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Logistics

PA3 due 12/5, 11:30 AM.

Final project due 12/20, 11:30 AM.



The Roadmap

Modeling and Rendering Ray Tracing



Graphics

Lighting, Camera,
and Material

V
| > Rendering ._:>

Modeling !

https://docs.blender.org/manual/en/dev/render/introduction.html  http://www.cgarena.com/freestuff/tutorials/max/thomas_highway/sergeant.ntml 4



Visibility Problem

Two fundamental classes of visibility algorithms

e Object-centric (Rasterization)

* |mage-centric (Ray tracing)

Given a pixel [u, v] on the sensor, what's
the associated point in the scene?

camera
origin

l ray miss

© www.scratchapixel.com



Basic Idea of Ray Tracing

camera
origin

|

/

ray hit

L

\ ray miss

© www.scratchapixel.com

foreach pixel 1n 1mage
ray = builldRay (camera, pixel)
1f (P = 1ntersect (ray, mesh))

pixel.color
else
pixel.color

shade (P)

backgroundColor



Basic Idea of Ray Tracing

Can sample multiple rays

foreach pixel in image per pixel for anti-aliasing
ray = buildRay (camera, pixel)lk’/’
1f (P = 1ntersect (ray, mesh))
pixel.color = shade (P)
else
pixel.color = backgroundColor




Basic Idea of Ray Tracing

Can sample multiple rays

foreach pixel in image per pixel for anti-aliasing
ray = buildRay (camera, pixel)lk’/’
1f (P = 1ntersect (ray, mesh))
pixel.color = shade (P)
else
pixel.color = backgroundColor




Generating Rays



What Defines a Ray?

A ray is defined by its original and the

Ray: O + tD, thin <=t <= tax
directional vector.

O Tmin

We usually define ray as a segment, with
a min and a max.

* |ts purpose will become clear later, but

brietly it allows us to reduce computation in D
visibility test. class Ray i

Vec3f O;

Vec3f D;

float tmin;

float tmax;
}r



Generating a Ray in a Pinhole Camera

Very intuitive: connect a pixel and the pinhole to form a ray.

Remember in actual implementations the canvas is before the pinhole.

Image Image
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Generating a Ray Under an Ideal Thin Lens

Many rays incident on one pixel. So
for each pixel we need to sample
the lens multiple times to trace
multiple rays.

 Why trace many rays? Because the pixel
color depends on all incident rays.

e This is not something achievable using
only the perspective matrix.
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Generating a Ray Under an Ideal Thin Lens

Goal: given an arbitrary Rout how do we find R;,?
* There is a unique ray, Rout, between a pixel P and a sample L on the lens
* There is a unique ray, Ri, going into the lens that generates Rout

* The closest point on Ry, before the lens will hit P

12



Generating a Ray Under an Ideal Thin Lens

Use geometrical optics principles to determine Rj, for a given Rqut

 Rays go through the lens center (chief ray) don’t change their directions
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Generating a Ray Under an Ideal Thin Lens

Use geometrical optics principles to determine Rj, for a given Rqut

 Rays go through the lens center (chief ray) don’t change their directions

* Rays parallel to the optical axis (parallel ray) pass through the lens focus
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Generating a Ray Under an Ideal Thin Lens

Steps:
e 1. use chief and parallel rays to find the intersection point S in the scene
e 2. find L on the lens from Ryt

e 3. Rj,is the ray between S and L

el
Ll
el
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Can Ray Tracing Capture DOF?

What's described before doesn’t rely on whether the closest hit is actually in-
focus on the pixel.

e So it can inherent trace scene points that are out-of-focus, i.e., simulate depth of field.

sensor plane

4
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Can Ray Tracing Capture DOF?

What's described before doesn’t rely on whether the closest hit is actually in-
focus on the pixel.

e So it can inherent trace scene points that are out-of-focus, i.e., simulate depth of field.

sensor plane
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Lens Sampling

Each sensor plane point receives infinitely many rays, so we need to sample
many rays for a point to reduce noise (more in shading lecture).

e This is orthogonal to sampling multiple points per pixel.

2048 samples/point 4 salmples/point

* the artifacts from low sampling rate here is not aliasing; it's due to high variance in Monte Carlo integration.

http://www.pbr-book.org/3ed-2018/Camera_Models/Projective_Camera_Models.htm| 17



Ray-Scene Intersection



Ray-Scene Intersection

Goal: calculate the [x, y, z] coordinates
of the closest hit between the ray and

the mesh.

