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Logistics

• Written assignment 1 is up and is due Sept. 16 11:30 AM. 
• You can work in groups of 2. 
• Course schedule: https://www.cs.rochester.edu/courses/572/fall2022/

schedule.html. You will find reading assignments and slides. 
• Start thinking and talking to me about your final project idea.
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https://www.cs.rochester.edu/courses/572/fall2022/schedule.html
https://www.cs.rochester.edu/courses/572/fall2022/schedule.html


The Roadmap

�3

Theoretical Preliminaries

Human Visual Systems

Color in Nature, Arts, Tech 
(a.k.a., the birth, life, and death of light)

Digital Camera Imaging

Modeling and Rendering

Applications

Geometric Transformations
Fourier Series & Transforms

Sampling & Reconstruction



Signal Sampling and Reconstruction

• Given just a few sparse samples, can we always reconstruct the underlying 
continuous signal?
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Signal Sampling and Reconstruction

• Given just a few sparse samples, can we always reconstruct the underlying 
continuous signal?

• If not carefully sampled, reconstructed signals will be aliased: high 
frequencies signals masquerading as low-frequency signals.
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Aliasing

�5https://svi.nl/AntiAliasing https://distance.ufhealth.org/preparing-for-lecture-capture/ https://www.youtube.com/watch?v=Neh2biiex1A
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Fourier Theory of  
Sampling and 

Reconstruction



Impulse Train Function

�7

δ(t) = {0, t ≠ 0,
+∞, t = 0. ∫

∞

−∞
δ(t) = 1

Impuse/Delta/Dirac Delta Function

https://en.wikipedia.org/wiki/Dirac_comb



Impulse Train Function
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δ(t) = {0, t ≠ 0,
+∞, t = 0. ∫

∞

−∞
δ(t) = 1

Impuse/Delta/Dirac Delta Function Impulse Train/Dirac Comb/Shah Function 
(with a period of T and frequency of 1/T)

III(t) =
∞

∑
i=−∞

δ(t − iT)

https://en.wikipedia.org/wiki/Dirac_comb



Mathematically Express Sampling
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Impulse Train

T 2T-T-2T

sa(t) = IIIT(t)s(t) Sa(t) is defined over a continuous domain; its 
value is 0 except at integer multiples of T.



Fourier Transform a Sampled Signal
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F(ω) = ℱ(s(t))
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Fourier Transform a Sampled Signal
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F(ω) = ℱ(s(t))

ℱ(IIIT(t)s(t)) =
∞

∑
i=−∞

F(ω − i
1
T

)
The Fourier Transform of the sampled signal is 
an infinite sequence of the Fourier Transform of 

the original signal s with a period of 1/T.

ω0

ℱ(IIIT(t)s(t))

ω
1/T-1/T 0



Extracting the Original Spectrum
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ℱ(IIIT(t)s(t))ℱ(IIIT(t)s(t))

ω
1/T-1/T 0-1/2T 1/2T
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ℱ(IIIT(t)s(t))

ω
0

1

Box Function
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Extracting the Original Spectrum
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ℱ(IIIT(t)s(t))

ω
0

1

Box Function

1/2T-1/2T

B(ω) = {1, |ω | < 1
2T ,

0, otherwise .

X

ℱ(IIIT(t)s(t))

ω
1/T-1/T 0-1/2T 1/2T

ω
0

ℱ(IIIT(t)s(t))B(ω) = F(ω)



Reconstructing the Original Signal
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ω
0

1

Box Function

X
1/2T-1/2T

Inverse Fourier 
Transform

ℱ(IIIT(t)s(t))ℱ(IIIT(t)s(t))

ω
1/T-1/T 0-1/2T 1/2T

ω
0

ℱ(IIIT(t)s(t))B(ω) = F(ω)



Ideal Signal Reconstruction Summary
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Ideal Signal Reconstruction Summary

�13

s(t) = ℱ−1[ ℱ(Sa(t))B1/2T(ω) ]
The reconstruction equation

1/T-1/T 0
ω

-1/2T 1/2T



Aliasing
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ωs0

ωs is the maximum frequency 
of the spectrum. 
F(ω) = 0 for all |ω| > ωs.
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Aliasing
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ωs0

ωs is the maximum frequency 
of the spectrum. 
F(ω) = 0 for all |ω| > ωs.

