Lecture 4: Sampling and Convolution
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Logistics

 Written assignment 1 is up and is due Sept. 16 11:30 AM.

* You can work in groups of 2.

 Course schedule: https://www.cs.rochester.edu/courses/572/1all2022/
schedule.html. You will find reading assignments and slides.

e Start thinking and talking to me about your final project idea.


https://www.cs.rochester.edu/courses/572/fall2022/schedule.html
https://www.cs.rochester.edu/courses/572/fall2022/schedule.html

The Roadmap

Theoretical Preliminaries

Sampling & Reconstruction



Signal Sampling and Reconstruction

* Given just a few sparse samples, can we always reconstruct the underlying
continuous signal?
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e Given just a few sparse samples, can we always reconstruct the underlying
continuous signal?
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Signal Sampling and Reconstruction

* Given just a few sparse samples, can we always reconstruct the underlying
continuous signal?

* |f not caretully sampled, reconstructed signals will be aliased: high
frequencies signals masquerading as low-frequency signals.

aT\VAYATAVATATATDS
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Fourier Theory of
Sampling and
Reconstruction




Impulse Train Function

Impuse/Delta/Dirac Delta Function
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https://en.wikipedia.org/wiki/Dirac_comb



Impulse Train Function

Impuse/Delta/Dirac Delta Function

sp=4% 170 [ 5(t) = 1

— OO0

L P FreTe =T R [ ]
L0 - A -
0.8 |- .
0.6 [ -
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02 =

0.0
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https://en.wikipedia.org/wiki/Dirac_comb

Impulse Train/Dirac Comb/Shah Function
(with a period of T and frequency of 1/T)

1I(1) = i 5(t — iT)

[——0O0

4T 3T 2T -T O T 2T 3T 4T




Mathematically Express Sampling

Impulse Train

S(t) X L1 (t) - s, (t)
A A
> > T [ >
G oT-T | T ot IR AA T t
_ S.(t) is defined over a continuous domain; its
Sa(t) o IIIT(t)S(t) value is O except at integer multiples of T.



Fourier Transform a Sampled Signal

Flw) = #(s(1))
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Flw) = #(s(1))




Fourier Transform a Sampled Signal

Flw) = #(s(1)) F (IIIT(I)S(t))

J\ AN /\ VAN




Fourier Transform a Sampled Signal

Flw) = G”(S(l‘)) G”(IIIT(t)S(t))

J\ VANVINVA

The Fourier Transform of the sampled signal is

g(IIIT(t)S(t)) — Z F(w — l?) an infinite sequence ot the Fourier Transform of

i——00 the original signal s with a period of 1/T.
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Extracting the Original Spectrum

F (UIT(t)S(t))

VANVINVA
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Extracting the Original Spectrum

Box Function f’]’([IIT(t)S(t))

ﬂ JN ]

ANIVANS
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1/2T
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Extracting the Original Spectrum

Box Function

A

1

L,

-1/2T 0 1/2T

B(a)):{l, ‘60‘<E

0, otherwise.

F (UIT(t)S(t))

JN ]

ANIVANS

-1/2T

1/2T
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Extracting the Original Spectrum

Box Function F(L1(t)s(2))
1
Fe==f ===
| | X : :
[] []
Q) )
-1/2T 0 1/2T -1/T -1/2T 0 1/2T 1/T

1, < —,
B(a))={ ol <3

0, otherwise.



Extracting the Original Spectrum

Box Function F(L1(t)s(2))
1
Fe==f ===
| | X : :
[] []
0 )
-1/2T 0 1/2T -1/T -1/2T 0 1/2T 1/T

B(w) = {1’ @1 <3 1 FU()s®)B(w) = F(w)

0, otherwise. jk
0,

0
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Box Function

-1/2T O 1/2T -1/T
S(t)
A .
Inverse Fourier
Transform

h.ao

-1/2T

Reconstructing the Original Signal

F (I 1(1)s(1))

>

'

NEVANS

1/2T 1/T

FU1(1)s(1))B(w) = F(w)

J

\ .

