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Logistics

PA3 due 12/5, 11:30 AM. 

Final project due 12/20, 11:30 AM.
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Digital Camera Imaging

Color in Nature, Arts, & Tech 
(a.k.a., the birth, life, and death of light)

The Roadmap
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Theoretical Preliminaries

Human Visual Systems

Modeling and Rendering

Applications

Ray Tracing

Shading & Texture

Rasterization

Modeling



Graphics

4http://www.cgarena.com/freestuff/tutorials/max/thomas_highway/sergeant.htmlhttps://docs.blender.org/manual/en/dev/render/introduction.html

Lighting, Camera, 
and Material

Modeling Rendering



Visibility Problem

Two fundamental classes of visibility algorithms 
• Object-centric (Rasterization) 

• Image-centric (Ray tracing)
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Given a point P [x, y, z], what’s the corresponding 
pixel coordinates [u, v] on the camera sensor?

Given a pixel [u, v] on the sensor, what’s 
the associated point in the scene?



Basic Idea of Ray Tracing
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foreach pixel in image 
  ray = buildRay(camera, pixel) 
  if (P = intersect(ray, mesh)) 
    pixel.color = shade(P) 
  else 
    pixel.color = backgroundColor



Basic Idea of Ray Tracing
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Can sample multiple rays 
per pixel for anti-aliasingforeach pixel in image 

  ray = buildRay(camera, pixel) 
  if (P = intersect(ray, mesh)) 
    pixel.color = shade(P) 
  else 
    pixel.color = backgroundColor
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Generating Rays



What Defines a Ray?
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class Ray { 
  … 
  Vec3f O; 
  Vec3f D; 
  float tmin; 
  float tmax; 
};

Ray: O + tD, tmin <= t <= tmax

O

D

thit

tmin

tmax

A ray is defined by its original and the 
directional vector. 

We usually define ray as a segment, with 
a min and a max. 

• Its purpose will become clear later, but 
briefly it allows us to reduce computation in 
visibility test.



Generating a Ray in a Pinhole Camera

Very intuitive: connect a pixel and the pinhole to form a ray. 

Remember in actual implementations the canvas is before the pinhole.
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f

Image Image



Generating a Ray Under an Ideal Thin Lens

Many rays incident on one pixel. So 
for each pixel we need to sample 
the lens multiple times to trace 
multiple rays. 

• Why trace many rays? Because the pixel 
color depends on all incident rays. 

• This is not something achievable using 
only the perspective matrix.
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Generating a Ray Under an Ideal Thin Lens

Goal: given an arbitrary Rout how do we find Rin? 
• There is a unique ray, Rout, between a pixel P and a sample L on the lens 

• There is a unique ray, Rin, going into the lens that generates Rout 

• The closest point on Rin before the lens will hit P
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Generating a Ray Under an Ideal Thin Lens

Use geometrical optics principles to determine Rin for a given Rout 

• Rays go through the lens center (chief ray) don’t change their directions
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Generating a Ray Under an Ideal Thin Lens

Use geometrical optics principles to determine Rin for a given Rout 

• Rays go through the lens center (chief ray) don’t change their directions  

• Rays parallel to the optical axis (parallel ray) pass through the lens focus
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Generating a Ray Under an Ideal Thin Lens

Steps: 
• 1. use chief and parallel rays to find the intersection point S in the scene 

• 2. find L on the lens from Rout  

• 3. Rin is the ray between S and L
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Can Ray Tracing Capture DOF?

What’s described before doesn’t rely on whether the closest hit is actually in-
focus on the pixel. 

• So it can inherent trace scene points that are out-of-focus, i.e., simulate depth of field.
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Lens Sampling

Each sensor plane point receives infinitely many rays, so we need to sample 
many rays for a point to reduce noise (more in shading lecture). 

• This is orthogonal to sampling multiple points per pixel.

17http://www.pbr-book.org/3ed-2018/Camera_Models/Projective_Camera_Models.html

2048 samples/point 4 samples/point

* the artifacts from low sampling rate here is not aliasing; it’s due to high variance in Monte Carlo integration.
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Ray-Scene Intersection



Ray-Scene Intersection

Goal: calculate the [x, y, z] coordinates 
of the closest hit between the ray and 
the mesh. 

