-reader cursor to the next textbox, without typing “E.”
However, after pressing “Enter” on the textbox, the user can type
in the textbox. Everything the user types is echoed aloud (except
passwords), and when the user changes the position of the edit
cursor, screen readers read the character that follows the cursor.
Pressing “[Shift+]Tab” moves the screen-reader cursor to the next
editable or focusable element. Some screen readers switch into the
edit mode when their cursor is on an editable element.

To access elements of certain types (e.g., links), the user can open
an auxiliary window containing a list of all elements of that type
(Figure 1). The user can then navigate the list to get an overview
of the page, jump to the element selected in the list, or return to
the initial position on the page. Some screen readers support
landmarks, allowing users to set a landmark and then return to it
from anywhere on the page.

Figure 1 – Dialog Displaying a List of Links in JAWS

4. BROWSING STRATEGIES
The biggest problem in non-visual browsing remains the speed of
information processing. To overcome the limitations of screen-
reader interfaces, blind users develop browsing strategies that
allow them to browse more efficiently. In this section, we
describe some general browsing strategies that were observed in
the course of several user studies. Many of the basic strategies can
be used in complex scenarios (Sec 5-6).

Using Braille displays.
Web access with screen
readers is in general
inefficient due to the
limitations of the serial
audio interface.
Refreshable Braille
displays (Figure 2),
which are supported by
many screen readers,
allow users to read web
content in Braille. The
displays typically have a low resolution of only 40-80 cells, but
are still a linear display. Such displays do not offer much
improvement, other than providing an alternative modality that is
especially important for deaf-blind people. Expert users also find
Braille displays more convenient for text editing tasks.

Increasing the speech rate. To accelerate reading, many users
speed up the speech rate with which the screen reader narrates the
content. Newly-blind individuals generally prefer naturally
sounding voices with normal speech tempo, which are easier to
understand. However, expert users speed up the speech rate and
choose older formative speech synthesizers whose quality does
not degrade as much as newer concatenative speech synthesizers
as high speech rates. Congenitally blind users who grew up
listening to synthesized speech are able to understand it at an
astounding speed of up to 500 words per minute. An important
aspect of speed is also the responsiveness of the screen reader to
key presses. Expert users expect the delay between a key press
and the following speech output to be under 50-100ms.

Individual preferences. Screen-reader users often develop
favorite strategies for web browsing. For example, on unfamiliar
web pages, many users first try to get a general overview of the
page by navigating all headings (using the “H” key with most
screen readers). If they cannot locate the information of interest
using this strategy, they return to the beginning of the page to read
through the entire page. Screen-reader users tend to remember the
order of headings and other “landmarks” on frequently visited
web pages. For example, the user may remember that the 3rd and
4th textboxes on a page are the user name and password fields.
Then, by using the landmarks as points of reference, users can
quickly navigate to the part of the page that they want to read.
For example, knowing that the product price often precedes the
“add-to-cart” button, screen-reader users may press “B” to find
the button and then easily find the price (Figure 3). It is notable,
that users may prefer to navigate the page backwards if they
figure out that they can get to the desired content faster this way.

Tasked-based preferences. Browsing strategies also vary based
on the task at hand. For example, in form-filling tasks, screen-
reader users may choose to press the “Tab” key to iterate over all
focusable elements, including form elements and links, or iterate

over form fields of specific type, e.g., press “X” to go to the next
checkbox, press “E” to navigate to the next editable element.
While reading headline news, the users may press “A” to iterate
over the headlines links to get an overview of the latest news
(headline news are now increasingly labeled as headings). Users
can also choose to navigate over visited or unvisited links, which
allows them to narrow the scope of their search (Figure 1). If they
know about some specific text occurring on the page, users can
search directly for the text. If the screen reader can store user-
created landmarks on a web page, e.g., the beginning of main
content, users can directly jump to the location indicated by the
landmark.