0
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Ildeal Signal Reconstruction Summary

S(t) X LI (t) = S,(B)
A A




Ildeal Signal Reconstruction Summary

-1/T -1/2T 0 1/2T 1/T
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Ildeal Signal Reconstruction Summary
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Ildeal Signal Reconstruction Summary

S(t) X
A

LU ()

-1/T -1/2T

0 1/2T 1/T
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Ildeal Signal Reconstruction Summary

et
The reconstruction equation ? ¢
(1) = F7[ F(S,(0)Bypr(w) ]

-1/T -1/2T 0 1/2T 1/T
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ws is the maximum frequency
of the spectrum.
F(w) = O for all lwl > os.
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ws is the maximum frequency

of the spectrum.

F(w) =

O for all lw| > ws.

= 1
F(s,(0) = ) Flo—i)

Case 1: w. < 1/2T

I

I=—00

\ AN /\ AN

-1/T

60 1/2T
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= 1
F(s ()= ), Flo=iz)

[——0O0

4 Case 1: ws < 1/2T 4

0 W, AT 0 W 1/2T 1T

ws is the maximum frequency
of the spectrum. Case 2: w. >= 1/2T
F(w) = O for all lwl > os.

| —
/T 0 W, 1T




= 1
F(s ()= ), Flo=iz)

I=—00

Case 1: w. < 1/2T

VAN /

-1/T

ws is the maximum frequency

of the spectrum.

F(w) =

O for all lw| > ws.

Case 2: w. >= 1/2T

@ 1/2T

-1/T 0
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= 1
F(s ()= ), Flo=iz)

Case 1: w. < 1/2T

I=—00

-1/T

ws is the maximum frequency

of the spectrum.

F(w) =

O for all lw| > ws.

Case 2: w. >= 1/2T

JI\

@ 1/2T

A

A/T

0 ®, 1T
1/2T
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— 1
F(s,(0) = ) Flo—i)

. I
j=—00
4 Case 1: ws < 1/2T
0 Wy -1/T a) 1/2T 1/T
The spectrum doesn’t look like many
ws is the maximum frequency copies of the original spectrum,
of the spectrum. Case 2: ws >= 1/2T which can never be extracted now!
F(w) = O for all lwl > os. !
] ] ' "W
AT 0 @, 1/T

1/2T 14



Another Aliasing Example

%

No Aliasing

Aliased

%

|

(b)

https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Sampling_Theory

(b)

(c)

15



Reconstruction with Aliasing

Original Signal Reconstructed Signal
2
2
! 1
1 2 * 1 2 3 4
(a) (b)

High-frequency information in the original signal is lost and shows up as low-frequency errors.

https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Sampling_Theory
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How To Guarantee Alias-Free Reconstruction?

A

AN VAN

1 |
W, 1/2T 1T

https://en.wikipedia.org/wiki/Nyquist_frequency
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How To Guarantee Alias-Free Reconstruction?

j\ /\ | /\a)
AT 0 W 1/2T 1T
L
W, < — ==
2T 2

https://en.wikipedia.org/wiki/Nyquist_frequency
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How To Guarantee Alias-Free Reconstruction?

A

L (t)
[ T T T T [ T [, | — | 0
2T-T | T 2t ¢ AT 0 W, 1/2T 1T
Sampling period: T 1 B fs
Sampling frequency fs: 1/T W, < E — 5

https://en.wikipedia.org/wiki/Nyquist_frequency 17



How To Guarantee Alias-Free Reconstruction?

A

LU (t)
[ T T T T [ T [, | — | 0
2T-T | T2t t A/T 0 W 1/2T 1/T
Sampling period: T | B fS
Sampling frequency fs: 1/T Dy < ﬁ — 5 fs > st

https://en.wikipedia.org/wiki/Nyquist_frequency 17



How To Guarantee Alias-Free Reconstruction?

L1 (t)
1 j\ /
HE |
> I ; I | W
2T-T | T2t t A/T 0 W 1/2T 1/T
Sampling period: T 1 fS
Sampling frequency fs: 1/T Dy < ﬁ — 5 fs > 2605

https://en.wikipedia.org/wiki/Nyquist_frequency 17



How To Guarantee Alias-Free Reconstruction?

LLI-(t)
1 j\ /
2T -T A W, 1/2T 1T
Sampling period: T 1 fS
Sampling frequency fs: 1/T Dy < ﬁ — 5 fs > 2605

https://en.wikipedia.org/wiki/Nyquist_frequency 17



How To Guarantee Alias-Free Reconstruction?