Why closest hit? 
• Preserve visibility (like the z-buffer in 

rasterization)
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Model #v #v2 Metric curvature clustering ! < 30o Qav

(original) (coarsened) time (s) time (s) (%)
Lucy 14M 500k IQ(1.5) 213 (12 CPUS) 8357 3.73 0.77

500k IQ(1.5) 2822 (4CPUS) 3.73 0.77
David 507k 500k IQ (1.5) 76 6365 6.9 0.73
Statuette 5M 300k I (1.5) 319 165 10 0.69

300k IQ (1.5) 319 1665 8.4 0.71
300k AQ (1.5) 328 1826 16 0.62

Buddha 500k 20k IQ (1.5) 47 255 7.5 0.72
20k AQ (1.5) 49 295 17 0.61

TABLE I
PROCESSING TIMES AND QUALITY MEASURES FOR THE PROCESSED MESHES. THE COLUMNS ARE RESPECTIVELY THE NUMBER OF VERTICES OF THE
INPUT AND OUTPUT MESHES, THE METRIC USED FOR THE CLUSTERING, THE TIME SPENT ON THE CURVATURE MEASURE COMPUTATION AND ON THE

CLUSTERING, THE PERCENTAGE OF MINIMAL INTERNAL ANGLES BELLOW 30o AND THE AVERAGE TRIANGLE ASPECT RATIO.

Fig. 12. Coarsened versions of the rockerarm model (1000 vertices) and the
buddha model (20k vertices).

models (left : AQ metric; right: IQ metric). The anisotropic
behavior of the AQ metric is clearly visible in elongated
regions (the cloth around the Buddha’s neck), and sampling
remains isotropic in spherical regions (e.g. on the head). Note
that the sharp features located on the back of the model are
better preserved with the AQ metric.
On figure 13, we can see a closeup view of the Michelangelo

David remeshed to 500k vertices, illustrating that the limitation
of our approach in a remeshing point of view is only its
memory footprint.
Figure 15 shows a remeshed version of the Statuette model

to 500k vertices, using the IQ metric. the right side compares
the results between the IQ (top) and AQ (bottom) metrics.
Again, the anisotropic metric gives more pleasant results.
As the results table shows, the IQ metric is about 10 times
slower than the I metric. This is due to the QEM based center
localization, which requires for each iteration a 3× 3 singular
value decomposition in order to have a robust placement.
Anisotropic clustering exhibits a reasonable overhead com-

Fig. 13. Closeup view of the David model remeshed to 500k vertices
(Isotropic metric)

pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms

[x, y, z]

Valette, et al. [TVCG’08]
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The Simplest Algorithm
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regions (the cloth around the Buddha’s neck), and sampling
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pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms

[x, y, z]

Valette, et al. [TVCG’08]
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Brute-force approach:
• iterate all triangles
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models (left : AQ metric; right: IQ metric). The anisotropic
behavior of the AQ metric is clearly visible in elongated
regions (the cloth around the Buddha’s neck), and sampling
remains isotropic in spherical regions (e.g. on the head). Note
that the sharp features located on the back of the model are
better preserved with the AQ metric.
On figure 13, we can see a closeup view of the Michelangelo

David remeshed to 500k vertices, illustrating that the limitation
of our approach in a remeshing point of view is only its
memory footprint.
Figure 15 shows a remeshed version of the Statuette model

to 500k vertices, using the IQ metric. the right side compares
the results between the IQ (top) and AQ (bottom) metrics.
Again, the anisotropic metric gives more pleasant results.
As the results table shows, the IQ metric is about 10 times
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pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms

[x, y, z]

Valette, et al. [TVCG’08]
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Brute-force approach:
• iterate all triangles

• test intersection for each triangle
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memory footprint.
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pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms

[x, y, z]

Valette, et al. [TVCG’08]
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Brute-force approach:
• iterate all triangles

• test intersection for each triangle

• return the closest hit, if any
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pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms

[x, y, z]

Valette, et al. [TVCG’08]

x
y

z

Brute-force approach:
• iterate all triangles

• test intersection for each triangle

• return the closest hit, if any

Key task:



The Simplest Algorithm
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Model #v #v2 Metric curvature clustering ! < 30o Qav