The spectrum doesn’t look like many 
copies of the original spectrum, 

which can never be extracted now!

ℱ(sa(t)) =
∞

∑
i=−∞

F(ω − i
1
T

)

ω ω
1/T-1/T 0

Case 1: ωs < 1/2T

ωs 1/2T

Case 2: ωs >= 1/2T

ω
1/T-1/T 0 ωs

1/2T



Another Aliasing Example
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No Aliasing

Aliased

https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Sampling_Theory



Reconstruction with Aliasing

�16https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Sampling_Theory

Original Signal Reconstructed Signal

High-frequency information in the original signal is lost and shows up as low-frequency errors.



How To Guarantee Alias-Free Reconstruction?
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ωs <
1

2T
=

fs
2

https://en.wikipedia.org/wiki/Nyquist_frequency

ω
1/T-1/T 0 ωs 1/2T



How To Guarantee Alias-Free Reconstruction?
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ωs <
1

2T
=

fs
2

T 2T-T-2T

Sampling period: T 
Sampling frequency fs: 1/T

https://en.wikipedia.org/wiki/Nyquist_frequency

ω
1/T-1/T 0 ωs 1/2T



How To Guarantee Alias-Free Reconstruction?
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ωs <
1

2T
=

fs
2

T 2T-T-2T

Sampling period: T 
Sampling frequency fs: 1/T fs > 2ωs

https://en.wikipedia.org/wiki/Nyquist_frequency

ω
1/T-1/T 0 ωs 1/2T



How To Guarantee Alias-Free Reconstruction?
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Nyquist–Shannon sampling theorem: if a signal contains no frequency higher than ωs, it 
can be perfectly reconstructed from sampling it at a rate higher than 2ωs.

ωs <
1

2T
=

fs
2

T 2T-T-2T

Sampling period: T 
Sampling frequency fs: 1/T fs > 2ωs

https://en.wikipedia.org/wiki/Nyquist_frequency

ω
1/T-1/T 0 ωs 1/2T
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Nyquist–Shannon sampling theorem: if a signal contains no frequency higher than ωs, it 
can be perfectly reconstructed from sampling it at a rate higher than 2ωs.

ωs <
1
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fs
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How To Guarantee Alias-Free Reconstruction?
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Nyquist–Shannon sampling theorem: if a signal contains no frequency higher than ωs, it 
can be perfectly reconstructed from sampling it at a rate higher than 2ωs.

ωs <
1

2T
=

fs
2

T 2T-T-2T

Sampling period: T 
Sampling frequency fs: 1/T fs > 2ωs

Nyquist frequency Nyquist rate

https://en.wikipedia.org/wiki/Nyquist_frequency

ω
1/T-1/T 0 ωs 1/2T



Band-Limited Signal

• Nyquist-Shannon sampling theorem is only 
useful if the original signal does have a 
maximum frequency ωs. Otherwise the 
sampling rate would have to be infinite. 

• Band-limited signal: a signal where there 
exists a frequency ωs such that F(ω) = 0 
for all |ω| > ωs. 

• Most real-world signals are “broad-band” 
signals; they are not band-limited.

�18

A band-limited 
signal’s spectrum

A band-unlimited  
(broadband) signal’s 

spectrum

ωs0
ω

0 ω
…………



2D Sampling
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* =

Sampling Theorem in 2D

* =

frequency domain

1/Y F(u,v)
1/X

“Brush” Function
2D sampling theorem: if a signal contains no 
horizontal frequency higher than ωu and no 
vertical frequency higher than ωv, it can be 
completely reconstructed from sampling it at 
a horizontally rate higher than 2ωu and a 
vertical rate higher than 2ωv. 

