Accessibility by Demonstration:
Enabling End Users to Guide Developers to Web
Accessibility Solutions

Jeffrey P. Bigham
ROC HCI Group
University of Rochester
. Rochester, NY 14627
jbigham@cs.rochester.edu

ABSTRACT

Few web developers have been explicitly trained to create
accessible web pages, and are unlikely to recognize subtle ac-
cessibility and usability concerns that disabled people face.
Evaluating web pages with assistive technology can reveal
problems, but this software takes time to install and its com-
plexity can be overwhelming. To address these problems, we
introduce a new approach for accessibility evaluation called
Accessibility by Demonstration (ABD). ABD lets assistive
technology users retroactively record accessibility problems
at the time they experience them as human-readable macros
and easily send those recordings and the software necessary
to replay them to others. This paper describes an implemen-
tation of ABD as an extension to the WebAnywhere screen
reader, and presents an evaluation with 15 web developers
not experienced with accessibility showing that interacting
with these recordings helped them understand and fix some
subtle accessibility problems better than existing tools.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation|: User
Interfaces; K.4.2 [Social Issues]: Assistive technologies for
persons with disabilities

General Terms

Design, Human Factors, Experimentation

Keywords
Web Accessibility, Web Usability, Evaluation, Blind Users

1. INTRODUCTION

We introduce Accessibility by Demonstration (ABD) as a
general lightweight method of bringing the experience of ac-
cess technology users to developers. In the ABD approach,
people use their assistive technology as they normally would.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASSETS’10, October 25-27, 2010, Orlando, Florida, USA.

Copyright 2010 ACM 978-1-60558-881-0/10/10 ...$10.00.

Jeremy T. Brudvik
College of Computing
Georgia Tech

. Atlanta, GA 30332
jbrudvik@gatech.edu

Bernie Zang
Computer Science
Penn State University
State College, PA 16801

nzz101@psu.edu

If they encounter a problem, they tell their assistive tech-
nology to package a recording of their recent interactions
that demonstrate the problem into a URL, which they can
then send to the developer of the site using an appropri-
ate medium (email, instant messaging, tweets, etc). This
retroactive recording is possible because their assistive tech-
nology always keeps a buffer of recent actions so that it can
package and send such a recording if the users requests it
to do so. Importantly, the URL encapsulates not only a
recording of the user’s actions but also the assistive technol-
ogy on which to playback the recording so that developers
have immediate access to it. Few, if any, developers would
view these recordings if they first had to install additional
software or an extension to their browser.
Specifically, the steps of ABD are as follows (Figure 1):

e User browses the web — ABD is implemented on
existing assistive technology web applications so that
users do not need to learn new technology.

e User encounters problem, retroactively records
trace — problems are retroactively recorded using a
single shortcut.

e User shares problem with developer — a single
URL encapsulates both the assistive technology and
the recorded problem for easy sharing.

e Developer experiences user’s problem — opening
the URL from the user causes the assistive technology
web application to be loaded, and the user’s actions
that led to the problem to be replayed.

e Developer fixes problem — developers use their
existing tools to fix the problem and then reload the
original ABD URL to verify the problem was fixed.

This paper explores ABD in the context of improving
web access for blind computer users. Our implementation,
WebAnywhere-ABD is built as an extension to the WebAny-
where [6], a web-based screen reader that, unlike conven-
tional desktop screen readers, can be used on any computer
without installation (even locked-down public terminals).
Many developers are already using WebAnywhere to test
the accessibility of their sites because it is free and does not
require installation [1]. When a developer navigates to a
WebAnywhere-ABD URL, WebAnywhere is first automat-
ically loaded in the browser (since WebAnywhere is a web
application) and then the recording captured by the user is
played back. Developers neither need to be as skilled at us-
ing access technology nor do they have to be convinced to
install new software.

http://domain.org/XN2320

DeEras yrasm

Goto http://statefruits.org/
Ctrl+T

Demonstrates
Accessibility Problem

User

User Demonstration

_‘" Iterative Improvement

link Image apple

Developer

Demonstration of Accessibility Problem

Figure 1: (a) Using the ABD approach, access technology users can capture problematic interactions and
send recordings to developers. (b) Developers can replay these interactions to improve understanding of the
problem without installing new software. Developers can replay these recordings after changing their content

to test if their changes have helped.

The ultimate test of web accessibility is whether someone
attempting to access web content can do so effectively. Ac-
cessibility has many dimensions, and people with disabilities
vary in many ways. Usability is fundamentally tied to skill
with appropriate access technology, and so even content that
is accessible to someone experienced with a particular screen
reader, such as JAWS [15] or Window-Eyes [31], might be
inaccessible to someone who is new to the software. Cre-
ating accessible web content can therefore be a frustrating,
subjective, and difficult task for developers, especially for
the vast majority not specifically trained in accessibility.

