
Yuhao Zhu
http://yuhaozhu.com

Lecture 19: Rasterization Pipeline
and GPU Hardware

CSC 292/572, Fall 2022
Mobile Visual Computing

Digital Camera Imaging

Color in Nature, Arts, & Tech
(a.k.a., the birth, life, and death of light)

The Roadmap

2

Theoretical Preliminaries

Human Visual Systems

Modeling and Rendering

Applications

Ray Tracing

Shading & Texture

Rasterization

Modeling

Graphics

3http://www.cgarena.com/freestuff/tutorials/max/thomas_highway/sergeant.htmlhttps://docs.blender.org/manual/en/dev/render/introduction.html

Lighting, Camera,
and Material

Modeling Rendering

Rendering Algorithm

Two fundamental problems: visibility and shading

Visibility: what part of the scene is visible by the camera?
• For each image pixel, which point in the scene corresponds to it?

• How many scene points for a pixel?

Shading: how does the visible part look like?
• What’s the color of each image pixel?

Theoretically shading is independent of visibility, but certain class of visibility
algorithms make realistic shading easier/natural to implement.

4

Visibility Problem

Two fundamental classes of visibility algorithms
• Object-centric (Rasterization)

• Image-centric (Ray tracing)

5

Given a point P [x, y, z], what’s the corresponding
pixel coordinates [u, v] on the camera sensor?

Given a pixel [u, v] on the sensor, what’s
the associated point in the scene?

Visibility Algorithm

Rasterization is generally (much) faster than ray tracing.

Modern GPUs are well-optimized for rasterization, but hardware that
supports real-time ray tracing is there (e.g., Nvidia’s Turing GPUs).

Ray tracing allows for a natural implementation of realistic shading.

RenderMan (REYES) from Pixar is based on rasterization.
• Considered to be one of the best rasterization algorithm ever to be built

• Today’s rasterization pipeline has many similarities with REYES

Pixar now uses RIS, which is purely based on ray tracing.

6

Shading

Heavily researched; always a speed-vs-realism trade-off.

Empirical modeling vs. physics simulation
• Simple solutions, e.g., assigning color to each scene point/triangle + interpolation

• Slightly better: empirical modeling (e.g., Phong model)

• Ultimately, we must simulate physics (e.g., light matter interaction, spectral information)

Local vs. global illumination
• Do we consider only direct lighting or also account for indirect illumination (e.g.

reflection from other objects), a.k.a., global illumination?

7

Shading Complexity: Global Illumination

8

They do not directly receive lights
but aren’t black. Need to consider

both direct and indirect illumination.

Shading Complexity: Modeling Light-Matter Interaction

9

Different materials have drastically
different appearances. Need to model

materials and how they interact with light.

Local vs. Global Illumination

10https://colinbarrebrisebois.com/2015/11/06/finding-next-gen-part-i-the-need-for-robust-and-fast-global-illumination-in-games/

https://colinbarrebrisebois.com/2015/11/06/finding-next-gen-part-i-the-need-for-robust-and-fast-global-illumination-in-games/

11https://www.tomlooman.com/lighting-with-unreal-engine-jerome/

12https://www.tomlooman.com/lighting-with-unreal-engine-jerome/

13

Rasterization Pipeline

Rasterization-based Rendering

14

Camera Projection

Rasterization

Scene Transformations

Shading

Visibility/Blending

Rasterization-based Rendering

15

Camera Projection

Rasterization

Scene Transformations

Shading

Visibility/Blending

248 Chapter 5 Viewing

Model-view Projection Perspective
division

FIGURE 5.33 Projection pipeline.

5.6 PERSPECTIVE PROJECTIONS WITH WEBGL

The projections that we developed in Section 5.5 did not take into account the prop-
erties of the camera: the focal length of its lens or the size of the film plane. Figure 5.34
shows the angle of view for a simple pinhole camera, like the one that we discussed
in Chapter 1. Only those objects that fit within the angle (or field) of view of the
camera appear in the image. If the back of the camera is rectangular, only objects
within an infinite pyramid—the view volume—whose apex is at the COP can appear
in the image. Objects not within the view volume are said to be clipped out of the
scene. Hence, our description of simple projections has been incomplete; we did not
include the effects of clipping.