LU (t)

2T -T -1/T W 1/2T 1/T

Sampling period: T | B fS
Sampling frequency fs: 1/T Wy < ﬁ — 5 fs > 2605

Nyquist frequency  Nyquist rate

https://en.wikipedia.org/wiki/Nyquist_frequency 17



Band-Limited Signal

A band-limited
signal’s spectrum

Wy

A band-unlimited
(broadband) signal’s

erum

)

* Nyquist-Shannon sampling theorem is only
usetful it the original signal does have a
maximum frequency ws. Otherwise the
sampling rate would have to be infinite.

e Band-limited signal: a signal where there
exists a frequency ws such that F(w) = 0

for all lwl > w..

I

e Most real-world signals are “broad-band
signals; they are not band-limited.

18



2D Sampling

“Brush” Function

SV VY

H

—_- -

https://www.di.univr.it/documenti/Occorrenzalns/matdid/matdid346761.pdf

/v

2D sampling theorem: it a signal contains no
horizontal frequency higher than w, and no
vertical frequency higher than w,, it can be
completely reconstructed from sampling it at
a horizontally rate higher than 2w, and a
vertical rate higher than 2w,

The horizontal sampling distance H < 1/(2 w,)
The vertical sampling distance V < 1/(2 w,)

19



Everything is Signal
Sampling &
Reconstruction




Sampling and Reconstruction in Camera and Display

Light in the
ohysical scene (3D

continuous signal)

Light on the sensor plane (2D

continuous signal)
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Sampling and Reconstruction in Camera and Display

Light in the
physical

A . —

continu¢ 32x32

. <
pixel array

Row

decoder

oo S

______

---------------------

966 um

Pixels on the image sensor sample

the continuous 2D function

3.net/publication/243717128_0Optical_imaging_and_spectroscopy_of_superficial_tissue
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Sampling and Reconstruction in Camera and Display
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Sampling and Reconstruction in Camera and Display

Displays reconstruct continuous 2D
functions from 2D samples

iPhone 6 iPhone 11

https://www.pinterest.com/pin/86694361554535525/ 24



Sampling and Reconstruction in Camera and Display

Geometric

transformation

Signal Signal
sampling reconstruction

O

O

O
B ] o = @

3D continuous
signal

2D co
signa

NtINUOUS

(on the

sensor plane)

2D sampled signal Reconstructed 3

D

(i.e., image) continuous signal
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Everything is Signal Sampling and Reconstruction

Physical scene: continuous (at least) 3D function

Camera lens = Image sensor = Display
Camera lens = Image sensor = Print/Paint

Eye lens = Retina

26



Anti-Aliasing
Techniques




Insufficient Sampling and Reconstruction

https://svi.nl/AntiAliasing

https://distance.ufhealth.org/preparing-for-lecture-capture/

|

\.\ l':& \ ) /
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“Just-Enough” Sampling

e Anti-aliasing by sampling at a high rate. But most real-world signals are
not band-limited. No hope?

29



“Just-Enough” Sampling

e Anti-aliasing by sampling at a high rate. But most real-world signals are
not band-limited. No hope?

* |n many cases we just need to sample at a rate “just high enough”,
because humans can’t sense signals above certain frequency anyways.

e Acoustic; Vision

29



“Just-Enough” Sampling

Samplin
P Use
rate

8,000 Hz Telephone pnd encrypted walkie-talkie, wireless intercom and wireless microphone transmission; adequate for human speech but without sibilance (ess sounds like eff (/s/, /f/)).
11,025 Hz One quarter the sampling rate of audio CDs; used for lower-quality PCM, MPEG audio and for audio analysis of subwoofer bandpasses.[calion needed
16,000 Hz Wideband frequency extension over standard telephone narrowband 8,000 Hz. Used in most modern VoIP and VVolP communication products.4!
29 050 H One half the sampling rate of audio CDs; used for lower-quality PCM and MPEG audio and for audio analysis of low frequency energy. Suitable for digitizing early 20th century

; z , _

audio formats such as 78s and AM Radio.!'®]

35000 H miniDV digital video camcorder, video tapes with extra channels of audio (e.g. DVCAM with four channels of audio), DAT (LP mode), Germany's Digitales Satellitenradio, NICAM

: z

digital audio, used alongside analogue television sound in some countries. High-quality digital wireless microphones.!'®! Suitable for digitizing FM radio.lc/ation needed]
37,800 Hz CD-XA audio

44,056 Hz Used by digital audio locked to NTSC color video signals (3 samples per line, 245 lines per field, 59.94 fields per second = 29.97 frames per second).