Inferring roles of controls. Typically, inaccessible content
includes image-links and buttons without alternative text, dynamic
content and widgets, Flash, Java Applets, etc. Sometimes users
manage to infer the roles of image buttons by exploring other web
elements nearby, e.g., search boxes are followed by search buttons
in Figure 5. In other cases, users may follow an image-link to
read the title of the target page or click a button to determine its
function. On subsequent visits, screen-reader users may remember
the ordinal position of the links and other web objects they need.
This approach is often the only solution for inaccessible Flash and
Java Applets. The downside of this approach is that it is very hard
to infer roles of controls that have to be clicked in a certain
sequence. Trying to discover the relationships between objects by
invoking every object is similar to automated AJAX crawling [17,
26], known to be suffering from: state explosion, irreversibility of
actions (which requires that transitions be retraced from the start
state), adverse actions (e.g., inadvertent deletion of an email),
latency between actions and reactions (e.g., AJAX applications).

Exploring Visual Interface with a Keyboard-Driven Mouse.
Some web developers choose to use non-focusable custom
widgets that can be edited, clicked, or otherwise acted upon, but
are inaccessible to a standard screen reader. The simplest
example is an image that looks like buttons and has triggers for
mouse-events, e.g., all three buttons in Figure 5 are images, which
will be fully accessible if they are implemented as image-buttons
and have proper alternative text. To access these elements, users
may use their screen readers to simulate the mouse. Many screen
readers provide a mechanism to move the current mouse position
with the keyboard and speak the content beneath the cursor when
possible. Other keyboard shortcuts enable the user to click the
mouse buttons. Although this can enable screen-reader users to
access content that is not straight-forwardly accessible using only
standard keyboard shortcut keys, it is an incredibly inefficient,
confusing, and frustrating browsing strategy that many users will
only employ as a last resort.

Figure 3 – Shopping for Books

Figure 2 – Braille Display

Form filling. Inaccessible content in forms often includes form
fields without labels. While editing unlabeled form elements,
users can often guess the label by using their prior experience
with other forms. For instance, the typical order of address forms
is First Name, Last Name, Street Address, City, State, and Zip
(Figure 4); so, if there is an unlabeled textbox between the “Street
Address” and “City” textboxes, then it is likely to be the second
line for the “Street Address.” By examining the content of the
form element, it is sometimes possible to guess the purpose of the
element, e.g., the “State” form element is often represented by a
list-box with the choices of the states.

Screen-reader users may choose to press the “Tab” key to iterate
over all focusable elements, including form elements and links, or
iterate over specific elements by using shortcuts provided by
screen readers. One drawback to this approach is that users will
miss out on content presented next to the element, explaining how
to fill out the form such as the desired format of a phone number.
Tabbing is also hindered by pages with poorly labeled form
elements, which can disorient the user particularly with large
forms.

Falling back to external help. When all else fails, screen-reader
users may ask for help from their sighted friends and family. The
Social Accessibility [37] network was created to bring together
end users and volunteers who can collaboratively create and
utilize accessibility metadata. The network allows end users to
submit requests for help with inaccessible content and allows
volunteers to suggest strategies for overcoming problems, as well
as label inaccessible content.

Many users avoid visiting dynamically changing web pages
because screen readers still do not adequately support dynamic
content. In the cases where this may not be possible, e.g.,

dynamic form-filling validation, users manually refresh the
screen-reader’s buffer and look for the changes. A general
strategy for looking for statically changed information is to review
the list of unvisited links (e.g., look for new headlines on self-
refreshing news sites – Figure 8) or to read through the entire page
(e.g., looking for error messages in form filling – Figure 7). A
more detailed overview of strategies employed in dealing with
dynamic and static content changes is given in Section 5.

Users often try to avoid reading through menus and other
irrelevant content that appear at the top of the page. One popular
strategy for finding the beginning of main content is the use of the
“H” key to navigate over headings, which, if used consistently
within the web page, can substantially improve the accessibility of
a web site. Another common strategy is searching for text that is
expected to occur in the main section. Finally, some screen
readers such as JAWS, include a keyboard shortcut (the “M” key)
that allows users to skip to content that does not contain links. The
effect is to skip past navigation menus. A detailed overview of
strategies employed in finding desired content is given in Sec. 6.