With most graphics APIs, the application program specifies clipping parameters
through the specification of a projection. The infinite pyramid in Figure 5.34 becomes
a finite clipping volume by adding front and back clipping planes, in addition to the
angle of view, as shown in Figure 5.35. The resulting view volume is a frustum—a
truncated pyramid. We have fixed only one parameter by specifying that the COP is
at the origin in the camera frame. In principle, we should be able to specify each of
the six sides of the frustum to have almost any orientation. If we did so, however,
we would make it difficult to specify a view in the application and complicate the
implementation. In practice, we rarely need this flexibility, and usually we can get by
with only two perspective viewing functions. Other APIs differ in their function calls
but incorporate similar restrictions.

Angle of view

FIGURE 5.34 Specification of a view volume.

Converting scene objects to camera screen space

Rasterization-based Rendering

16

Camera Projection

Scene Transformations

Shading

Visibility/Blending

Which pixels are covered by each triangle?

Rasterization

Rasterization-based Rendering

17

Camera Projection

Scene Transformations

Visibility/Blending

What’s the color of each pixel?

Rasterization

Shading

Rasterization-based Rendering

18

Camera Projection

Scene Transformations
How to deal with multiple scene points mapped to the same pixel?

Rasterization

Visibility/Blending

Shading

426 Chapter 8 From Geometry to Pixels

CB

A

COP

FIGURE 8.42 Image-space hidden-surface removal.

FIGURE 8.43 Polygon with
spans.

However, because image-space approaches work at the fragment or pixel level, their
accuracy is limited by the resolution of the framebuffer.

8.11.2 Sorting and Hidden-Surface Removal
The O(k2) upper bound for object-oriented hidden-surface removal might remind
you of the poorer sorting algorithms, such as bubble sort. Any method that involves
brute-force comparison of objects by pairs has O(k2) complexity. But there is a more
direct connection, which we exploited in the object-oriented sorting algorithms in
Section 8.11.1. If we could organize objects by their distances from the camera, we
should be able to come up with a direct method of rendering them.

But if we follow the analogy, we know that the complexity of good sorting al-
gorithms is O(k log k). We should expect the same to be true for object-oriented
hidden-surface removal, and, in fact, such is the case. As with sorting, there are
multiple algorithms that meet these bounds. In addition, there are related problems
involving comparison of objects, such as collision detection, that start off looking as
if they are O(k2) when, in fact, they can be reduced to O(k log k).

8.11.3 Scan Line Algorithms
The attraction of a scan line algorithm is that such a method has the potential to
generate pixels as they are displayed. Consider the polygon in Figure 8.43, with one
scan line shown. If we use our odd–even rule for defining the inside of the polygon,
we can see three groups of pixels, or spans, on this scan line that are inside the
polygon. Note that each span can be processed independently for lighting or depth
calculations, a strategy that has been employed in some hardware that has parallel
span processors. For our simple example of constant fill, after we have identified the
spans, we can color the interior pixels of each span with the fill color.

The spans are determined by the set of intersections of polygons with scan lines.
The vertices contain all the information that we need to determine these intersec-
tions, but the method that we use to represent the polygon determines the order in

19

Scene
TransformationRasterization

Shading

Visibility/Blending

Scene Transformations

Camera Projection

Scene Transformation

For convenience and for reusing the same
objects across scenes.

The two killeroos are exactly the same
object, but are placed differently in the
same scene.

Define the mesh of the killeroo once with
respect to its local coordinate system, and
transform it properly when place it in the
world coordinate system.

20

Example

21

Object description in its local
coordinate system (not shown here)

Different transformations (translations)
when placed in the scene

A scene description file from pbrt,
a pedagogical rendering engine.

What Local Coordination Systems Do We Need?

Objects
Light sources

• Point light (shapeless)

• Area light

• Distant light

• Arbitrary shapes

Camera
• A special local frame,

where everything else
eventually has to be
translated to.