Guidelines and standards serve as a valuable starting point,
but are a high barrier to entry and may not capture many
factors influencing the experienced usability of a web page
[26]. Creating content possible to access is just one aspect
of enabling users to effectively access content. While issues
that clearly prevent access, such as images lacking alterna-
tive text, often receive the most attention, poorly laid out
content or pages on which finding desired content may actu-
ally be less usable. Accessibility evaluation tools can high-
light many problems, but often fail at conveying the effective
accessibility for users. The ABD approach seeks to better
connect the consumers of content with those who create it.

1.1 Example Use Cases

ABD can help experienced and inexperienced computer
users demonstrate many problems that they face in accessing
and using content and send those demonstrations to others.
To illustrate how the ABD approach can be used in the
context of WebAnywhere, consider the following scenarios:

First, consider Betty, an experienced blind computer user
who has experienced an accessibility problem on a web site.
The homepage of a local restaurant has arranged elements
statically with CSS, resulting in a nonsensical reading or-
der. Betty uses WebAnywhere-ABD to demonstrate her
path through the web page, first pressing tab several times
to show the response when attempting to jump from link
to link, and then showing the unintuitive result of navigat-
ing by using the DOWN ARROW to go through the page
element by element. Once she has finished, her recording
is captured as a URL that she can send along with a com-
ment to the email address listed on the page, for example
“The reading order of this page does not match its visual ap-

pearance.” She is able to demonstrate the problem without
visiting the webmaster in person.

Upon receiving Betty’s email, John, the geographically
distant webmaster, simply clicks on the link that Betty sent
to see a replay of her interactions with his site. This re-
play provides more than just a video to John — it is a live
interaction with the site. John can interrupt the replay at
any point and see how his site responds to keyboard short-
cuts of his choosing. He can also update the site and see
if that improves the replay, helping him iteratively improve
the accessibility of his site and receive feedback during the
process.

Next, consider James, a new screen reader user who hears
what sounds like gibberish while browsing an online shop-
ping site. James presses CTRL+R and WebAnywhere-ABD
records the process he took to get to where he currently is on
the page. The retroactive recording allows James to easily
capture problems that he faces without spending any time
trying to reproduce them and without having to remember
how he got into the state where the problem occurred. James
decides to tweet the URL and one of his sighted followers is
able to tell him that his screen reader had started reading a
complicated URL when he reached an image lacking alter-
native text. James neither had to understand what problem
occurred or the technical reason for it — he only needed
to know that he had reached a point that was inaccessible
to him, and the system gave him a URL that captured the
problem in an easy-to-share way.

1.2 Summary of Contributions
This work makes the following three contributions:

e We introduce the concept of Accessibility by Demon-
stration, and present an implementation for screen reader
users that can be used on any computer without in-
stalling new software.

e We show how retroactive recording of trails can be
used as part of the ABD approach to capture and share
recordings of accessibility problems after they have al-
ready happened.

e We present an evaluation that shows that web develop-
ers are more successful at improving some accessibility
problems when using ABD than without it, illustrating
the promise of the approach.

2. RELATED WORK

The ABD approach seeks to make it easier for develop-
ers to leverage the expertise of disabled users to improve
the accessibility of web sites. Related work falls into three
categories: (i) accessibility assessment and evaluation, (ii)
systems for improving web accessibility, and (iii) program-
ming by demonstration and interactive help.

2.1 Accessibility Assessment

Accessibility validators help developers evaluate and im-
prove their web pages, including Bobby [32], FAE [11], and
WAVE [28]. Developers access their web sites with these
tools, and receive a list of accessibility errors and warnings.
Although a valuable first step, evaluators have two primary
shortcomings. First, validators cannot detect accessibility
issues that cannot be detected automatically. For instance,
evaluation tools can detect if an image lacks alternative text,
but cannot judge if that alternative text is appropriate and
informative [9]. Subtle usability problems, such as problems
with reading order or lack of heading tags or other markup,
are even more difficult to detect automatically. These usabil-
ity problems seem likely to get worse as web pages become
more complex and begin to behave more like applications
than static documents [20].

As a fallback, evaluation tools present warnings about
content, and often present so many warnings that developers
can be overwhelmed or be discouraged from fixing anything.
While those who are motivated will investigate all warnings,
typical developers may be unwilling to investigate each po-
tential issue. As an example, WAVE displays a warning any-
time a tabindex attribute is used within a web page. This
attribute can be used correctly to enforce a meaningful tab
order through a web page, but when used incorrectly may re-
sult in a confusing ordering. Because WAVE and other tools
cannot automatically judge its correct usage, they present
warnings for all uses of of tabindex regardless of whether
there is actually a problem. Figure 2 shows the complexity
that can result from all of these warnings. WebAnywhere-
ABD enables users of a web site to demonstrate and share
the most troubling accessibility issues for them, helping to
focus the efforts of web developers and providing an oppor-
tunity to improve the understanding that developers have of
why the issue is a problem.