(original) (coarsened) time (s) time (s) (%)
Lucy 14M 500k IQ(1.5) 213 (12 CPUS) 8357 3.73 0.77

500k IQ(1.5) 2822 (4CPUS) 3.73 0.77
David 507k 500k IQ (1.5) 76 6365 6.9 0.73
Statuette 5M 300k I (1.5) 319 165 10 0.69

300k IQ (1.5) 319 1665 8.4 0.71
300k AQ (1.5) 328 1826 16 0.62

Buddha 500k 20k IQ (1.5) 47 255 7.5 0.72
20k AQ (1.5) 49 295 17 0.61

TABLE I
PROCESSING TIMES AND QUALITY MEASURES FOR THE PROCESSED MESHES. THE COLUMNS ARE RESPECTIVELY THE NUMBER OF VERTICES OF THE
INPUT AND OUTPUT MESHES, THE METRIC USED FOR THE CLUSTERING, THE TIME SPENT ON THE CURVATURE MEASURE COMPUTATION AND ON THE

CLUSTERING, THE PERCENTAGE OF MINIMAL INTERNAL ANGLES BELLOW 30o AND THE AVERAGE TRIANGLE ASPECT RATIO.

Fig. 12. Coarsened versions of the rockerarm model (1000 vertices) and the
buddha model (20k vertices).

models (left : AQ metric; right: IQ metric). The anisotropic
behavior of the AQ metric is clearly visible in elongated
regions (the cloth around the Buddha’s neck), and sampling
remains isotropic in spherical regions (e.g. on the head). Note
that the sharp features located on the back of the model are
better preserved with the AQ metric.
On figure 13, we can see a closeup view of the Michelangelo

David remeshed to 500k vertices, illustrating that the limitation
of our approach in a remeshing point of view is only its
memory footprint.
Figure 15 shows a remeshed version of the Statuette model

to 500k vertices, using the IQ metric. the right side compares
the results between the IQ (top) and AQ (bottom) metrics.
Again, the anisotropic metric gives more pleasant results.
As the results table shows, the IQ metric is about 10 times
slower than the I metric. This is due to the QEM based center
localization, which requires for each iteration a 3× 3 singular
value decomposition in order to have a robust placement.
Anisotropic clustering exhibits a reasonable overhead com-

Fig. 13. Closeup view of the David model remeshed to 500k vertices
(Isotropic metric)

pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms

[x, y, z]

Valette, et al. [TVCG’08]

x
y

z

Brute-force approach:
• iterate all triangles

• test intersection for each triangle

• return the closest hit, if any

Key task:
• Ray-triangle intersection test and calculate 

the coordinates of the hit point, if any.



What Defines a Triangle?

A plane with three vertices. 
• The vertices are guaranteed to be co-planar. 

The plane that the triangles are in can be 
expressed as an implicit equation and can 
be calculated from the vertices.

21

A(V1x − V2x) + B(V1y − V2y) + C(V1z − V2z) = 0
A(V1x − V3x) + B(V1y − V3y) + C(V1z − V3z) = 0
A × V1x + B × V1y + C × V1z = X

V1

V2

V3

Plane: Ax + By + Cz = X

Plane normal: [A, B, C]

A : B : C : X



Ray-Triangle Intersection
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Px = Ox + Dx × t

Py = Oy + Dy × t
Pz = Oz + Dz × t
A × Px + B × Py + C × Pz = 1

t =
1 − (A × Ox + B × Oy + C × Oz)

A × Dx + B × Dy + C × Dz

V1

V2

V3

Plane: Ax + By + Cz = X

Plane normal: [A, B, C]

O (Ox, Oy, Oz)

D

P (Px, Py, Pz)
Ray: O+tD



Three Caveats

1. The denominator is 0 if the normal is 
perpendicular to the direction of the ray 
(i.e., ray is parallel to the plane). 

• Need a special test for whether the ray is 
parallel with the plane (before division).
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t =
1 − (A × Ox + B × Oy + C × Oz)

A × Dx + B × Dy + C × Dz

V1

V2

V3

Plane: Ax + By + Cz = X

Plane normal: [A, B, C]

O (Ox, Oy, Oz)

D

P (Px, Py, Pz)
Ray: O+tD



Three Caveats

2. A ray doesn’t intersect with a plane if 
the triangle plane is behind the origin of 
the ray 

• i.e., t is negative.
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V1

V2

V3

Plane: Ax + By + Cz = X

Plane normal: [A, B, C]

O (Ox, Oy, Oz)

D

P (Px, Py, Pz)
Ray: O+tD



Three Caveats

2. A ray doesn’t intersect with a plane if 
the triangle plane is behind the origin of 
the ray 

• i.e., t is negative. 