22

Local frame 3Camera frame Local frame 2
(light)Local frame 1

Scene

Scene Transformations

23

World frame

Local to world
transformations

(3D to 3D)

Camera

Scene Transformations

24

Local to world
transformations

(3D to 3D)

World to camera
transformation

(3D to 3D)

Camera frame

Scene Transformations

24

Local to world
transformations

(3D to 3D)

World to camera
transformation

(3D to 3D)

Camera Projection
(3D to 2D)

Camera frame

25

Camera Projection
Camera Projection

Rasterization

Shading

Visibility/Blending

Scene Transformations

Camera Projections: Where 3D Becomes 2D

26http://www.pbr-book.org/3ed-2018/Camera_Models/Environment_Camera.html

Perspective Projection

Orthographic Projection

27

ht
tp

s:
//

ro
ck

et
br

us
h.

co
m

/b
lo

g/
is

om
et

ric
-g

am
es

-h
ow

-is
om

et
ry

-b
en

ef
its

-g
am

e-
de

ve
lo

pe
rs

Environmental Camera Projection

28

Environmental camera

http://www.pbr-book.org/3ed-2018/Camera_Models/Environment_Camera.html

Camera Projection: Where 3D Becomes 2D

Fundamental question: given a point P [x, y, z], what’s the corresponding
pixel coordinates [u, v], if any, on the camera sensor?

• A point might not been seen by the sensor because of occlusion and/or FOV.

There are many ways to project a 3D point to a 2D pixel. The most common
one is “perspective projection”.

• It simulates a pinhole camera model, which is roughly how human eyes work; many
cameras are built to mimic human eyes.

• But there are other projections that you can implement (after all, graphics is just
simulation), and many cameras that are built not to mimic human eyes (e.g., fish-eye
cameras).

29

Convention: Placing Image Plane Before Camera

We assume the sensor is in front of the
pinhole — not possible physically, but
simplifies drawing.

• Of course the image is not upside down
anymore.

• Scene points could be either before or after
the image plane, i.e, does not artificially
restrict where a scene point can be.

30

248 Chapter 5 Viewing

Model-view Projection Perspective
division

FIGURE 5.33 Projection pipeline.

5.6 PERSPECTIVE PROJECTIONS WITH WEBGL

The projections that we developed in Section 5.5 did not take into account the prop-
erties of the camera: the focal length of its lens or the size of the film plane. Figure 5.34
shows the angle of view for a simple pinhole camera, like the one that we discussed
in Chapter 1. Only those objects that fit within the angle (or field) of view of the
camera appear in the image. If the back of the camera is rectangular, only objects
within an infinite pyramid—the view volume—whose apex is at the COP can appear
in the image. Objects not within the view volume are said to be clipped out of the
scene. Hence, our description of simple projections has been incomplete; we did not
include the effects of clipping.

With most graphics APIs, the application program specifies clipping parameters
through the specification of a projection. The infinite pyramid in Figure 5.34 becomes
a finite clipping volume by adding front and back clipping planes, in addition to the
angle of view, as shown in Figure 5.35. The resulting view volume is a frustum—a
truncated pyramid. We have fixed only one parameter by specifying that the COP is
at the origin in the camera frame. In principle, we should be able to specify each of
the six sides of the frustum to have almost any orientation. If we did so, however,
we would make it difficult to specify a view in the application and complicate the
implementation. In practice, we rarely need this flexibility, and usually we can get by
with only two perspective viewing functions. Other APIs differ in their function calls
but incorporate similar restrictions.

Angle of view

FIGURE 5.34 Specification of a view volume.

Interactive Computer Graphics with WebGL 7ed, Angel & Shreiner

Perspective Projection

Goal: convert P [x, y, z] to pixel
coordinates [u, v] on the sensor (with
H x W pixels and a focal length d)
using a transformation matrix.

We will do that in two general steps
(many caveats will be discussed later):

• Perspectively project P[x, y, z] to P’[x’, y’,
d] in the image plane (still in the camera
space).

• Convert P’ to the pixel coordinates [u, v].

31

z

y
P [x, y, z]

Image plane/
sensor

Camera
center

Focal length d

[u, v]

Px

Pyx

Convention: camera looks down z and looks
up to y. Positive z is the viewing direction.