Another approach to evaluation is to provide views of con-
tent that simulate what a disabled user might experience.
For instance, ADesigner can visually simulate the usability
of a web site as either a blind, low-vision, or color-blind per-
son might experience it, display content in reading order and
give an indication of the time required to reach particular
elements on the page [23]. Although such tools help devel-
opers understand how certain groups might experience the
web, they miss the personal nature of accessibility and re-
quire developers to understand the problems highlighted by
these tools. WebAnywhere-ABD demonstrates a particular
problem experienced by a blind web user, allowing develop-
ers to isolate the problem, iteratively improve it, and replay
the recording until it is fixed.

Screening is the use of access technology to help iden-
tify accessibility issues. Henry describes the advantages and
limitations of using screening techniques to evaluate acces-
sibility [13]. The advantage is that it may help someone
appreciate the experience of someone with different capa-
bilities, but a disadvantage, especially when using a com-

plicated software program like a screen reader, is that an
inexperienced user may incorrectly associate their own in-
ability to accomplish a task using the assistive technology
software with the inaccessibility of their site. Although valu-
able, screening also suffers from the fact that screen readers
are expensive and complex software programs that develop-
ers might be unlikely to install. In contrast to existing meth-
ods for screening, WebAnywhere-ABD provides the experi-
ence of using a screen reader without requiring developers to
install new software and guides developers through a specific
problem encountered during a blind web user’s experience,
instead of requiring developers to figure out how to use a
screen reader alone.

Mankoff et al. compared the results of multiple sighted
developers using screening techniques with evaluation by re-
mote blind users [17]. Developers using screen readers found
many more problems than did the blind evaluators, although
the problems found by blind users were quite accurate. Com-
monly, when blind users perform an evaluation they focus on
the most problematic accessibility problems and sometimes
are not able to fully evaluate a web site because the accessi-
bility problems discovered prevent full access to the site [18].
Takagi et al. describes the problems of users not knowing
what is not accessible to them as a challenge for IBM’s So-
cial Accessibility project [25]. ABD seeks to provide the best
of both evaluation techniques — disabled users can indicate
problems that are problematic for them and send a clear
demonstration to developers.

2.2 Involving Users

Target users should be involved in accessibility evalua-
tion whenever possible. Although Mankoff et al. found that
developers discovered the most accessibility problems (had
high recall), the blind participants in their study found more
subtle problems and were very precise [17]. Communication
between developers and users has primarily been restricted
to the descriptions that can be sent over email.

Several projects have explored how blind web users might
independently improve the accessibility of the content that
they access. For instance, by writing Accessmonkey scripts
using provided end user tools, blind web users could im-
prove the accessibility of web sites [4]. These scripts could
be shared with developers and the changes made by the
scripts saved to HTML with the goal of having the devel-
oper incorporate the changes into the original page.

AxsJAX [12] is a scripting framework that makes web
pages into accessible web applications. Key functionality of
each web page is exposed using shortcut keys and the seman-
tics of the page are leveraged to make pages easier to use.
Although programming is required to create an AxsJAX
script, any programmer can write a script that other people
can use. AxsJAX requires the user to already have a screen
reader installed. ABD seeks to involve non-programmers in
the process of improving web pages and provides a clear and
easy path to demonstrating problems to developers.

The Social Accessibility project seeks to match blind web
users experiencing accessibility problems with volunteers who
can help them improve these problems [24]. In some sense,
the blind users of Social Accessibility are demonstrating ac-
cessibility problems and sharing those problems with the vol-
unteers. Currently, however, demonstrations are restricted
to selections — users can select an image that lacks alter-
native text. They can also describe more complex problems

using free text — for example, “This page lacks heading
tags.” or “None of the form elements have labels.” Using
the WebAnywhere-ABD, users can record themselves per-
forming richer tasks and send them to others who can view
them without installing new software.

Users can also directly improve access and usability for
themselves by demonstration, which we discuss next.

2.3 Web Automation

Programming by Demonstration (PBD) and web automa-
tion systems capture procedural knowledge and express it to
users. COACH [22] and Eager [10] are early systems that
work with standard desktop applications instead of the web.
COACH observes computer users in order to provide tar-
geted help, and Eager learned and executed repetitive tasks
by observing users. Selenium [21] records and plays back
scripts through the web and are used to automate testing
for web sites. WebAnywhere-ABD adds the ability to eas-
ily share not only recordings but also the fully interactive
interface used by the person who recorded the script.

Expressing procedural knowledge in order to assist a user
who is currently working to complete a task is an important
issue for interactive help systems. Stencil-based tutorials
demonstrates a variety of useful mechanisms, such as blur-
ring all items except for those which are relevant to the cur-
rent task and adding useful contextual information within
the application with sticky notes [16]. To help convey what
a running demonstration is doing, ABD not only shows the
result of the user actions that were recorded but also a visual
display of the keyboard shortcut used and a description of
the semantic action to which it corresponds (Figure 4).