3. Even if a real intersection point is 
found, the intersection point could be 
outside the triangle. 

• Use barycentric coordinates to test whether a 
point is outside of a triangle.
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V1

V2

V3

Plane normal: [A, B, C]
O (Ox, Oy, Oz)

D

P (Px, Py, Pz)
Ray: O+tD



Brute-Force Approach is Extremely Inefficient
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Model #v #v2 Metric curvature clustering ! < 30o Qav

(original) (coarsened) time (s) time (s) (%)
Lucy 14M 500k IQ(1.5) 213 (12 CPUS) 8357 3.73 0.77

500k IQ(1.5) 2822 (4CPUS) 3.73 0.77
David 507k 500k IQ (1.5) 76 6365 6.9 0.73
Statuette 5M 300k I (1.5) 319 165 10 0.69

300k IQ (1.5) 319 1665 8.4 0.71
300k AQ (1.5) 328 1826 16 0.62

Buddha 500k 20k IQ (1.5) 47 255 7.5 0.72
20k AQ (1.5) 49 295 17 0.61

TABLE I
PROCESSING TIMES AND QUALITY MEASURES FOR THE PROCESSED MESHES. THE COLUMNS ARE RESPECTIVELY THE NUMBER OF VERTICES OF THE
INPUT AND OUTPUT MESHES, THE METRIC USED FOR THE CLUSTERING, THE TIME SPENT ON THE CURVATURE MEASURE COMPUTATION AND ON THE

CLUSTERING, THE PERCENTAGE OF MINIMAL INTERNAL ANGLES BELLOW 30o AND THE AVERAGE TRIANGLE ASPECT RATIO.

Fig. 12. Coarsened versions of the rockerarm model (1000 vertices) and the
buddha model (20k vertices).

models (left : AQ metric; right: IQ metric). The anisotropic
behavior of the AQ metric is clearly visible in elongated
regions (the cloth around the Buddha’s neck), and sampling
remains isotropic in spherical regions (e.g. on the head). Note
that the sharp features located on the back of the model are
better preserved with the AQ metric.
On figure 13, we can see a closeup view of the Michelangelo

David remeshed to 500k vertices, illustrating that the limitation
of our approach in a remeshing point of view is only its
memory footprint.
Figure 15 shows a remeshed version of the Statuette model

to 500k vertices, using the IQ metric. the right side compares
the results between the IQ (top) and AQ (bottom) metrics.
Again, the anisotropic metric gives more pleasant results.
As the results table shows, the IQ metric is about 10 times
slower than the I metric. This is due to the QEM based center
localization, which requires for each iteration a 3× 3 singular
value decomposition in order to have a robust placement.
Anisotropic clustering exhibits a reasonable overhead com-

Fig. 13. Closeup view of the David model remeshed to 500k vertices
(Isotropic metric)

pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms

[x, y, z]

Valette, et al. [TVCG’08]

x
y

z

Brute-force approach: 
• iterate all triangles 

• test intersection for each triangle 

• return the closest hit, if any 

Time complexity: 
• O(# of rays x # of triangles) 
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Accelerating Ray-Scene 
Intersection



Speeding Up Ray-Triangle Intersection Test

Prune the search space.

Only search part of the scene that does intersect the ray.

28

intersect(space, ray) { 
  if ray doesn’t intersect space boundary: 
    return 
  else 
    foreach subspace in space 
      if (subspace != empty) 
        intersect(subspace, ray) 
}
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Speeding Up Ray-Triangle Intersection Test

Prune the search space.
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Speeding Up Ray-Triangle Intersection Test

Prune the search space.

Only search part of the scene that does intersect the ray.

Key: how to partition the space?