Audio CD, also most commonly used with MPEG-1 audio (VCD, SVCD, MP3){§Originally chosen by Sony because it could be recorded on modified video equipment running at
either 25 frames per second (PAL) or 30 frame/s (using an NTSC monochromg video recorder) and cover the 20 kHz bandwidth thought necessary to match professional analog
recording equipment of the time. A PCM adaptor would fit digital audio sample§ into the analog video channel of, for example, PAL video tapes using 3 samples per line, 588 lines
per frame, 25 frames per second.

44,100 Hz

47,250 Hz world's first commercial PCM sound recorder by Nippon Columbia (Denon)

The standard audio sampling rate used by professional digital video equipment such as tape recorders, video servers, vision mixers and so on. This rate was chosen because it
could reconstruct frequencies up to 22 kHz and work with 29.97 frames per second NTSC video — as well as 25 frame/s, 30 frame/s and 24 frame/s systems. With 29.97 frame/s
systems it is necessary to handle 1601.6 audio samples per frame delivering an integer number of audio samples only every fifth video frame.[®! Also used for sound with
consumer video formats like DV, digital TV, DVD, and films. The professional Serial Digital Interface (SDI) and High-definition Serial Digital Interface (HD-SDI) used to connect
broadcast television equipment together uses this audio sampling frequency. Most professional audio gear uses 48 kHz sampling, including mixing consoles, and digital
recording devices.

48,000 Hz

https://en.wikipedia.org/wiki/Sampling_(signal_processing) 30



Anti-Aliasing By Pre-Filtering

* If we can only sample at a rate of fsample, pre-filter the signal to remove the
frequency higher than fsampie/2.

31



Anti-Aliasing By Pre-Filtering

* If we can only sample at a rate of fsample, pre-filter the signal to remove the
frequency higher than fsampie/2.

* Then sample; won't see aliasing, but the reconstructed signal is blurred.

31



Anti-Aliasing By Pre-Filtering

* If we can only sample at a rate of fsample, pre-filter the signal to remove the
frequency higher than fsampie/2.

* Then sample; won't see aliasing, but the reconstructed signal is blurred.

* Blur is more acceptable visually than aliasing.

31



Pre-Filtering In the Frequency Domain




1D Discrete Convolution

1D Discrete
co |31 ]2 1[8]4]1
Filter/Kernel n

Convolution 3x1 + 1x2 + 2x1

Filtered
Signal
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1D Discrete Convolution

1D Discrete
co |31 [2]1]3]a[1
Filter/Kernel nn

Convolution 1x1 + 2x2 + 1x1

Filtered
Signal

34



1D Discrete Convolution

1D Discrete
con |31 ]2]1]3]4]1
horkemel (1] 2] 1

Convolution 2x1 + 1x2 + 3x1

Filtered
G 181617 | | |

35



2D Discrete Signal

3[1]2(1]3[a]1
2(4]of1]10[2]0
of2]4f21]9(1]14
345]4(7]8[90]34
54/6]89]13[36] 4
6(8]14[2]4[8]52
32|14]54[3]6 (8]0

2D Discrete Convolution

2D Filter

Filtered Signal




2D Discrete Convolution

2D Discrete Signal

2D Filter

Filtered Signal

2l L]
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2D Discrete Convolution

2D Discrete Signal

2D Filter

Filtered Signal

204l L1 L]
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Box Filter

2D Discrete Signal Box Filter

3[1]2(1]3[a]1
2(4]of1]10[2]0
of2]4f21]9[1]14

[l
w547 so0la#
sal6 [0 [13[o6] s
o [alal2]4]s[52
sel1aloa] a6 s 0

el
welsle




Box Filter

2D Discrete Signal Box Filter

3|1]2[1[3[af1
2[4]0[1[10[2]0
nﬂﬂ A box filter makes

pixels more similar to

its neighbors, i.e., blur.

345]4(7]8[90/34
54/6]89]13[36] 4
6(8]14[2]4[8]52
32|14]54[3]6 (8]0




Box (Mean/Moving Average) Filter

2D Box
Filter

* Qutput size is smaller than

input size without padding.

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42face1 40



Box (Mean/Moving Average) Filter

2D Box
Filter

* Qutput size is smaller than

input size without padding.