TrailBlazer lets blind web users record and replay web
tasks [5]. WebAnywhere-ABD makes trail recording and
playback similar to those exposed by TrailBlazer easily avail-
able without installing new software, and supports a new use
for it — as a communication path to developers. Although
TrailBlazer scripts are shareable, a recipient of a TrailBlazer
script needs to install TrailBlazer (and a screen reader) for
playback. Although tools like TrailBlazer and Selenium are
conceptually similar to ABD, the focus on sharing (including
the sharing of the assistive technology) differentiates ABD
as a tool to help users communicate the problems they en-
counter on the web.

3. ACCESSIBILITY BY DEMONSTRATION

The ABD system presented here is implemented as a com-
ponent of the open source WebAnywhere web application
[29]. It adds the ability to record and play back sequences
of actions, enabling users to demonstrate the problems that
they experience and then share those descriptions with oth-
ers. WebAnywhere is attractive for use with ABD for the
following two reasons: (i) it is an open platform that pro-
vides an API for accessing the actions that users perform
using it, and (ii) as a web application that requires no soft-
ware to run, it makes sharing demonstrations recorded using
it straightforward.

The idea of recording and sharing user actions as param-
eterized URLs was inspired by the USA Track and Field’s
“Map it.” On this web site, people can draw a running route
on a map, save it to a centralized repository, and then share
it with others as a parameterized URL [27]. Capturing all
necessary information to replay a trace as a URL makes
these recordings flexible and easy to share, and enables any-

L e T T r——— em
FToi P e
@i C X & (6 oy

Figure 2: The WAVE accessibility evaluation tool’s
analysis of a web page showing numerous warnings,
many of which are not actually problems.

one with access to a web browser able to play back ABD
recordings. Just as one’s entire running route can be sent
in an email or instant message, included on social network-
ing sites like Twitter or Facebook, or even printed as part
of paper correspondence; so can the trail formed by one’s
browsing interactions.

3.1 WebAnywhere-ABD System

WebAnywhere-ABD is implemented as an extension to
the open source web-based screen reader WebAnywhere [6].
WebAnywhere is written using JavaScript, which makes it
compatible with any web browser on any platform®. We-
bAnywhere exposes an API that makes observing user in-
teractions and playing them back relatively straightforward.
The ABD extension captures each keypress that users make
during recording and later simulates that keypress for the
developer using the appropriate WebAnywhere API call.

3.1.1 Retroactive Recording

We designed WebAnywhere so that users do not need to
start out intending to demonstrate an accessibility problem,
but instead can capture the interactions that led to an acces-
sibility problem retroactively. Retroactive recording builds
on the idea of smart bookmarks [14], which were designed to
let users bookmark dynamic web pages that may not have
a static URL associated with them.

Retroactive recording enables ABD users to record an ac-
cessibility problem when they experience it by pressing a
single shortcut key. Users simply browse the web as they
usually would and press the “retroactive record” shortcut
key when they encounter an accessibility problem. This may
help novice users who may be unable to reproduce the steps
necessary to get into a problematic state from the start, or
experienced users who want to quickly record a problem and
not bother with starting with a fresh demonstration. The
goal is to make creating and sharing recordings of accessi-
bility problems easy and efficient — retroactive recording
requires users to press only one keyboard shortcut to record
an entire problematic interaction.

To implement retroactive recording, WebAnywhere-ABD

ITry WebAnywhere at webanywhere.cs.washington.edu

[# Command |
1. goto http://www.nytimes.com/
2. ctrlt next table
3. tab next focusable element
4. tab next focusable element
5. tab next focusable element
6. tab next focusable element
7. tab next focusable element

Figure 3: An example ABD recording. This record-
ing first visits the New York Times homepage, then
skips to the first table, and finally tabs through the
focusable elements five times. A short description
accompanies each action to aid developers who may
not be experienced with assistive technology or the
specific shortcut keys used in WebAnywhere.

always keeps a list of the actions taken after new page loads.
When a user chooses to make a retroactive recording, the
ABD extension traverses backward as far as necessary to
reach a known state on the page and saves all steps after
that point as part of the recording. A known state is one
that can be reached from a new browsing session (see [14]
for details). ABD records both the keyboard shortcuts used
and a direct address to elements (as an XPATH). Recording
shortcut keys is critical for recording common accessibility
problems. For example, the easiest way to demonstrate a
lack of headings on a web page is to try to use CTRL+H
to navigate between heading tags, which will immediately
show that no headings exist — potentially a big problem!

Once a recording is made, WebAnywhere-ABD sends it
to our server with an XmlHttpRequest and it is referenced
using a parameterized URL. The URL first loads WebAny-
where and then plays back the recorded script. The effect
is that developers can use screening techniques without in-
stalling new software or understanding how to use the com-
plex screen reader interface, as will be explained next.