The horizontal sampling distance H < 1/(2 ωu) 
The vertical sampling distance V < 1/(2 ωv)

H
V

https://www.di.univr.it/documenti/OccorrenzaIns/matdid/matdid346761.pdf
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Everything is Signal 
Sampling & 

Reconstruction



Sampling and Reconstruction in Camera and Display
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Light in the 
physical scene (3D 
continuous signal)

Light on the sensor plane (2D 
continuous signal)



https://www.researchgate.net/publication/243717128_Optical_imaging_and_spectroscopy_of_superficial_tissue

Sampling and Reconstruction in Camera and Display
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Light in the 
physical scene (3D 
continuous signal)

Pixels on the image sensor sample 
the continuous 2D function



Sampling and Reconstruction in Camera and Display

�23https://www.pinterest.com/pin/86694361554535525/



Sampling and Reconstruction in Camera and Display

�24https://www.pinterest.com/pin/86694361554535525/iPhone 11iPhone 6

Displays reconstruct continuous 2D 
functions from 2D samples



Sampling and Reconstruction in Camera and Display
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Camera Lens Sensor Pixels Display

3D continuous 
signal

2D continuous 
signal (on the 
sensor plane)

2D sampled signal 
(i.e., image)

Reconstructed 3D 
continuous signal

Geometric 
transformation

Signal 
sampling

Signal 
reconstruction



Everything is Signal Sampling and Reconstruction

• Physical scene: continuous (at least) 3D function 

• Camera lens ⇒ Image sensor ⇒ Display 

• Camera lens ⇒ Image sensor ⇒ Print/Paint 

• Eye lens ⇒ Retina

�26
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Anti-Aliasing 
Techniques



Insufficient Sampling and Reconstruction

�28https://svi.nl/AntiAliasing https://distance.ufhealth.org/preparing-for-lecture-capture/



“Just-Enough” Sampling

• Anti-aliasing by sampling at a high rate. But most real-world signals are 
not band-limited. No hope?
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“Just-Enough” Sampling

• Anti-aliasing by sampling at a high rate. But most real-world signals are 
not band-limited. No hope?

• In many cases we just need to sample at a rate “just high enough”, 
because humans can’t sense signals above certain frequency anyways. 

• Acoustic; Vision

�29



“Just-Enough” Sampling

�30https://en.wikipedia.org/wiki/Sampling_(signal_processing)



Anti-Aliasing By Pre-Filtering

• If we can only sample at a rate of fsample, pre-filter the signal to remove the 
frequency higher than fsample/2.
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• Then sample; won’t see aliasing, but the reconstructed signal is blurred.
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Anti-Aliasing By Pre-Filtering

• If we can only sample at a rate of fsample, pre-filter the signal to remove the 
frequency higher than fsample/2.

• Then sample; won’t see aliasing, but the reconstructed signal is blurred.
• Blur is more acceptable visually than aliasing.

�31\



Pre-Filtering In the Frequency Domain

�32\



1D Discrete Convolution
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31D Discrete 
Signal 1 2 1 3 4 1

Filter/Kernel 1 2 1

Filtered 
Signal 8

Convolution 3x1 + 1x2 + 2x1
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1D Discrete Convolution
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31D Discrete 
Signal 1 2 1 3 4 1

Filter/Kernel 1 2 1

Filtered 
Signal 8 6 7

Convolution 2x1 + 1x2 + 3x1



2D Discrete Convolution
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3 1 2 1 3 4 1
2 4 0 1 10 2 0
0 2 4 21 9 1 14
34 5 4 7 8 90 34
54 6 8 9 13 36 4
6 8 14 2 4 8 52
32 14 54 3 6 8 0

2D Discrete Signal 2D Filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Filtered Signal



2D Discrete Convolution
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1 3 4 1
1 10 2 0
21 9 1 14

34 5 4 7 8 90 34
54 6 8 9 13 36 4
6 8 14 2 4 8 52
32 14 54 3 6 8 0

2D Discrete Signal

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Filtered Signal

23 1 2
2 4 0
0 2 4

2D Filter



2D Discrete Convolution
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3 3 4 1
2 10 2 0
0 9 1 14
34 5 4 7 8 90 34
54 6 8 9 13 36 4
6 8 14 2 4 8 52
32 14 54 3 6 8 0

2D Discrete Signal

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Filtered Signal

2 41 2 1
4 0 1
2 4 21

2D Filter



Box Filter
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3 3 4 1
2 10 2 0
0 9 1 14
34 5 4 7 8 90 34
54 6 8 9 13 36 4
6 8 14 2 4 8 52
32 14 54 3 6 8 0

2D Discrete Signal Box Filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

1 2 1
4 0 1
2 4 21



Box Filter
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3 3 4 1
2 10 2 0
0 9 1 14
34 5 4 7 8 90 34
54 6 8 9 13 36 4
6 8 14 2 4 8 52
32 14 54 3 6 8 0

2D Discrete Signal Box Filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

1 2 1
4 0 1
2 4 21 A box filter makes 

pixels more similar to 
its neighbors, i.e., blur.