Why closest hit?

e Preserve visibility (like the z-buffer in
rasterization

Valette, et al. [TVCG'08] 19



Ray-Scene Intersection
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The Simplest Algorithm

Brute-force approach:
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The Simplest Algorithm
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The Simplest Algorithm

Brute-force approach:

e jterate all triangles
® test intersection for each triangle
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The Simplest Algorithm

Brute-force approach:
e jterate all triangles

® test intersection for each triangle

e return the closest hit, it any
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The Simplest Algorithm

Brute-force approach:

e jterate all triangles

® test intersection for each triangle

e return the closest hit, it any

Key task:
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The Simplest Algorithm

Brute-force approach:

e jterate all triangles
® test intersection for each triangle

e return the closest hit, it any

y task:

e Ray-triangle intersection test and calculate
the coordinates of the hit point, it any.
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What Defines a Triangle?

A plane with three vertices.

* The vertices are guaranteed to be co-planar.

The plane that the triangles are in can be

expressed as an implicit equation and can
be calculated from the vertices.

A(V1, = V2) +B(Vl,—V2)+ C(Vl,— V2) =0

A(VL, = V3)+B(V1, = V3)+C(V1,-V3)=0 == >A:B:C:X
AXVI, +BXVlL,+CXV]l, =X

-

[ A

W,

V2

Plane normal: [A, B, C]

V1

V3

\

Plane: Ax + By + Cz = X
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Ray-Triangle Intersection

P.=0.+D_Xt
P,=0,+D, Xt
P,=0,+D,Xt
AXP,+BXP +CXP, =1

v

1-AX0,+BX0,+CXO0,)
[ =
AXD,+BXD,+CXD,

O (Oy, Oy, O,

Ray: O+tD

V2

Plane normal: [A, B, C]

V1

V3
\ N
D

Plane: Ax + By + Cz = X
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Three Caveats

1. The denominator is O if the normal is
perpendicular to the direction of the ray
(i.e., ray is parallel to the plane).

* Need a special test for whether the ray is
parallel with the plane (betore division).

| —(AX O, +Bx0,+CxO0),)

[ =
AXD,+BXD,+CXD,

Plane normal: [A, B, C]

O (Oy, Oy, O))
V1

Ray: O+tD

V3
V2 N\
N

Plane: Ax + By + Cz =X
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Three Caveats

2. A ray doesn't intersect with a plane if plane normal: [A. B, C
the triangle plane is behind the origin of
the ray

* |.e., tisnegative.

Plane: Ax + By + Cz = X

24



Three Caveats

2. A ray doesn’t intersect with a plane if
the triangle plane is behind the origin of
the ray

* |.e., tisnegative.

3. Even if a real intersection point is
found, the intersection point could be
outside the triangle.

e Use barycentric coordinates to test whether a
point is outside of a triangle.

O (OXI Oyl OZ)

Ray: O

tD

Plane normal: [A, B, C]

V1

25



rute-force approach:

e jterate all triangles

® test intersection for each triangle

e return the closest hit, it any

Time complexity:

¢ O

of rays x

of triangles

rute-Force Approach is Extremely Inefficient

Valette, et al. [TVCG'08]
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Accelerating Ray-Scene
Intersection



Speeding Up Ray-Triangle Intersection Test

Prune the search space.

Only search part of the scene that does intersect the ray.

intersect (space, ray) {
1f ray doesn’t 1ntersect space boundary:
return
else
foreach subspace 1n space

lgf:ii:>> 1f (subspace != empty)
intersect (subspace, ray)

28
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Speeding Up Ray-Triangle Intersection Test

Prune the search space.
Only search part of the scene that does intersect the ray.