P’ [x’, y’]

Perspective Projection

32

d z

y z
x

y
P [x, y, z]

P’ [x’, y’]

Focal length d

P [x, y, z]

P’ [x’, y’, z’]

Image plane/
sensor

Camera
center

y′ =
y
z

dx′ =
x
z

d z′ = d

Perspective Projection Matrix

33

y′ =
y
z

dx′ =
x
z

dT00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[[x, y, z, 1] x

z′ = d

= [x’, y’, z’, 1]

x’ = xT00 + yT10 + zT20 + T30 = xf/z

d/z 0 0 0

Perspective Projection Matrix

33

y′ =
y
z

dx′ =
x
z

dT00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[[x, y, z, 1] x

z′ = d

= [x’, y’, z’, 1]

x’ = xT00 + yT10 + zT20 + T30 = xf/z

No T00, T10, T20, T30 would
satisfy this universally!

d/z 0 0 0

Perspective Projection Matrix

34

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[[x, y, z, 1] x = [x’k, y’k, z’k, k]

y′ =
y
z

dx′ =
x
z

d z′ = d

Perspective Projection Matrix

34

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[[x, y, z, 1] x = [x’k, y’k, z’k, k]

k = xT03 + yT13 + zT23 + T33 = z

0 0 1 0

y′ =
y
z

dx′ =
x
z

d z′ = d

Perspective Projection Matrix

34

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[[x, y, z, 1] x = [x’k, y’k, z’k, k]

k = xT03 + yT13 + zT23 + T33 = z

0 0 1 0

0
0
1
0

y′ =
y
z

dx′ =
x
z

d z′ = d

Perspective Projection Matrix

34

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[[x, y, z, 1] x = [x’k, y’k, z’k, k]

k = xT03 + yT13 + zT23 + T33 = z

0 0 1 0

0
0
1
0

z’k = fk = fz = xT02 + yT12 + zT22 + T32

d0 00

y′ =
y
z

dx′ =
x
z

d z′ = d

Perspective Projection Matrix

34

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[[x, y, z, 1] x = [x’k, y’k, z’k, k]

k = xT03 + yT13 + zT23 + T33 = z

0 0 1 0

0
0
1
0

z’k = fk = fz = xT02 + yT12 + zT22 + T32

d0 00

0
0
d
0

y′ =
y
z

dx′ =
x
z

d z′ = d

Perspective Projection Matrix

34

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[[x, y, z, 1] x = [x’k, y’k, z’k, k]

k = xT03 + yT13 + zT23 + T33 = z

0 0 1 0

0
0
1
0

y’k = yf = xT01 + yT11 + zT21 + T31

d0 0 0

z’k = fk = fz = xT02 + yT12 + zT22 + T32

d0 00

0
0
d
0

y′ =
y
z

dx′ =
x
z

d z′ = d

Perspective Projection Matrix

34

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[[x, y, z, 1] x = [x’k, y’k, z’k, k]

k = xT03 + yT13 + zT23 + T33 = z

0 0 1 0

0
0
1
0

y’k = yf = xT01 + yT11 + zT21 + T31

d0 0 0

0
d
0
0

z’k = fk = fz = xT02 + yT12 + zT22 + T32

d0 00

0
0
d
0

y′ =
y
z

dx′ =
x
z

d z′ = d

Perspective Projection Matrix

34

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[[x, y, z, 1] x = [x’k, y’k, z’k, k]

x’k = xf = xT00 + yT10 + zT20 + T30

d 0 0 0

k = xT03 + yT13 + zT23 + T33 = z

0 0 1 0

0
0
1
0

y’k = yf = xT01 + yT11 + zT21 + T31

d0 0 0

0
d
0
0

z’k = fk = fz = xT02 + yT12 + zT22 + T32

d0 00

0
0
d
0

y′ =
y
z

dx′ =
x
z

d z′ = d

Perspective Projection Matrix

34

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[[x, y, z, 1] x = [x’k, y’k, z’k, k]

x’k = xf = xT00 + yT10 + zT20 + T30

d 0 0 0

k = xT03 + yT13 + zT23 + T33 = z

0 0 1 0

0
0
1
0

d
0
0
0

y’k = yf = xT01 + yT11 + zT21 + T31

d0 0 0

0
d
0
0

z’k = fk = fz = xT02 + yT12 + zT22 + T32

d0 00

0
0
d
0

y′ =
y
z

dx′ =
x
z

d z′ = d

Perspective Projection Matrix

34

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33
[[[x, y, z, 1] x = [x’k, y’k, z’k, k]

x’k = xf = xT00 + yT10 + zT20 + T30

d 0 0 0

k = xT03 + yT13 + zT23 + T33 = z

0 0 1 0

0
0
1
0

d
0
0
0

y’k = yf = xT01 + yT11 + zT21 + T31

d0 0 0

0
d
0
0

z’k = fk = fz = xT02 + yT12 + zT22 + T32

d0 00

0
0
d
0 = [xd, yd, zd, z] ⇒ [xd/z, yd/z, d]