Although all users develop favorite web browsing strategies, the
existence of sophisticated error-handling strategies among screen-
reader users indicates that there are still a number of web
accessibility problems. It is our hope that this overview of
browsing strategies sheds some light on current Web Accessibility
problems and will help researchers in the field focus on solving
these problems.

 Figure 7 – Server-Side Validation at BestBuy

Figure 6 – “Undo” link appearing at Gmail.com

Figure 5 – Variations of Search Boxes

Figure 4 – Filling Out an Address Form

5. CONTENT CHANGES
Although the most common strategy for dealing with dynamic
content is evading it [8], sometimes dealing with dynamic changes
is unavoidable. In this section, we discuss several different and
yet similar scenarios that demonstrate the problems faced by
screen-reader users and motivate a new approach.

Ignoring dynamic content. Using current screen readers, users
are not notified of dynamically appearing messages and do not
have easy access to updated content, unless it is marked up with
ARIA. In many cases, users can simply ignore dynamic messages
either because the messages are irrelevant, or because they do not
preclude users from accomplishing their tasks. For example,
Figure 6 shows a dynamic message (dashed box) appearing on the
Gmail.com web page as soon as one deletes an e-mail. In this
instance, users can ignore this message because there are other
ways of recovering a deleted e-mail, e.g., going to the “Trash”
folder and moving the deleted e-mail to the “Inbox.” However, it
would be considerably easier for users to simply jump to the
update message and click the “Undo” link.

Other types of dynamic content, such as pull-down menus, are
often implemented by visually hiding the submenus and making
them appear on mouse-over. As most screen-readers do not make
a distinction between hidden and visible content, users can still
access such content in a static fashion. This approach, however,
fully depends on the way the dynamic content is implemented.
For example, AJAX delivers content on demand; hence, it may
not be in the DOM tree unless some event triggering AJAX takes
place and the screen reader detects the update. In other cases,
there may be too much hidden content causing information
overload to screen-reader users, or hidden content can be
confusing, as described in form-filling strategies.

Form filling. A more serious problem is captured in Figure 7,
where an incorrectly entered zip code results in error messages
(dashed boxes) appearing on the page. Only the first message is
actually new, the other one just changes the color to red to
visually attract users' attention. Form validation can be done both
dynamically (on the client-side) or statically (on the server-side).
Either way, from the point of view of a novice user, the form did
not submit because, at first glance, nothing has changed. A more
experienced user would know about form validation and would
look for error messages. Error messages usually appear above the
form or near the form fields with errors. Users who tab through
the form elements will not encounter the error messages, unless
the error is somehow indicated (other than with color) in the label
of the form field. So, most users can only identify the error by
carefully checking every field, which may not be obvious in case
of semantic errors (e.g., “Airport code is not recognized”). A
more efficient strategy may be to check for error messages above
the first form field or near every form field. However, this
strategy fails in cases when web designers visually hide all error
messages, without realizing that screen readers will often read
them anyway. If users had an easy way to review the changes,
they would be able to read the error message and then jump to the
highlighted field in no time at all [12].

Automatic refreshes. Figure 8 illustrates an automatic page
refresh that causes a news item to be inserted into the content of
the Los Angeles Times news web site (solid box Figure 8b). So,
if the screen-reader’s cursor was on the article about the Pope’s
birthday party before the refresh (dashed box Figure 8a), instead

of continuing to read about the same article (dashed box Figure
8b) after the refresh, screen readers start from the beginning.