28

intersect(space, ray) { 
  if ray doesn’t intersect space boundary: 
    return 
  else 
    foreach subspace in space 
      if (subspace != empty) 
        intersect(subspace, ray) 
}



Object vs. Space Partitioning

29

Space partitioning: One object 
could be in different partitions

Object partitioning: different 
partitions could overlap in space



Uniform Grid
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Find the bounding box of the scene
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Uniform Grid

Find the bounding box of the scene

Generate a uniform grid

Find intersecting cells

For each intersecting cell:
• Iterate over all the containing triangles

• Get the closet intersection within the cell

• Update the global closet intersection

30



Grid Resolution

Too few cells: 
• No speedup 

Too many cells: 
• Many empty cells to check and to store 

A useful heuristics: 
• The number of cells should be proportional 

to the number of triangles 

• #cell in each dimension = n^{1/3}
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When Uniform Grid Works

32

Small objects roughly uniformly distributed in space



When Uniform Grid Fails

33

Objects sparsely distributed in space (“teapot in a stadium”)



Non-Uniform (Adaptive) Grid
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Quadtree (2D)
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Non-Uniform (Adaptive) Grid
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Quadtree (2D)

https://en.wikipedia.org/wiki/Octree
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Non-Uniform (Adaptive) Grid
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Quadtree (2D) Octree (3D)

https://en.wikipedia.org/wiki/Octree

https://en.wikipedia.org/wiki/Octree


K-D Tree

35http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html
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Building K-D Tree

Recursively using axis-aligned planes to 
split the space 

Stop when certain terminating conditions 
are met 

• # of objects in a cell < threshold 

• Max tree depth met 

Organize the splits using a tree 

Find the closest hit by traversing the tree
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http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html



Traversing K-D Tree
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Traversing K-D Tree
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Traversing K-D Tree
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Traversing K-D Tree
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Traversing K-D Tree
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Traversing K-D Tree
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Traversing K-D Tree
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Traversing K-D Tree
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Traversing K-D Tree
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Binary Space Partitioning Tree

K-D tree is a special case of binary space 
partitioning (BSP) tree, which recursively 
split the space with planes (3D) or lines (2D) 

• Arbitrary split planes here 

Useful when objects are large and non-axis-
aligned, in which case K-D tree will split 
objects into different partitions 

• Good reference: Ray Tracing with the BSP Tree 
[Ize, Wald, Parker, 2008]
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Bounding Volume Hierarchy (Object Partition)

SceneBVH Tree
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Bounding Volume Hierarchy (Object Partition)

SceneBVH Tree
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Object vs. Space Partitioning

48

Space partitioning: One object 
could be in different partitions

Object partitioning: different 
partitions could overlap in space



Bounding Volume Hierarchy (Object Partition)
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• A, B, C, D, E are the bounding volumes, which are Axis-Aligned Bounding 
Boxes (AABBs) here. Other (irregular) bounding volumes are possible.
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Intersection Test Using BVH
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Intersection Test Using BVH
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Intersection Test Using BVH
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Intersection Test Using BVH
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Intersection Test Using BVH
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Intersection Test Using BVH
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Intersection Test Using BVH
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Ray-AABB Intersection
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A Subtle but Critical Case
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A Subtle but Critical Case
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Ray: O + tD, tmin <= t <= tmax

O

D

thit

Yes; any ray segment that originates from within 
an AABB must be treated as intersecting.
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Should this be counted as a hit?

tmin

tmax



Various Trade-offs Worth Considering

Time to build the tree vs. time to search. 
• Incrementally update a tree (e.g., scene 

slowing changing in an animation)? 

• Can we built the tree offline? 

Shape of the bounding volume. 
• Tight bounding volumes provide more 

precise intersect test, but are costly to build 
and to search. 

Tree structures take memory.

58https://www.scratchapixel.com/lessons/advanced-rendering/introduction-acceleration-structure/bounding-volume-hierarchy-BVH-part1



     An SM in Turing GPU

59https://wccftech.com/nvidia-turing-gpu-architecture-geforce-rtx-graphics-cards-detailed/
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Recursive Ray Tracing



Why Recursive Ray Tracing?