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42face1 40



Gaussian Filter

2D Gaussian distribution

16

26

16

26

41

26

16

26

16

A sample 2D Gaussian kernel

with mean [0, 0] and o=1

A Gaussian filter also averages neighboring pixels, but gives more
weight to closer neighbors. It's still a low-pass filter.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

41


https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

Convolution

1D Discrete
Convolution

1D Continuous
Convolution

2D Discrete
Convolution

2D Continuous
Convolution

k=00
flxl * glxl = ) fTklglx — k]
k=—00

J(x) * g(x) = [ f()g(x — 1)dr

(=00 J=00

fleyl % gleyl= ). ) flijlglx =i,y — ]

[=—00 J=—0

Jx) * g(x) = [ [

— OO0

o0

fe,n)gx — 7,y — n)drdn
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Convolution Theorem

F(f*x g =F(HF(g) fxg=F (FHF)

e Spatial domain convolution is equivalent to frequency domain
multiplication, and vice versa.

e Why useful? In many cases the spatial domain signal is not given
analytically, so we can’t have its spectrum analytically.

* The only thing we can do is to manipulate the spatial domain data through convolution.

43



Convolution Theorem

Spatial Domain

Fourier i
Transform

Frequency
Domain

T

Inv. Fourier
Transform

44



Box Filter in Spatial and Frequency Domains

Multiplying with this spectrum
attenuates high-frequency components.

Spatial Domain Frequency Domain

45



Box Filter in Spatial and Frequency Domains

Wider box attenuates high frequencies even
more (averaging over a larger window)

Spatial Domain Frequency Domain

46



Revisiting Ideal Signal Reconstruction

et
The reconstruction equation ? ¢
(1) = F7[ F(S,(0)Bypr(w) ]

-1/T -1/2T 0 1/2T 1/T
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Revisiting Ideal Signal Reconstruction

Reconstructed Sampled s 1 .
\f* g=F" (%f)%g))J

signal signal

s(t) = F7'[ F(S,(1))B(w) ]

Box 3 sinc
IFFT

https://web.cs.ucdavis.edu/~okreylos/PhDStudies/Winter2000/SamplingTheory.html 48



Revisiting Ideal Signal Reconstruction

Reconstructed Sampled s c—17 - Cr :
fxg=F (F(HF®Q)

signal signal

s(t) = F7'[ F(S,(1))B(w) ]

b, (8] BoX =P sinc (F (byu)i(z)
$ IFFT $

ol

- nfs Y\ R T

https://web.cs.ucdavis.edu/~okreylos/PhDStudies/Winter2000/SamplingTheory.html 48




Revisiting Ideal Signal Reconstruction

Reconstructed Sampled s c—17 - Cr :
fxg=F (F(HF®Q)

signal signal

s(t) = F7'[ F(S,(1))B(w) ]

s(t) = S, (1) * sinc(?)

b, (8] BoX =P sinc (F (byu)i(z)
$ IFFT $

ol

- nfs Y\ R T

https://web.cs.ucdavis.edu/~okreylos/PhDStudies/Winter2000/SamplingTheory.html 48




Anti-Aliased Signal Reconstruction

Anti-aliasing filter Reconstruction filter
(e.g., a box filter) (e.g., a sinc filter)

AN /
s(1) = 5,(1) % F (1) % F5(1)

e Convolving with multiple filters is equivalent to convolving with one
composite filter

* People come up many empirical filters as a composite filter

49



Beating Nyquist-Shannon Sampling Theorem

* Nyquist-Shannon sampling theorem applies to generic signals

https://onlinelibrary.wiley.com/doi/10.1002/jmri.25547
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Beating Nyquist-Shannon Sampling Theorem

* Nyquist-Shannon sampling theorem applies to generic signals

* |f signals have strong patterns (mostly sparse in the Fourier domain), we
can sample at a much lower rate than the Nyquist rate but still obtain a

good reconstruction

https://onlinelibrary.wiley.com/doi/10.1002/jmri.25547
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Beating Nyquist-Shannon Sampling Theorem