Homogeneous coordinates Cartesian coordinates

y′ =
y
z

dx′ =
x
z

d z′ = d

Mind the Z-Axis

Our matrix so far will always
translate z-coordinate of any P to
the same z’ = d. Good?

P1 and P2 are projected to the
same point P’, but P1 is visible and
P2 is not: critical for a rendering
engine to know.

Somehow we need to make sure
z1’ < z2’ after projection.

35

z
x

y
P’ [x’, y’]

Focal length d

d z

y

P1 [x1, y1, z1]

P’ [x’, y’]

P2 [x2, y2, z2]

P1 [x1, y1, z1]

P2 [x2, y2, z2]

T00, T01, T02, T03
T10, T11, T12, T13
T20, T21, T22, T23
T30, T31, T32, T33

Maintaining Z-Order: Try 1

Try 1: keep z the same before and after transformation

Problem: No one single matrix that universally works for all possible z values

36

f z

y

P1 [x1, y1, z1]

P’ [x’, y’]

P2 [x2, y2, z2]y′ =
y
z

fx′ =
x
z

f z′ = z

[[0
0
1
0

f
0
0
0

0
f
0
0

z’k = zk = z2 = xT00 + yT10 + zT20 + T30

[x, y, z, 1] x = [x’k, y’k, z’k, k]

Maintaining Z-Order: Idea

Idea: project the smallest z to 0 and largest z to 1 (or other fixed ranges).
• There is an artificial “near clipping plane” n and an artificial “far clipping” plane f.
• Only points between these two planes are visible to the camera.

• Image plane can be anywhere; technically not related to Near and Far clipping planes.

37

d z

y

P1

P’ [x’, y’]
P2

Image
plane

n f0

-1 1

z

z’

Maintaining Z-Order: Idea

Idea: project the smallest z to 0 and largest z to 1 (or other fixed ranges).
• There is an artificial “near clipping plane” n and an artificial “far clipping” plane f.
• Only points between these two planes are visible to the camera.

• Image plane can be anywhere; technically not related to Near and Far clipping planes.

37

d z

y

P1

P’ [x’, y’]
P2

Near clipping
plane (n)

Image
plane

n f0

-1 1

z

z’

Maintaining Z-Order: Idea

Idea: project the smallest z to 0 and largest z to 1 (or other fixed ranges).
• There is an artificial “near clipping plane” n and an artificial “far clipping” plane f.
• Only points between these two planes are visible to the camera.

• Image plane can be anywhere; technically not related to Near and Far clipping planes.

37

d z

y

P1

P’ [x’, y’]
P2

Far clipping
plane (f)

Near clipping
plane (n)

Image
plane

n f0

-1 1

z

z’

Maintaining Z-Order: Solution

38

z’k = z’z = xT02 + yT12 + zT22 + T320

-1 1

z

z’ 0 0

[x y z 1] ×

d 0 0 0
0 d 0 0
0 0 f + n

f − n 1

0 0 −2fn
f − n 0

=

xd
yd

z(f + n) − 2fn
f − n
z

⟹

xd
z

yd
z

z(f + n) − 2fn
z(f − n)

1
T32

T22

n f

T12
T02

[x′ k y′ k z′ k k]

Maintaining Z-Order: Solution

38

z’k = z’z = xT02 + yT12 + zT22 + T320

-1 1

z

z’ 0 0

[x y z 1] ×

d 0 0 0
0 d 0 0
0 0 f + n

f − n 1

0 0 −2fn
f − n 0

=

xd
yd

z(f + n) − 2fn
f − n
z

⟹

xd
z

yd
z

z(f + n) − 2fn
z(f − n)

1
T32

T22

n f

[x′ k y′ k z′ k k]