3.2 User Experience for Developers

Developers first use WebAnywhere-ABD by clicking a link
shared by a user. This immediately opens the user’s trace
(see Figure 3) recorded while using the developer’s web site
and replays it in WebAnywhere. The content that is be-
ing read aurally — what a screen reader user hears — is
accompanied by visual highlighting to aid the developer in
following along. WebAnywhere-ABD also provides a view of
the current and previous keyboard commands made by the
user (see Figure 4). By displaying the keyboard shortcuts,
the developer can not only follow the user’s actions more
easily but can also help the developer learn what is neces-
sary to navigate through the page on their own without the
recording — so that potential problems might be examined
later.

As a specific example, consider this URL:

http://webinsight.cs.washington.edu/exp/abd/wa/
index.php?script=AXKJLS

Following this URL opens WebAnywhere and, based on the
URL’s parameter (script=A7XAK9), visits a sub-page at
the University of Rochester and plays a recording of how
headings are often navigated by screen reader users. The
recording navigates through the page using the CTRL+H

TAB

TAB

TAB
CTRLH
CTRL H

next focusable element

Figure 4: A graphical illustration of WebAnywhere-
ABD’s actions is provided by the ABD component
to help inexperienced users understand what is hap-
pening, addressing one of the primary problems with
screening: access technology can be too confusing
for a novice to use as part of evaluation.

shortcut, which skips from heading to heading announcing
each as they are visited. If no headings were available on this
page, the recorded keyboard shortcuts would instead cause
WebAnywhere to announce “no heading.” The developer
could then make iterative improvements to the web page
and test them by reloading the URL until the problems are
fixed. Because the ABD approach loads each page with a
real browser in real assistive technology, it always loads the
current version of a web page and reflects its current acces-
sibility. Experienced developers can also go “off script” and
navigate the page directly in WebAnywhere without being
guided by the user’s recorded actions.

4. EVALUATION

Our evaluation considered whether the addition of task
descriptions and the ability to play them back would help
web designers improve on the accessibility of their websites.
We did not conduct a formal study with blind web users,
but instead focused on the effect that WebAnywhere-ABD
may have on developers because this is a prerequisite for the
success of the ABD approach.

For this study, we focused on 4 common types of accessi-
bility problems motivated by [7]:

e Alternative Text — Alternative text provides an ac-
cessible alternative for images on web pages. Designers
include “alt” attributes as a part of the HTML image
tags so that screen readers can read the text in place
of the picture. While alternative text is very useful
for these reasons, they are frequently forgotten, thus
concealing content from blind users.

e Heading Usage — Heading tags (hl, h2, etc.) are
generally used to provide visitors with a sense of struc-
ture and hierarchy. Specifically they signify the begin-
ning of a new section and allow users to quickly find
new sections. While for sighted users, these tags pro-
vide visual cues as the fonts size and weight vary, blind
users can use them to quickly navigate through a page.
However, particularly when websites are created using
WYSIWYG editors, it may not be clear to the designer
if these tags are being used. In some cases a designer
will use tags to change the visual style with-
out using a heading tag.

e Reading Order — Screen readers most commonly
navigate through a page linearly according to the DOM

@::c:?‘ e = @ﬁef Roscoe

B 0w | oo | orcams | 1evmmorn | coramt

http:/fwabinsight.cs.washington edulexplabd/tasks/r 233G 1DIR him| |Gn|

State Fruits

Oemrs vrasm

= |

Early Yea

AL

et frcusable ebemest

Who is Chef Roscoe?

Personal Awards

Welcome!

Gook.Eat Aepeat G)Tﬁe Bicycle Shop

Cantuct U

Winks

Sarvicas

Figure 5: Pages exhibiting accessibility problems: (a) using tables for layout, which causes incorrect reading
order, (b) improper use of heading tags, and (c) a combination of four accessibility problems.

order of the page. With the addition of advanced CSS
techniques, how a page is rendered in a web browser
may not reflect its DOM order. For instance, some
WYSIWYG editors use absolute positioning to pro-
vide more flexibility. As a result, if a designer does
not pay attention to the order they are inserting con-
tent, the rendered view can be vastly different than
the reading order in the HTML source.

e Tab Order — Users often navigate pages by using
the tab key. The “tabindex” attribute can be used
to specify the order in which focusable elements are
visited. This allows designers to create logical order
on a website. Problems arise when using some visual
tools for creating web pages, where tab order is often
determined by the order in which elements are added
as opposed to their textual placement or grouping.