Box (Mean/Moving Average) Filter
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1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

2D Box 
Filter

* Output size is smaller than 
input size without padding.

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1



Box (Mean/Moving Average) Filter
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1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

2D Box 
Filter

* Output size is smaller than 
input size without padding.

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1



Gaussian Filter

�41

2D Gaussian distribution A sample 2D Gaussian kernel 
with mean [0, 0] and σ=1 

A Gaussian filter also averages neighboring pixels, but gives more 
weight to closer neighbors. It’s still a low-pass filter.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm


Convolution
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f[x] ⋆ g[x] =
k=∞

∑
k=−∞

f[k]g[x − k]1D Discrete 
Convolution

1D Continuous 
Convolution

f(x) ⋆ g(x) = ∫
∞

−∞
f(τ)g(x − τ)dτ

f[x, y] ⋆ g[x, y] =
i=∞

∑
i=−∞

j=∞

∑
j=−∞

f[i, j]g[x − i, y − j]2D Discrete 
Convolution

f(x) ⋆ g(x) = ∫
∞

−∞ ∫
∞

−∞
f(τ, η)g(x − τ, y − η)dτdη2D Continuous 

Convolution



Convolution Theorem

• Spatial domain convolution is equivalent to frequency domain 
multiplication, and vice versa. 

• Why useful? In many cases the spatial domain signal is not given 
analytically, so we can’t have its spectrum analytically. 

• The only thing we can do is to manipulate the spatial domain data through convolution.

�43

ℱ( f ⋆ g) = ℱ( f )ℱ(g) f ⋆ g = ℱ−1(ℱ( f )ℱ(g))



Convolution Theorem
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Spatial Domain

Frequency 
Domain

Fourier 
Transform

Inv. Fourier 
Transform

⋆ =

X =



Box Filter in Spatial and Frequency Domains
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Multiplying with this spectrum 
attenuates high-frequency components.

Spatial Domain Frequency Domain



Box Filter in Spatial and Frequency Domains

�46

Wider box attenuates high frequencies even 
more (averaging over a larger window)

Spatial Domain Frequency Domain



Revisiting Ideal Signal Reconstruction
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The reconstruction equation

1/T-1/T 0
ω

-1/2T 1/2T

s(t) = ℱ−1[ ℱ(Sa(t))B1/2T(ω) ]



Revisiting Ideal Signal Reconstruction
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s(t) = ℱ−1[ ℱ(Sa(t))B(ω) ]

Sampled 
signal

Reconstructed 
signal f ⋆ g = ℱ−1(ℱ( f )ℱ(g))

https://web.cs.ucdavis.edu/~okreylos/PhDStudies/Winter2000/SamplingTheory.html

Box sinc
IFFT
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Revisiting Ideal Signal Reconstruction

�48

s(t) = ℱ−1[ ℱ(Sa(t))B(ω) ]

Sampled 
signal

Reconstructed 
signal f ⋆ g = ℱ−1(ℱ( f )ℱ(g))

s(t) = Sa(t) ⋆ sinc(t)

https://web.cs.ucdavis.edu/~okreylos/PhDStudies/Winter2000/SamplingTheory.html

Box sinc
IFFT



Anti-Aliased Signal Reconstruction

�49

s(t) = Sa(t) ⋆ F1(t) ⋆ F2(t)

Anti-aliasing filter 
(e.g., a box filter)

Reconstruction filter 
(e.g., a sinc filter)

• Convolving with multiple filters is equivalent to convolving with one 
composite filter 

• People come up many empirical filters as a composite filter



Beating Nyquist-Shannon Sampling Theorem

• Nyquist-Shannon sampling theorem applies to generic signals

�50https://onlinelibrary.wiley.com/doi/10.1002/jmri.25547



Beating Nyquist-Shannon Sampling Theorem

• Nyquist-Shannon sampling theorem applies to generic signals
• If signals have strong patterns (mostly sparse in the Fourier domain), we 

can sample at a much lower rate than the Nyquist rate but still obtain a 
good reconstruction