Maintaining Z-Order: Solution

38

z’k = z’z = xT02 + yT12 + zT22 + T320

-1 1

z

z’

nT22 + T32 = -n
fT22 + T32 = f

0 0

[x y z 1] ×

d 0 0 0
0 d 0 0
0 0 f + n

f − n 1

0 0 −2fn
f − n 0

=

xd
yd

z(f + n) − 2fn
f − n
z

⟹

xd
z

yd
z

z(f + n) − 2fn
z(f − n)

1
T32

T22

n f

[x′ k y′ k z′ k k]

Maintaining Z-Order: Solution

38

z’k = z’z = xT02 + yT12 + zT22 + T320

-1 1

z

z’

nT22 + T32 = -n
fT22 + T32 = f

0 0

T22 = (f+n)/(f-n)
T32 = -2fn/(f-n)

[x y z 1] ×

d 0 0 0
0 d 0 0
0 0 f + n

f − n 1

0 0 −2fn
f − n 0

=

xd
yd

z(f + n) − 2fn
f − n
z

⟹

xd
z

yd
z

z(f + n) − 2fn
z(f − n)

1
T32

T22

n f

[x′ k y′ k z′ k k]

Maintaining Z-Order: Solution

38

z’k = z’z = xT02 + yT12 + zT22 + T320

-1 1

z

z’

nT22 + T32 = -n
fT22 + T32 = f

0 0

T22 = (f+n)/(f-n)
T32 = -2fn/(f-n)

[x y z 1] ×

d 0 0 0
0 d 0 0
0 0 f + n

f − n 1

0 0 −2fn
f − n 0

=

xd
yd

z(f + n) − 2fn
f − n
z

⟹

xd
z

yd
z

z(f + n) − 2fn
z(f − n)

1

n f

[x′ k y′ k z′ k k]

Maintaining Z-Order: Solution

38

z’k = z’z = xT02 + yT12 + zT22 + T320

-1 1

z

z’

nT22 + T32 = -n
fT22 + T32 = f

0 0

T22 = (f+n)/(f-n)
T32 = -2fn/(f-n)

[x y z 1] ×

d 0 0 0
0 d 0 0
0 0 f + n

f − n 1

0 0 −2fn
f − n 0

=

xd
yd

z(f + n) − 2fn
f − n
z

⟹

xd
z

yd
z

z(f + n) − 2fn
z(f − n)

1

n f

What About This Matrix?

39

[x y z 1] ×

d 0 0 0
0 d 0 0
0 0 0 1
0 0 1 0

= [xd yd 1 z] ⟺ [
xd
z

yd
z

1
z

]

The new z after transformation is inversely proportionally to depth. We don’t
need the near and far clipping planes any more.

• The visible region is no longer bounded.

This in theory is OK, but not used in practice:
• Numerical precision issue trickles in: 1/z could be too small or too large, exceeding

digital number representation precision. No need to render objects too far anyways.

See CGPP, Chapter 13.3

d 0 0 0
0 d 0 0
0 0 f + n

f − n 1

0 0 −2fn
f − n 0

Perspective Transformation Matrix (So Far)

Perspective projection:
• is not an affine transformation, which preserves line parallelisms.

• is a special case of projective transformation (a.k.a., homography), where all 16
coefficients can take arbitrary values (but only 15 free parameters/degrees of freedom
because uniformly scaling all coefficients doesn’t change the transformation)

• is not needed in/used by ray tracing.

• models only pinhole cameras (not enough to simulate depth of field, etc.)
40

Perspective Projection Affine Transformation

T00 T01 T02 0
T10 T11 T12 0
T20 T21 T22 0
T30 T31 T32 1

5.6 Perspective Projections with WebGL 249

COP

View
plane

Front
clipping
plane

Back
clipping
plane

View volume

FIGURE 5.35 Front and back clipping planes.

x

y

z

(left, bottom, –near)

(right, top, –near)
z = –near

z = –far

FIGURE 5.36 Specification of a frustum.