4.1 Tasks

Keeping the 4 common accessibility issues in mind, we
designed a set of 4 tasks, 3 of which cover specific issues and
1 that covers all 4 issues. These 4 tasks are described below.

e Tables Task — The page for this task contains a table
with U.S. state names and corresponding official fruits
(Figure 5-a). Each picture has adequate alternative
text, but because the of the ordering created by the
tables, the states are read first and then the fruits.
This problem can be fixed in a number of ways, all
of which involve either moving the text or the picture
next to each other in the source code.

e Headings Task — This task contained a page with
a clear outline of headings (Figure 5-b). Each head-
ing looked correct visually, but because of the associ-
ated CSS style sheets, certain headings were actually
styled using tags instead of appropriate head-
ing tags. To fix this, participants needed to locate all
of the tags and change them to an appropriate
heading tag.

e Tab Order Task — The page for this task included
elements that were positioned using absolute position-
ing that resulted in their visual order not reflecting
the order in the HTML source. To correct this, par-
ticipants needed to rearrange the sections of the page
to match a natural reading order. Some elements were

also assigned tabindex values that overrode the de-
fault tab order in a way that differed from the visual
semantics. If the ordering of the source is corrected,
this can be solved by removing the tabindex values
completely. Otherwise, the tabindex values needed to
be change to reflect the visual flow of the page.

e Combination Task — Accessibility issues rarely ex-
ist on their own. The combination task combines all
4 of the accessibility problems outlined earlier (Figure
5-c). All sections of this page were positioned using ab-
solute positioning and randomly arranged in the source
code. Many elements on the page had tabindex val-
ues, also randomly distributed. Images were randomly
assigned appropriate or missing alternative text, and
headings were randomly assigned a mix of correctly
used heading tags and visually-identical tags.

For each of the 4 tasks, there were 3 conditions: WebAnywhere-

ABD, WAVE, and WCAG. In the WebAnywhere-ABD con-
dition participants viewed an interactive recording of some-
one trying to access the web page with WebAnywhere. The
recording was created manually based on common strategies
of screen reader users [7]. In the WAVE extension, partici-
pants used the WAVE accessibility evaluation tool [28], and
in the WCAG condition participants were given access to
the WCAG guidelines [30]. For all conditions, participants
were given a sentence describing the problem from a prospec-
tive of a non-technical user. For example, “I have difficulty
navigating the page quickly” was provided for the Headings
Task.

4.2 Procedure

We recruited a total of 15 participants who completed 45
total tasks and who were paid $2.50 per task. The partici-
pants consisted of 11 men and 4 women between the ages of
20 to 38 (Mean=28.6; SD=5.68). When asked to rate their
own web design skills (1=not skilled and 7=very skilled) the
all self-rated very highly (Mean=>5.07; SD=0.73). Their self-
ratings of accessibility experience (1=not experienced and
T7=very experienced) were much lower (Mean=3.93; SD=1.98).
The participants were therefore self-rated skilled web design-
ers but were not that experienced with accessibility issues.

Participants were shown a page that described the prob-
lem on the page, presented with one of the 3 conditions out-
lined in the previous section, and asked to evaluate the page
using the tool provided. Participants were asked to make

WA-ABD WAVE WCAG

<IDOCTYPE htm| PUBLIC "~ //W3C//DTD XHTML 1.0 Strict/ JEN" “http:/ fwww.w3.org/TR/xhtm|1/DTD/xhtml1-strict.dtd">
<html xmlns="http:/ /www.w3.0rg/1399/xhtml" xmllang="en" lang="en">

<head:>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<link rel="stylesheet” type="text/css" href="styles/layout.css" media="screen"/>
<link rel="stylesheet” type="text/css" href="styles/colors.css" media="screen"/>
<title>Chef Roscoe | Home</title>

</head>

<body>
<div class="wrapper">
<div class="container">
<div class="header">
Chef Roscoe
<div class="slogan">
Cook. Eat. Repeat!
</div>
<div class="clear"> </div>
</div>

Figure 6: The web-based editor used by participants
in the study.

appropriate improvements to the page using a web-based
text editor that contained the web page source code (Figure
6). The participant could save the source of the page and
view the rendered page in another window. Finally, partic-
ipants were asked for a written description of the problems
that they observed.

4.3 Evaluation Results

We began our analysis by tallying the number of problems
fixed by each participant for each task, although we found
that if a participant as able to correct one problem they were
very likely to find them all. For example, if a participant
noticed that the headings were not correctly applied, then
they mostly found all such problems and corrected them. As
a result, we normalized these results and tallied the problem
types for each condition. This is presented in Figure 7.

Overall, developers correctly recognized and fixed 41.9%
of problems using WebAnywhere-ABD as compared to only
25.0% using WCAG alone, which was a significant difference
(t(24)=2.32 at p<.05). Participants in the WAVE condition
fixed 44.1% of problems, a difference from WebAnywhere-
ABD that was not statistically significant.

We did find, however, that WebAnywhere-ABD offered
a significant difference over WAVE on the reading order
task. While participants in the WebAnywhere-ABD con-
dition fixed 50.0% of problems in the reading order task,
WAVE users fixed only 36.4% of problems (t(6)=2.32 at
p<.05). The results differences between WebAnywhere-ABD
and WAVE were not detectably significant on the other
tasks.