61

10

Model #v #v2 Metric curvature clustering ! < 30o Qav

(original) (coarsened) time (s) time (s) (%)
Lucy 14M 500k IQ(1.5) 213 (12 CPUS) 8357 3.73 0.77

500k IQ(1.5) 2822 (4CPUS) 3.73 0.77
David 507k 500k IQ (1.5) 76 6365 6.9 0.73
Statuette 5M 300k I (1.5) 319 165 10 0.69

300k IQ (1.5) 319 1665 8.4 0.71
300k AQ (1.5) 328 1826 16 0.62

Buddha 500k 20k IQ (1.5) 47 255 7.5 0.72
20k AQ (1.5) 49 295 17 0.61

TABLE I
PROCESSING TIMES AND QUALITY MEASURES FOR THE PROCESSED MESHES. THE COLUMNS ARE RESPECTIVELY THE NUMBER OF VERTICES OF THE
INPUT AND OUTPUT MESHES, THE METRIC USED FOR THE CLUSTERING, THE TIME SPENT ON THE CURVATURE MEASURE COMPUTATION AND ON THE

CLUSTERING, THE PERCENTAGE OF MINIMAL INTERNAL ANGLES BELLOW 30o AND THE AVERAGE TRIANGLE ASPECT RATIO.

Fig. 12. Coarsened versions of the rockerarm model (1000 vertices) and the
buddha model (20k vertices).

models (left : AQ metric; right: IQ metric). The anisotropic
behavior of the AQ metric is clearly visible in elongated
regions (the cloth around the Buddha’s neck), and sampling
remains isotropic in spherical regions (e.g. on the head). Note
that the sharp features located on the back of the model are
better preserved with the AQ metric.
On figure 13, we can see a closeup view of the Michelangelo

David remeshed to 500k vertices, illustrating that the limitation
of our approach in a remeshing point of view is only its
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about 4 times smaller than with [16]. Note that this table
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measures are not symmetric), obtained with Metro [32].
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better preserved with the AQ metric.
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our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms
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better preserved with the AQ metric.
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David remeshed to 500k vertices, illustrating that the limitation
of our approach in a remeshing point of view is only its
memory footprint.
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the results between the IQ (top) and AQ (bottom) metrics.
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our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
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random initializations. In table II, we can see that in terms
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remains isotropic in spherical regions (e.g. on the head). Note
that the sharp features located on the back of the model are
better preserved with the AQ metric.
On figure 13, we can see a closeup view of the Michelangelo

David remeshed to 500k vertices, illustrating that the limitation
of our approach in a remeshing point of view is only its
memory footprint.
Figure 15 shows a remeshed version of the Statuette model

to 500k vertices, using the IQ metric. the right side compares
the results between the IQ (top) and AQ (bottom) metrics.
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slower than the I metric. This is due to the QEM based center
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pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms
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that the sharp features located on the back of the model are
better preserved with the AQ metric.
On figure 13, we can see a closeup view of the Michelangelo

David remeshed to 500k vertices, illustrating that the limitation
of our approach in a remeshing point of view is only its
memory footprint.
Figure 15 shows a remeshed version of the Statuette model

to 500k vertices, using the IQ metric. the right side compares
the results between the IQ (top) and AQ (bottom) metrics.
Again, the anisotropic metric gives more pleasant results.
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pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms
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regions (the cloth around the Buddha’s neck), and sampling
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that the sharp features located on the back of the model are
better preserved with the AQ metric.
On figure 13, we can see a closeup view of the Michelangelo

David remeshed to 500k vertices, illustrating that the limitation
of our approach in a remeshing point of view is only its
memory footprint.
Figure 15 shows a remeshed version of the Statuette model

to 500k vertices, using the IQ metric. the right side compares
the results between the IQ (top) and AQ (bottom) metrics.
Again, the anisotropic metric gives more pleasant results.
As the results table shows, the IQ metric is about 10 times
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pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms
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memory footprint.
Figure 15 shows a remeshed version of the Statuette model

to 500k vertices, using the IQ metric. the right side compares
the results between the IQ (top) and AQ (bottom) metrics.
Again, the anisotropic metric gives more pleasant results.
As the results table shows, the IQ metric is about 10 times
slower than the I metric. This is due to the QEM based center
localization, which requires for each iteration a 3× 3 singular
value decomposition in order to have a robust placement.
Anisotropic clustering exhibits a reasonable overhead com-

Fig. 13. Closeup view of the David model remeshed to 500k vertices
(Isotropic metric)
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Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms
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Secondary Ray

• To implement realistic shading.