* Nyquist-Shannon sampling theorem applies to generic signals

* |f signals have strong patterns (mostly sparse in the Fourier domain), we
can sample at a much lower rate than the Nyquist rate but still obtain a

good reconstruction

* Through compressive sensing

https://onlinelibrary.wiley.com/doi/10.1002/jmri.25547 o0



Beating Nyquist-Shannon Sampling Theorem

* Nyquist-Shannon sampling theorem applies to generic signals

* |f signals have strong patterns (mostly sparse in the Fourier domain), we
can sample at a much lower rate than the Nyquist rate but still obtain a

g O O d re CO n St r u Ct i O n Fully-sampled k-space Acquired Image Waelet Representation Compressed Image
* Through compressive sensing -
“I5%top
% top

coefficients

Undersampled k-space Acquired Image Wavelet Representation Reconstructed Image

https://onlinelibrary.wiley.com/doi/10.1002/jmri.25547 o0



Beating Nyquist-Shannon Sampling Theorem

* Nyquist-Shannon sampling theorem applies to generic signals

* |f signals have strong patterns (mostly sparse in the Fourier domain), we
can sample at a much lower rate than the Nyquist rate but still obtain a
gOOd reconStrUCtion Fully-sampled k-space Acquired Image WaeletRepresentation Compressed Image

* Through compressive sensing

15% top
coefficients

* “Single-pixel” camera

Undersampled k-space Acquired Image Wavelet Representation Reconstructed Image

https://onlinelibrary.wiley.com/doi/10.1002/jmri.25547 o0



Beating Nyquist-Shannon Sampling Theorem

* Nyquist-Shannon sampling theorem applies to generic signals

* |f signals have strong patterns (mostly sparse in the Fourier domain), we
can sample at a much lower rate than the Nyquist rate but still obtain a
gOOd reconStrUCtion Fully-sampled k-space Acquired Image WaeletRepresentation Compressed Image

* Through compressive sensing

15% top
coefficients

* “Single-pixel” camera

* Must do random sampling

Undersampled k-space Acquired Image Wavelet Representation Reconstructed Image

https://onlinelibrary.wiley.com/doi/10.1002/jmri.25547 o0



Beating Nyquist-Shannon Sampling Theorem

e Nyquist-Shannon sampling theorem applies to reconstruction from
samples of a single signal without help from “others”
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Beating Nyquist-Shannon Sampling Theorem

e Nyquist-Shannon sampling theorem applies to reconstruction from
samples of a single signal without help from “others”

 We could also learn from prior data to reconstruct signals
* Through machine/deep learning

* |Image inpainting, super-resolution
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Beating Nyquist-Shannon Sampling Theorem

. = & 3 f f
(a) Face Editing (b) Object Removal

https://www.slashgear.com/google-pixel-4-camera-review-brilliant-and-frustrating-21596272/ https://pythonawesome.com/aot-gan-for-high-resolution-image-inpainting/
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Upsampling and
Downsampling




Naive Upsampling

Linear interpolation



Naive Upsampling

“Sample and hold”

Oo O o O o



Theoretically Optimal Upsampling
o

* First reconstruct the underlying continuous signal
e With potential anti-aliasing

 And then resample at a desired, higher rate

» .
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Theoretically Optimal Upsampling
o

\o/‘/ ~C 0. C

* That is, first convolve the sampled signal with a filter and then sample

e Mathematically that's equivalent to computing the convolution only at the
desired re-sampled points!
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nearest neighbor

Upsizing by 16:1

(a.k.a. pixel replication)

bilinear

bicubic

ht

Bilinear

Bicubic

Slide credit: Marc Levoy
tps://en.wikipedia.org/wiki/Bicubic_interpolation 58




Downsampling

* Simply dropping samples/pixels? Why is that bad?

* Dropping pixels is equivalent to sampling the original continuous signal
using a lower rate. It would make later reconstruction harder!

* Take a photo of a high-frequency scene, and then try to scale it down on
your computer. If your image viewer isnt smart, the scaled-down version

will be aliased. Why?
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Summary

* Think of functions as vectors
* Fourier Series: functions as infinite-dimensional vectors with finite span
* Fourier Transform: functions as infinite-dimensional vectors with infinite span

* Discrete Fourier Transform (Series): functions as finite-dimensional vectors with finite span

* Numerous applications in science and engineering
* Function approximation (mind the Gibbs phenomena)
* Denoising
e Compression

 Sampling and reconstruction



Summary

* Nyquite-Shannon Sampling Theorem

e Sample at 2fif fis the maximum frequency component.

e (Otherwise aliasing occurs.
e Anti-Aliasing

 Sample at a higher rate (or just high enough)

* Pre-filter high-frequency components

* Pre-filtering could be done either in the frequency domain or in the spatial domain
(convolution); they are equivalent by the Convolution Theorem.
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