Key: how to partition the space?

intersect (space, ray) {
1f ray doesn’t 1ntersect space boundary:
return
else
foreach subspace 1n space

lgf:ii:>> 1f (subspace != empty)
intersect (subspace, ray)




Object vs. Space Partitioning

Space partitioning: One object
could be in difterent partitions

[

/

Object partitioning: different
partitions could overlap in space
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Uniform Grid
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Uniform Grid
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Find the bounding box of the scene
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Uniform Grid

Find the bounding box of the scene

Generate a uniform grid

30



Uniform Grid

Find the bounding box of the scene
Generate a uniform grid

Find intersecting cells

30



Uniform Grid

i

i

B

Find the bounding box of the scene
Generate a uniform grid

Find intersecting cells
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Uniform Grid

Find the bounding box of the scene
Generate a uniform grid
Find intersecting cells

For each intersecting cell:
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Uniform Grid

Find the bounding box of the scene
Generate a uniform grid
Find intersecting cells

For each intersecting cell:

* [terate over all the containing triangles
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Uniform Grid

Find the bounding box of the scene
Generate a uniform grid
Find intersecting cells

For each intersecting cell:

* [terate over all the containing triangles

e (Get the closet intersection within the cell
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Uniform Grid

Find the bounding box of the scene
Generate a uniform grid
Find intersecting cells

For each intersecting cell:
* [terate over all the containing triangles
e Get the closet intersection within the cell

e Update the global closet intersection

30



Grid Resolution

Too few cells:
* No speedup

Too many cells:

e Many empty cells to check and to store

A useful heuristics:

* The number of cells should be proportional
to the number of triangles

e #cell in each dimension = nA{1/3}

31



When Uniform Grid Works
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When Uniform Grid Fails
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Non-Uniform (Adaptive) Grid

Quadtree (2D)

34


https://en.wikipedia.org/wiki/Octree

Non-Uniform (Adaptive) Grid

Quadtree (2D)
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Non-Uniform (Adaptive) Grid

Quadtree (2D)
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https://en.wikipedia.org/wiki/Octree

Non-Uniform (Adaptive) Grid

Quadtree (2D)

https://en.wikipedia.org/wiki/Octree

Octree (3D)
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https://en.wikipedia.org/wiki/Octree
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http://groups.csail.mit.edu/graphics/classes/6.838/598/meetings/m13/kd.html 35




Building K-D Tree

B
Recursively using axis-aligned planes to

Q split the space
Stop when certain terminating conditions
are met

A e # of objects in a cell < threshold
e Max tree depth met
4 Organize the splits using a tree
> 9 P 9
Find the closest hit by traversing the tree

http://groups.csail.mit.edu/graphics/classes/6.838/598/meetings/m13/kd.html 36



Current

Stack

Traversing K-D Tree

B
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Traversing K-D Tree
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Current
Stack @

Traversing K-D Tree

http://groups.csail.mit.edu/graphics/classes/6.838/598/meetings/m13/kd.html 39



Current A
Stack @

Traversing K-D Tree
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Traversing K-D Tree
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Traversing K-D Tree

B

.html 44



Current /5\ /5\ Result
Stack A

Traversing K-D Tree
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Binary Space Partitioning Tree

7
A

K-D tree is a special case of binary space

partitioning (BSP) tree, which recursively

split the space with planes (3D) or lines (2D)
o Arbitrary split planes here

Usetul when objects are large and non-axis-
aligned, in which case K-D tree will split
objects into different partitions

e Good reference: Ray Tracing with the BSP Tree
[lze, Wald, Parker, 2008]
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K-D tree is a special case of binary space
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Bounding Volume Hierarchy (Object Partition)

BVH Tree Scene

7
® A \



Bounding Volume Hierarchy (Object Partition)

BVH Tree Scene

V
v

L A



Bounding Volume Hierarchy (Object Partition)

BVH Tree Scene
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Bounding Volume Hierarchy (Object Partition)
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Bounding Volume Hierarchy (Object Partition)
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Bounding Volume Hierarchy (Object Partition)
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Bounding Volume Hierarchy (Object Partition)

BVH Tree Scene




Bounding Volume Hierarchy (Object Partition)

BVH Tree Scene

Root —» A

Interior
= [ol— e e
node
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Object vs. Space Partitioning

Object partitioning: different
partitions could overlap in space
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Bounding Volume Hierarchy (Object Partition)

e A, B, C, D, E are the bounding volumes, which are Axis-Aligned Bounding
Boxes (AABBs) here. Other (irregular) bounding volumes are possible.