Upon analyzing the comments for each task, we found
that for many cases the participants who did not have any
evaluation tools at their disposal depended on guessing. One
participant even described that her solution was a “total
guess”.

S. DISCUSSION & FUTURE WORK

Our study demonstrated the potential of using the ABD
approach as part of a comprehensive accessibility evaluation.
In particular, our results suggest that the ABD approach

File Edit View History Bookmarks Tools Help .
e X na | [~ cogr 5] i@ - Reading Order 0.50 0.36 0.14
Evaluate As Follows Headings 0.33 0.42 0.00
Evaluate the page using WAVE by visiting this link - you can reload this page after changing the source
below to not use any other tools to evaluate this page. Alt Text 050 075 075
How many ALERTS does the WAVE fool report at the end?
Tab Order . . .

Edit the Web Page 0.33 0.50 0.33

Save) (Revert to original) View Page TOtaI 042 044 025

Figure 7: Fraction of problems fixed by participants
per task and condition.

can help developers find what might best be classified as
usability problems that present themselves when users em-
ploy certain assistive technology. In contrast to earlier tools,
WebAnywhere-ABD requires little overhead for the devel-
oper, yet still allows disabled users to be involved in the
accessibility evaluation process.

We plan to explore the limits of accessibility evaluation us-
ing this approach by publicly releasing the tool and studying
how people use it “in the wild.” Questions for future work
include (i) How well can disabled users demonstrate different
types of accessibility problems? (ii) How well can develop-
ers understand and fix the problems contained within the
playbacks of different problem? and (iii) How can the play-
backs be best augmented with interactive help to best lead
to accessibility improvements?

We might also explore exposing common browsing pat-
terns so that web developers can leverage WebAnywhere
without requiring a disabled user to demonstrate problems.
For instance, a standard pattern could be browsing through
a page by headings, another by links, and another by tab-
bing through content. Eventually, we could extend We-
bAnywhere to showcase how other populations experience
the web, such as making web content look as it would to
people with low vision or color blindness. Such modifica-
tions have been created before as separate tools [23], but
have required developers to both know about and install
new software. WebAnywhere-ABD could help developers
easily understand the experiences of diverse users.

WebAnywhere-ABD is currently limited in the types of
accessibility problems that can be demonstrated to it. Some
of the limitations of WebAnywhere-ABD are inherited from
the underlying WebAnywhere platform. For example, We-
bAnywhere does not currently implement ARIA [2], so prob-
lems related to dynamic content are currently impossible to
demonstrate. This limitation will improve as WebAnywhere
catches up with or improves upon the other access technol-
ogy that is available.

WebAnywhere currently does not allow its users to browse
local files or files located behind a firewall. This means that
developers who want to try the changes to their content
would need to put it on a publicly-facing site. Sites that
require users to login may also pose problems, although it
seems reasonable to expect the site owner to have a login to
their own site. In this case, content specific to a user’s ac-
count might not be able to be evaluated using WebAnywhere-
ABD. These problems are not fundamental limitations of
WebAnywhere-ABD, but rather limitations of our current
implementation.

6.

CONCLUSION

We have presented and motivated a new approach to ac-
cessibility evaluation called Accessibility by Demonstration
(ABD) that enables users to demonstrate accessibility prob-
lems and send recordings to developers who can play them
back without installing new software. In an evaluation with
developers who were not experienced with accessibility eval-
uation, participants created more accessible content when
the problem was demonstrated to them using WebAnywhere-
ABD. Based on these results, ABD could be an important
complement to existing evaluation techniques. WebAnywhere-
ABD is a relatively low-cost approach to involving users, one
that may be likely to be used because it does not require new
software to be installed. ABD also demonstrates the need for
multi-faceted evaluation; combining multiple diverse evalu-
ation techniques will likely yield the best results.

7.
(1]

[5]

[10]

[11]
[12]

[13]

REFERENCES

P. Abrahams. Testing websites with the WebAnywhere
Screen-Reader http://www.bloorresearch.com/blog/,
2009.

ARIA. http://www.w3.org/TR/wai-aria-roadmap/.

J. P. Bigham. Intelligent Interfaces Enabling Blind
Web Users to Build Accessibility Into the Web. PhD
thesis, University of Washington, 2009.

J. P. Bigham and R. Ladner. Accessmonkey: A
collaborative scripting framework for web users and
developers. In Proc. of the Intl. Cross-Disciplinary
Conf. on Web Accessibility (W4A 07), pp. 25-34,
2007.

J. P. Bigham, T. Lau, and J. Nichols. Trailblazer:
Enabling blind users to blaze trails through the web.
In Proc. of the 12th Intl. Conf. on Intelligent User
Interfaces (IUI 2009), pp. 177-186, 2009.