�50https://onlinelibrary.wiley.com/doi/10.1002/jmri.25547
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• Nyquist-Shannon sampling theorem applies to generic signals
• If signals have strong patterns (mostly sparse in the Fourier domain), we 

can sample at a much lower rate than the Nyquist rate but still obtain a 
good reconstruction

• Through compressive sensing
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Beating Nyquist-Shannon Sampling Theorem

• Nyquist-Shannon sampling theorem applies to generic signals
• If signals have strong patterns (mostly sparse in the Fourier domain), we 

can sample at a much lower rate than the Nyquist rate but still obtain a 
good reconstruction

• Through compressive sensing

• “Single-pixel” camera

�50https://onlinelibrary.wiley.com/doi/10.1002/jmri.25547



Beating Nyquist-Shannon Sampling Theorem

• Nyquist-Shannon sampling theorem applies to generic signals
• If signals have strong patterns (mostly sparse in the Fourier domain), we 

can sample at a much lower rate than the Nyquist rate but still obtain a 
good reconstruction

• Through compressive sensing

• “Single-pixel” camera

• Must do random sampling

�50https://onlinelibrary.wiley.com/doi/10.1002/jmri.25547



Beating Nyquist-Shannon Sampling Theorem

• Nyquist-Shannon sampling theorem applies to reconstruction from 
samples of a single signal without help from “others”

�51\



Beating Nyquist-Shannon Sampling Theorem

• Nyquist-Shannon sampling theorem applies to reconstruction from 
samples of a single signal without help from “others”

• We could also learn from prior data to reconstruct signals 
• Through machine/deep learning 

• Image inpainting, super-resolution

�51\



Beating Nyquist-Shannon Sampling Theorem

�52https://www.slashgear.com/google-pixel-4-camera-review-brilliant-and-frustrating-21596272/ https://pythonawesome.com/aot-gan-for-high-resolution-image-inpainting/

https://www.slashgear.com/google-pixel-4-camera-review-brilliant-and-frustrating-21596272/


�53

Upsampling and 
Downsampling



Naive Upsampling

�54

Linear interpolation



Naive Upsampling

�55

“Sample and hold”



Theoretically Optimal Upsampling

�56

• First reconstruct the underlying continuous signal 
• With potential anti-aliasing 

• And then resample at a desired, higher rate



Theoretically Optimal Upsampling

�57

• That is, first convolve the sampled signal with a filter and then sample 
• Mathematically that’s equivalent to computing the convolution only at the 

desired re-sampled points!



�58© Marc Levoy

Upsizing by 16:1

53

nearest neighbor
(a.k.a. pixel replication)

bilinear

bicubic Slide credit: Marc Levoy
https://en.wikipedia.org/wiki/Bicubic_interpolation



Downsampling

• Simply dropping samples/pixels? Why is that bad? 
• Dropping pixels is equivalent to sampling the original continuous signal 

using a lower rate. It would make later reconstruction harder! 
• Take a photo of a high-frequency scene, and then try to scale it down on 

your computer. If your image viewer isn’t smart, the scaled-down version 
will be aliased. Why?

�59



Summary

• Think of functions as vectors 
• Fourier Series: functions as infinite-dimensional vectors with finite span 

• Fourier Transform: functions as infinite-dimensional vectors with infinite span 

• Discrete Fourier Transform (Series): functions as finite-dimensional vectors with finite span 

• Numerous applications in science and engineering 
• Function approximation (mind the Gibbs phenomena) 

• Denoising 

• Compression 

• Sampling and reconstruction 

• …
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Summary

• Nyquite-Shannon Sampling Theorem 
• Sample at 2f if f is the maximum frequency component. 

• Otherwise aliasing occurs. 

• Anti-Aliasing 
• Sample at a higher rate (or just high enough) 

• Pre-filter high-frequency components 

• Pre-filtering could be done either in the frequency domain or in the spatial domain 
(convolution); they are equivalent by the Convolution Theorem.
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