Refreshes happen to nearly 50% of major news websites [12] and
often occur at frequent 5-10 minute intervals. Refreshes can be
very disruptive to the user because screen readers typically make
the user read the page from the beginning. Some screen readers
such as JAWS have an option of suppressing automatic refreshes,
but sometimes users may choose to refresh the page manually, in
which case users either have to read the page from the beginning
or employ a more efficient strategy. In case of news websites,
users can skip through the headings or look at the list of unvisited
links. In other cases, users have to be familiar with the web site
and know what they are looking for. For instance, they could
employ a landmark-based strategy to jump to the location where
they expect changes to occur after a manual refresh; for instance,
users could search for “Current Bid” when they watch an item's
price on eBay, as illustrated by a solid-line rectangle in Figure 9.
The dashed box illustrates the dynamically changed “Time left”
field.

Figure 9 – Watching products on E-bay.com

Figure 8 – Page Refresh at L.A. Times New

a) Before b) After

Template-based websites. Because the design of most web sites
is based on templates, screen-reader users have to learn how to
use a number of strategies to skip repeated template content.
Typical user strategies include: skipping to the nearest heading
(JAWS shortcut “H”), which works only if the HTML source
code implements heading tags; skipping to the next block of
contiguous non-link content of a predefined number of words
(JAWS shortcut “N”), which may or may not work, depending on
the density of links in the template and main content; skipping to
the next paragraph (JAWS shortcut “P”), which only works if the
HTML source code implements paragraph tags, etc. Overall, the
strategies used to avoid repeated template content are similar to
those used to locate main page content as described in Section 6.
An easy and reliable interface for reviewing changes in web pages
could help users skip repetitive template content and proceed to
browsing main page content. Finally, the interface has to be the
same, regardless of whether the content is updated by statically
loading every new page after following a link, or if the AJAX-like
approach is used to change the main content dynamically, without
actually reloading the template.

6. FINDING DESIRED CONTENT
Screen-reader users tend to develop their own strategies for
getting past irrelevant web page content in order to find the
content that they want. Based on our observation, we have
identified several user strategies for finding desired content in
web pages: using skip-to-main-content links; heading-level
navigation; keyword searching; skipping by paragraph or non-
linked text; and sequential browsing (continuously reading or
going line by line through web pages). Advanced users tend to
have favorite strategies that they employ in a sequence as
strategies fail. Some strategies are based on the user’s familiarity
with a web page and may evolve as the user becomes more
familiar with the page.

Skip-to-main-content links. In an attempt to follow web
accessibility guidelines, web developers often place hidden links
that allow screen-reader users to skip navigation menus and start
reading from the main content of a page. However, since these
links are hidden, and developers are often using visual web-
development tools, these same developers, or the newly recruited
developers, fail afterwards to maintain the skip links. A survey of
browsing behaviors [8] has shown that screen-reader users often
ignore skip-links because the links are often broken. In a
WebAIM survey [45], over 1,000 users responded that they use
skip links: whenever they are available 22%, often 16%,
sometimes 28%, seldom 19%, and never 10%. Users who do not
use skip-links often motivate their choice by a lack of control of
where the skip-links take them, combined with prior experience of
seeing broken skip-links, and also, for fear that they may skip
something important.

Heading navigation. Perhaps the most common technique for
skipping to main content is the use of heading-navigation
shortcuts that jump to the next or previous HTML heading tag
(<H1>-<H6>). In the WebAIM survey, over 1,000 users
responded that they used headings: whenever they were available
52%, often 24%, sometimes 14%, seldom 5%, and never 2%.

Keyword search is another technique employed by users to find
main page content. Keyword search helps users when they know
what they are looking for, e.g., after following a link to an article,

one can look for the words occurring in the title of the article to
jump directly to the article. Users often search for word
combinations, single words, or even letter combinations to find
main content.

Skipping to non-linked content in paragraphs. Because the
irrelevant content often contains many links, some users employ
the “P” shortcut to skip to the nearest paragraph of text. This
technique works only if <P> tags are used in the HTML source
code of the webpage. A more efficient strategy is the use of the
“N” shortcut that allows users to skip to the next section of
contiguous non-linked content, which may not work in web pages
abundant in linked content.