Root —» A

Interior
< Jol— e e
node

2A
4
/I\ ? 3\ «<— Primitive
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Intersection Test Using BVH

ClosestHit = NA Current Ray-AABB Intersection Test
Stack




Intersection Test Using BVH

ClosestHit = NA Current E Ray-AABB Intersection Test

Stack |E|




Intersection Test Using BVH

ClosestHit = NA Current Ray-AABB Intersection Test

Stack |E| El




Intersection Test Using BVH

ClosestHit = NA

Current @ Ray-AABB Intersection Test

Stack |E|




Intersection Test Using BVH

ClosestHit = NA Current /2\ ARay-Triangle Intersection Test

Stack |E|




Intersection Test Using BVH

ClosestHit = 2 Current E Ray-AABB Intersection Test

Stack




Intersection Test Using BVH

ClosestHit = 2 Current E Ray-AABB Intersection Test

Distance to E > Distance to 2; Stop! Stack




Ray-AABB Intersection

O Tmin
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A Subtle but Critical Case

O Tmin




A Subtle but Critical Case

O tmin

Should this be counted as a hit?
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A Subtle but Critical Case

O tmin

Should this be counted as a hit?
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A Subtle but Critical Case

Ray: O + tD, thin <=t <= tmax Should this be counted as a hit?

Yes; any ray segment that originates from within

O tmin

an AABB must be treated as intersecting.

57



Various Trade-offs Worth Considering

Time to build the tree vs. time to search.

* Incrementally update a tree (e.g., scene
slowing changing in an animation)?

e Can we built the tree offline?

Shape of the bounding volume.

e Tight bounding volumes provide more
precise intersect test, but are costly to build
and to search.

Tree structures take memory.

© www.scratchapixel.com

https://www.scratchapixel.com/lessons/advanced-rendering/introduction-acceleration-structure/bounding-volume-hierarchy-BVH-part1 58
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Recursive Ray Tracing



Why Recursive

e To implement realistic shading.

Ray Trac
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Valette, et al. [TVCG'08
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Why Recursive

e To implement realistic shading.

e The color of an exiting ray depends
on the colors of all incident rays.

Ray Trac

INg?

Valette, et al. [TVCG'08]
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Why Recursive

e To implement realistic shading.

e The color of an exiting ray depends
on the colors of all incident rays.

e color here really means radiance.

Ray Trac
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Valette, et al. [TVCG'08]
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Why Recursive

e To implement realistic shading.

e The color of an exiting ray depends
on the colors of all incident rays.

e color here really means radiance.

e also depends on the surface material (diffuse vs.
specular vs. ...); later.

Ray Trac

INg?

Valette, et al. [TVCG'08]
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Why Recursive

e To implement realistic shading.

e The color of an exiting ray depends
on the colors of all incident rays.

e color here really means radiance.

e also depends on the surface material (diffuse vs.
specular vs. ...); later.

e How do we know the color of an
incident ray? Cast more rays!

Ray Trac

INg?

Valette, et al. [TVCG'08]
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Why Recursive

e To implement realistic shading.

Ray Trac

INg?

Valette, et al. [TVCG'08]
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Why Recursive

e To implement realistic shading.
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Simple Whitted-Style Recursive Ray Tracing

A simplification of Whitted-style ray tracing, assuming purely transparent surface.

castRay (ray, mesh) {

transmit

1f (P = nearestlIntersect (ray, mesh)) >
reflectRay = buildReflectRay (P) shadow ST ettt
refractRay = buildRefractRay (P) -
reflectColor = castRay(reflectRay, mesh))

refractColor = castRay(refractRay, mesh))

reflect

primary

float kr
fresnel (dir, N, hitObject->1o0r, kr) P \stw
P.color = reflectionColor * kr + rﬂm‘vmwm
refractionColor * (1 - kr) o scratehaoieLcom g
else P.color = backgroundColor

https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-overview/light-transport-ray-tracing-whitted
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https://blogs.nvidia.com/blog/2018/08/01/ray-tracing-global-illumination-turner-whitted/

Simple Whitted-Style Recursive Ray Tracing

https://blogs.nvidia.com/blog/2018/08/01/ray-tracing-global-illumination-turner-whitted/




Things to Remember

Ray tracing makes it easy (conceptually) to implement realistic shading.

Compared to rasterization, ray tracing is much more time consuming,
dominated by ray-scene intersection test, which is exacerbated by the need

for recursive ray tracing,.

We can accelerate the testing using acceleration structures that prune the
search space. BVH is the most common acceleration structure.

Modern GPUs, while traditionally optimized for rasterization, now have
hardware support for ray tracing (e.g., BVH traversal, ray-AABB/triangle

iIntersection test).
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