J. P. Bigham, C. M. Prince, and R. E. Ladner.
Webanywhere: A screen reader on-the-go. In Proc. of
the Intl. Cross-Disciplinary Conf. on Web
Accessibility (W4A 2008), pp. 73-82, 2008.

Y. Borodin, J. P. Bigham, Glenn Dausch, and I. V.
Ramakrishnan. More than Meets the Eye: A Survey of
Screen-Reader Browsing Strategies. In Proc. of the
Intl. Cross-Disciplinary Conf. on Web Accessibility
(W4A 2010), 2010.

J. T. Brudvik, J. P Bigham, A. C. Cavender, and

R. E. Ladner. Hunting for headings: sighted labeling
vs. automatic classification of headings. In Proc. of the
Intl. Conf. on Comp. and Accessibility (ASSETS
2008), pp. 201-208, 2008.

T. C. Craven. Some features of alt text associated with
images in web pp.. Information Research, 11, 2006.

A. Cypher. Eager: programming repetitive tasks by
example. In Proc. of the SIGCHI Conf. on Human
factors in Comp. Sys. (CHI ’91), pp. 33-39, 1991.
Firefox accessibility extension, 2006. Illinois Center for
Information Technology.

Google-AxsJAX. Accessed April 15, 2009.
http://code.google.com/p/google-axsjax/.

S. Henry. Just Ask: Integrating Accessibility
Throughout Design. Lulu.com, London, United
Kingdom, 21 February 2007.

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]
(22]

(23]

(24]

(25]

[26]

27]
28]
(29]

(30]

(31]

(32]

D. Hupp and R. C. Miller. Smart bookmarks:
automatic retroactive macro recording on the web. In
Proc. of the 20th annual ACM Symposium on User
Interface Software and Technology (UIST ’07), pp.
81-90, 2007.

Jaws 8.0 for windows. Freedom Scientific, 4 May 2009.
http://www.freedomscientific.com.

C. Kelleher and R. Pausch. Stencils-based tutorials:
design and evaluation. In Proc. of the SIGCHI Conf.
on Human factors in Comp. Sys. (CHI ’05), pp.
541-550, 2005.

J. Mankoff, H. Fait, and T. Tran. Is your web page
accessible?: a comparative study of methods for
assessing web page accessibility for the blind. In Proc.
of the SIGCHI Conf. on Human factors in Comp.
Sys. (CHI ’05), pp. 41-50, 2005.

H. Petrie, F. Hamilton, N. King, and P. Pavan.
Remote usability evaluations with disabled people. In
Proc. of the SIGCHI Conf. on Human Factors in
Comp. Sys. (CHI ’06), pp. 1133-1141, 2006.

H. Petrie and O. Kheir. The relationship between
accessibility and usability of websites. In Proc. of the
SIGCHI Conf. on Human factors in Comp. Sys. (CHI
’07), pp. 397-406, 2007.

Roadmap for accessible rich internet applications
(wai-aria roadmap). World Wide Web Consortium,
2007. http://www.w3.org/TR/WCAG20/.

Selenium, 2009. http://seleniumhq.org/.

T. Selker. Cognitive adaptive computer help (coach).
In Proc. of the Intl. Conf. on Artificial Intelligence,
pp- 25-34, 10S, Amsterdam, 1989.

H. Takagi, C. Asakawa, K. Fukuda, and J. Maeda.
Accessibility designer: visualizing usability for the
blind. SIGACCESS Accessibility and Comp.,
(77-78):177-184, 2004.

H. Takagi, S. Kawanaka, M. Kobayashi, T. Itoh, and
C. Asakawa. Social accessibility: achieving accessibility
through collaborative metadata authoring. In Proc. of
the 10th Intl. ACM SIGACCESS Conf. on Comp. and
accessibility (ASSETS 2008), pp. 193—200, 2008.

H. Takagi, S. Kawanaka, M. Kobayashi, D. Sato, and
C. Asakawa. Collaborative web accessibility
improvement: Challenges and possibilities. In Proc. of
the 11th Intl. ACM SIGACCESS Conf. on Comp. and
accessibility (ASSETS 2009), 2009.

S. Trewin, B. Cragun, C. Swart, J. Brezi and

J. Richards. Accessibility Challenges and Tool
Features: An IBM Web Developer Perspective. In
Proc. of the Intl. WebjAll Conf. (W4A 2010), 2010.
Usatf - america’s running routes - map it. Accessed
May 1, 2009. http://www.usatf.org/routes/map/.
Wave web accessibility evaluation tool, 2009.
http://wave.webaim.org/.

Webanywhere open source project, 2009.
http://webanywhere.googlecode.com/.

Web Content Accessibility Guidelines. World Wide
Web Consortium. http://www.w3.org/TR/WCAG20/,
2009.

Window-eyes. GW Micro, 3 April 2009.
http://www.gwmicro.com/Window-Eyes/.

Watchfire bobby.
http://www.watchfire.com/products/webxm /bobby.aspx.