Sequential navigation. When all other strategies fail, or if users
do not have an efficient strategy, they resort to sequential
navigation. In these cases, users either instruct their screen readers
to read continuously or arrow down through the entire page.
Sequential browsing is the most inefficient and time-consuming
browsing strategy.

Strategies for skipping irrelevant information. Very often the
beginning of main page content coincides with the title of an
article, product description, etc. However, having found the title
with any of the described strategies, users still have to skip
through irrelevant links, ads, and lists of related articles or
products that web developers tend to place in between the title and
the rest of the content, e.g., the dotted rectangle in Figure 10
encompasses the controls that separate the title of the article from
its body. Even worse, irrelevant content is sometimes placed right
in the middle of main content, forcing users to guess if it
represents the end of the content or just some annoying
interruption, e.g., the solid red rectangle in Figure 10 encompasses
an ad that is inserted after the first paragraph of the article. While
many screen-reader users end up reading through the ads for fear
of skipping relevant information, others try to skip ads.

Strategies for skipping irrelevant information usually include
paragraph and non-linked-text navigation. Since ads often appear
in inline frames (<iframes>), some users try to skip them using

Figure 10 – Adds at the Free Press news web site

frame navigation or turning off iframes altogether, thus making
frames invisible. However, in the latter case, users may
inadvertently turn off other important frames; for instance, Gmail
has several frames for the list of emails, chat, etc. When reading
news, screen-reader users often switch to print view, which
removes the ads and minimizes the number of steps needed to
read the article.

7. IMPLICATIONS
A better understanding of the browsing strategies employed by
current screen-reader users can help inform the tools that we
create to both help less experienced users and to identify the
research directions that we choose to pursue in the future. One of
the implications of the existing strategies is that, if a clear and
effective browsing strategy lets users bypass an apparent
accessibility or usability problem, then that problem may not be as
important as the ones that do not have such strategies.

Far from being a comprehensive list, the browsing strategies
outlined in this paper are meant merely as a starting point. We
hope that other users and researchers will start to add their own
browsing strategies – a repository that would be quite useful for
both users looking to become more proficient with their tools and
researchers seeking to create the next generation of assistive
technology.

Although we have listed a large number of strategies that we have
observed and the utility of which we occasionally commented on,
we have not attempted a quantitative evaluation of their
effectiveness. A ripe area for future research is to investigate the
browsing strategies that we have identified here to formally gauge
their utility. Finally, we hope that our effort to overview existing
browsing strategies will help future assistive technology
developers and researchers create a more usable experience for
screen-reader users.

8. ACKNOWLEDGMENTS
We would like to thank NSF (Awards: IIS-0534419, IIS-0808678,
CNS-0751083) and Sigma Xi (Award: G20071013028487872).

9. REFERENCES
[1] ACChecker. Web Accessibility Checker. 2009 [cited

2009; Available from:
http://achecker.ca/checker/index.php.

[2] aDesigner. IBM Alphaworks project donated to
Accessibility Tools Framework (ACTF). 2004 [cited
2009; Available from:
http://www.alphaworks.ibm.com/tech/adesigner.

[3] Asakawa, C. and T. Itoh, User interface of a Home
Page Reader, in Proceedings of the 3rd International
ACM Conference on Assistive Technologies. 1998,
ACM: Marina del Rey, California, United States.

[4] Asakawa, C. and H. Takagi, Transcoding, in Web
accessibility: a foundation for research, S. Harper and
Y. Yesilada, Editors. 2008, Springer Publishing
Company, Incorporated. p. 388.

[5] ATAG. W3C Authoring Tool Accessibility Guidelines.
2009 [cited 2009.

[6] Bickmore, T.W. and B.N. Schilit, Digestor: device-
independent access to the World Wide Web, in Selected
Papers from the 6th International Conference on World
Wide Web. 1997, Elsevier Science Publishers Ltd.:
Santa Clara, California, United States.

[7] Bigham, J.P. and A.C. Cavender, Evaluating existing
audio CAPTCHAs and an interface optimized for non-
visual use, in Proceedings of the 27th international
conference on Human factors in computing systems.
2009, ACM: Boston, MA, USA.