• The color of an exiting ray depends 
on the colors of all incident rays.
• color here really means radiance.

• also depends on the surface material (diffuse vs. 

specular vs. …); later.
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Model #v #v2 Metric curvature clustering ! < 30o Qav

(original) (coarsened) time (s) time (s) (%)
Lucy 14M 500k IQ(1.5) 213 (12 CPUS) 8357 3.73 0.77

500k IQ(1.5) 2822 (4CPUS) 3.73 0.77
David 507k 500k IQ (1.5) 76 6365 6.9 0.73
Statuette 5M 300k I (1.5) 319 165 10 0.69

300k IQ (1.5) 319 1665 8.4 0.71
300k AQ (1.5) 328 1826 16 0.62

Buddha 500k 20k IQ (1.5) 47 255 7.5 0.72
20k AQ (1.5) 49 295 17 0.61

TABLE I
PROCESSING TIMES AND QUALITY MEASURES FOR THE PROCESSED MESHES. THE COLUMNS ARE RESPECTIVELY THE NUMBER OF VERTICES OF THE
INPUT AND OUTPUT MESHES, THE METRIC USED FOR THE CLUSTERING, THE TIME SPENT ON THE CURVATURE MEASURE COMPUTATION AND ON THE

CLUSTERING, THE PERCENTAGE OF MINIMAL INTERNAL ANGLES BELLOW 30o AND THE AVERAGE TRIANGLE ASPECT RATIO.

Fig. 12. Coarsened versions of the rockerarm model (1000 vertices) and the
buddha model (20k vertices).

models (left : AQ metric; right: IQ metric). The anisotropic
behavior of the AQ metric is clearly visible in elongated
regions (the cloth around the Buddha’s neck), and sampling
remains isotropic in spherical regions (e.g. on the head). Note
that the sharp features located on the back of the model are
better preserved with the AQ metric.
On figure 13, we can see a closeup view of the Michelangelo

David remeshed to 500k vertices, illustrating that the limitation
of our approach in a remeshing point of view is only its
memory footprint.
Figure 15 shows a remeshed version of the Statuette model

to 500k vertices, using the IQ metric. the right side compares
the results between the IQ (top) and AQ (bottom) metrics.
Again, the anisotropic metric gives more pleasant results.
As the results table shows, the IQ metric is about 10 times
slower than the I metric. This is due to the QEM based center
localization, which requires for each iteration a 3× 3 singular
value decomposition in order to have a robust placement.
Anisotropic clustering exhibits a reasonable overhead com-

Fig. 13. Closeup view of the David model remeshed to 500k vertices
(Isotropic metric)

pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms

Valette, et al. [TVCG’08]

Secondary Ray

Secondary Ray

Secondary Ray

• To implement realistic shading.

• The color of an exiting ray depends 
on the colors of all incident rays.
• color here really means radiance.

• also depends on the surface material (diffuse vs. 

specular vs. …); later.

• How do we know the color of an 
incident ray? Cast more rays!
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castRay(ray, mesh) { 
  if (P = nearestIntersect(ray, mesh)) 
    reflectRay = buildReflectRay(P) 
    refractRay = buildRefractRay(P) 
    reflectColor = castRay(reflectRay, mesh)) 
    refractColor = castRay(refractRay, mesh)) 

    float kr 
    fresnel(dir, N, hitObject->ior, kr) 
    P.color = reflectionColor * kr +  
              refractionColor * (1 - kr) 
  else P.color = backgroundColor 
}

P

A simplification of Whitted-style ray tracing, assuming purely transparent surface.

https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-overview/light-transport-ray-tracing-whitted

https://blogs.nvidia.com/blog/2018/08/01/ray-tracing-global-illumination-turner-whitted/
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Things to Remember

Ray tracing makes it easy (conceptually) to implement realistic shading. 

Compared to rasterization, ray tracing is much more time consuming, 
dominated by ray-scene intersection test, which is exacerbated by the need 
for recursive ray tracing. 

We can accelerate the testing using acceleration structures that prune the 
search space. BVH is the most common acceleration structure. 

Modern GPUs, while traditionally optimized for rasterization, now have 
hardware support for ray tracing (e.g., BVH traversal, ray-AABB/triangle 
intersection test).
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