[8] Bigham, J.P., A.C. Cavender, J.T. Brudvik, J.O.
Wobbrock, and R.E. Lander, WebinSitu: a comparative
analysis of blind and sighted browsing behavior, in
Proceedings of the 9th International ACM SIGACCESS
Conference on Computers and Accessibility. 2007,
ACM: Tempe, Arizona, USA.

[9] Bigham, J.P., R.S. Kaminsky, R.E. Ladner, O.M.
Danielsson, and G.L. Hempton, WebInSight: making
web images accessible, in Proceedings of the 8th
International ACM SIGACCESS Conference on
Computers and Accessibility. 2006, ACM: Portland,
Oregon, USA.

[10] Bigham, J.P., C.M. Prince, and R.E. Ladner,
WebAnywhere: a screen reader on-the-go, in
Proceedings of the 2008 International Cross-
Disciplinary Conference on Web Accessibility (W4A).
2008, ACM: Beijing, China.

[11] Bobby. Accessibility Checker. 1995 [cited 2009;
Available from: http://www.cast.org/products/Bobby.

[12] Borodin, Y., J.P. Bigham, R. Raman, and I.V.
Ramakrishnan, What's new?: making web page updates
accessible, in Proceedings of the 10th International
ACM SIGACCESS Conference on Computers and
Accessibility. 2008, ACM: Halifax, Nova Scotia,
Canada.

[13] Borodin, Y., J.P. Bigham, A. Stent, and I.V.
Ramakrishnan, Towards one world web with HearSay3,
in Proceedings of the 2008 International Cross-
Disciplinary Conference on Web Accessibility (W4A).
2008, ACM: Beijing, China.

[14] Brewster, S.A., P.C. Wright, and A.D.N. Edwards, An
evaluation of earcons for use in auditory human-
computer interfaces, in Proceedings of the INTERACT
'93 and CHI '93 Conference on Human Factors in
Computing Systems. 1993, ACM: Amsterdam, The
Netherlands.

[15] Chen, C.L. and T.V. Raman, AxsJAX: a talking
translation bot using Google IM: bringing Web-2.0
applications to life, in Proceedings of the 2008
International Cross-Disciplinary Conference on Web
Accessibility (W4A). 2008, ACM: Beijing, China.

[16] Dijit. Dojo Dijit JavaScript toolkit. 2009; Available
from: http://dojotoolkit.org/projects/dijit.

[17] Duda, C., G. Frey, D. Kossmann, R. Matter, and C.
Zhou, AJAX crawl: making AJAX applications
searchable, in Proceedings of the 2009 IEEE
International Conference on Data Engineering. 2009,
IEEE Computer Society.

[18] HAAC. IBM Human Ability and Accessibility Center.
2009 [cited 2009; Available from: http://www-
03.ibm.com/able/.

[19] Hanson, V.L., J.T. Richards, and C. Swart, Browser
augmentation, in Web accessibility: a foundation for
research, S. Harper and Y. Yesilada, Editors. 2008,
Springer Publishing Company, Incorporated. p. 215-
230.

[20] Harper, S. and S. Bechhofer, SADIe: structural
semantics for accessibility and device independence.
ACM Transactions on Computer-Human Interaction,
2007. 14(2): p. 10.

[21] JAWS. Screen reader from Freedom Scientific. 2009
[cited 2009; Available from:
http://www.freedomscientific.com/products/fs/jaws-
product-page.asp.

[22] Kelly, B., D. Sloan, L. Phipps, H. Petrie, and F.
Hamilton, Forcing standardization or accommodating
diversity?: a framework for applying the WCAG in the
real world, in Proceedings of the 2005 International
Cross-Disciplinary Workshop on Web Accessibility
(W4A). 2005, ACM: Chiba, Japan.

[23] MAGic. Magnification software from Freedom
Scientific. 2009 [cited 2009; Available from:
http://www.freedomscientific.com/products/lv/magic-
bl-product-page.asp.

[24] Maglio, P. and R. Barrett, Intermediaries personalize
information streams. Communications of the ACM,
2000. 43(8): p. 96-101.

[25] Mankoff, J., H. Fait, and T. Tran, Is your web page
accessible?: a comparative study of methods for
assessing web page accessibility for the blind, in
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 2005, ACM: Portland,
Oregon, USA.

[26] Mesbah, A., E. Bozdag, and A.v. Deursen, Crawling
AJAX by inferring user interface state changes, in
Proceedings of the 2008 8th International Conference
on Web Engineering - Volume 00. 2008, IEEE
Computer Society.

[27] Microsoft. Microsoft Accessibility. 2009 [cited 2009;
Available from: http://www.microsoft.com/enable/.

[28] Miyashita, H., D. Sato, H. Takagi, and C. Asakawa,
Aibrowser for multimedia: introducing multimedia
content accessibility for visually impaired users, in
Proceedings of the 9th International ACM SIGACCESS
Conference on Computers and Accessibility. 2007,
ACM: Tempe, Arizona, USA.

[29] MVS. W3C Markup Validation Service. 2009 [cited
2009; Available from: http://validator.w3.org/.

[30] NFB. National Federation of the Blind. 2009 [cited
2009; Available from:
http://www.nfb.org/nfb/Default.asp.

[31] NVDA. NonVisual Desktop Access. 2009 [cited 2009;
Available from: http://www.nvda-project.org/.

[32] Paciello, M.G., Web accessibility for people with
disabilities. 2000: C M P Books. 392.

[33] Petrie, H. and O. Kheir, The relationship between
accessibility and usability of websites, in Proceedings of
the SIGCHI conference on Human factors in computing
systems. 2007, ACM: San Jose, California, USA.

[34] Raman, T.V., Emacspeak - direct speech access, in
Proceedings of the second annual ACM conference on
Assistive technologies. 1996, ACM: Vancouver, British
Columbia, Canada.

[35] Sun. Sun Microsystems Accessibility. 2009 [cited 2009;
Available from:
http://www.sun.com/accessibility/index.jsp.

[36] SuperNova. Screen reader from Dolphin. 2009 [cited
2009; Available from:
http://www.dolphincomputeraccess.com.

[37] Takagi, H., S. Kawanaka, and M. Kobayashi, Social
Accessibility: achieving accessibility through
collaborative metadata authoring, in ASSETS. 2008:
Halifax, Canada.

[38] Thiessen, P. and C. Chen, Ajax live regions: ReefChat
using the Fire Vox screen reader as a case example, in
Proceedings of the 2007 International Cross-
Disciplinary Conference on Web Accessibility (W4A).
2007, ACM: Banff, Canada.

[39] UAAG. W3C User Agent Accessibility Guidelines.
2009 [cited 2009.

[40] VoiceOver. Screen reader from Apple. 2009 [cited
2009; Available from:
http://www.apple.com/accessibility/voiceover.

[41] W3C. World Wide Web Consortium. 2009 [cited 2009;
Available from: http://www.w3.org.

[42] WAI-ARIA. W3C Accessible Rich Internet
Applications. 2009 [cited 2009; Available from:
http://www.w3.org/TR/wai-aria.

[43] WAI. W3C Web Accessibility Initiative. 1997;
Available from: http://www.w3.org/WAI/.

[44] WCAG. W3C Web Content Accessibility Guidelines.
2009 [cited 2009; Available from:
http://www.w3.org/TR/WCAG10/.

[45] WebAIM. Web accessibility in mind survey. 2009
[cited 2009; Available from:
http://www.webaim.org/projects/screenreadersurvey/.

[46] Window-Eyes. Screen Rrader GW Micro. 2009 [cited
2009; Available from:
http://www.gwmicro.com/Window-Eyes.

[47] ZoomText. Magnification tool from aisquared. 2009
[cited 2009.