5.6.1 Perspective Functions
We will develop two functions for specifying perspective views and one for specifying
parallel views. Alternatively, we can form the projection matrix directly, either by
loading it or by applying rotations, translations, and scalings to an initial identity
matrix. We can specify a perspective camera view by the function

frustum = function(left, right, bottom, top, near, far)

whose parameters are similar to those in ortho. These parameters are shown in Fig-
ure 5.36 in the camera frame. The near and far distances are measured from the COP
(the origin in eye coordinates) to the front and back clipping planes, both of which
are parallel to the plane z = 0. Because the camera is pointing in the negative z direc-
tion, the front (near) clipping plane is the plane z = −near and the back (far) clipping
plane is the plane z = −far. The left, right, top, and bottom values are measured in the
near (front clipping) plane. The plane x = left is to the left of the camera as viewed
from the COP in the direction the camera is pointing. Similar statements hold for
right, bottom, and top. Although in virtually all applications far > near > 0, as

Viewing Frustum

41Interactive Computer Graphics with WebGL 7ed, Angel & Shreiner

(right, top, far)

(left, bottom, near)

Viewing frustum

Near plane

Far plane

So far the visible part of the scene is
clipped by the near and far planes.

But the visible region should also be
bounded by the FOV (both
horizontal and vertical) of the sensor.

d
z

y FN

Image
plane

FOVy

tan
FOVy

2
=

top
near

tan
FOVx

2
=

right
near

Viewing Frustum

The visible part of the scene is
actually a frustum.

In rendering, we generally first map
the frustum to a normalized cube
that is independent of the actual
sensor resolution.

• Then map the cube to the actual
sensor resolution; in this way, any
processing before that is decoupled
from the sensor, which could change.

42Interactive Computer Graphics with WebGL 7ed, Angel & Shreiner

5.6 Perspective Projections with WebGL 249

COP

View
plane

Front
clipping
plane

Back
clipping
plane

View volume

FIGURE 5.35 Front and back clipping planes.

x

y

z

(left, bottom, –near)

(right, top, –near)
z = –near

z = –far

FIGURE 5.36 Specification of a frustum.

5.6.1 Perspective Functions
We will develop two functions for specifying perspective views and one for specifying
parallel views. Alternatively, we can form the projection matrix directly, either by
loading it or by applying rotations, translations, and scalings to an initial identity
matrix. We can specify a perspective camera view by the function

frustum = function(left, right, bottom, top, near, far)

whose parameters are similar to those in ortho. These parameters are shown in Fig-
ure 5.36 in the camera frame. The near and far distances are measured from the COP
(the origin in eye coordinates) to the front and back clipping planes, both of which
are parallel to the plane z = 0. Because the camera is pointing in the negative z direc-
tion, the front (near) clipping plane is the plane z = −near and the back (far) clipping
plane is the plane z = −far. The left, right, top, and bottom values are measured in the
near (front clipping) plane. The plane x = left is to the left of the camera as viewed
from the COP in the direction the camera is pointing. Similar statements hold for
right, bottom, and top. Although in virtually all applications far > near > 0, as

(right, top, far)

(left, bottom, near)

Viewing frustum

Near plane

Far plane

Viewing Frustum

43

5.6 Perspective Projections with WebGL 249

COP

View
plane

Front
clipping
plane

Back
clipping
plane

View volume

FIGURE 5.35 Front and back clipping planes.

x

y

z

(left, bottom, –near)

(right, top, –near)
z = –near

z = –far

FIGURE 5.36 Specification of a frustum.

5.6.1 Perspective Functions
We will develop two functions for specifying perspective views and one for specifying
parallel views. Alternatively, we can form the projection matrix directly, either by
loading it or by applying rotations, translations, and scalings to an initial identity
matrix. We can specify a perspective camera view by the function

frustum = function(left, right, bottom, top, near, far)

whose parameters are similar to those in ortho. These parameters are shown in Fig-
ure 5.36 in the camera frame. The near and far distances are measured from the COP
(the origin in eye coordinates) to the front and back clipping planes, both of which
are parallel to the plane z = 0. Because the camera is pointing in the negative z direc-
tion, the front (near) clipping plane is the plane z = −near and the back (far) clipping
plane is the plane z = −far. The left, right, top, and bottom values are measured in the
near (front clipping) plane. The plane x = left is to the left of the camera as viewed
from the COP in the direction the camera is pointing. Similar statements hold for
right, bottom, and top. Although in virtually all applications far > near > 0, as

Interactive Computer Graphics with WebGL 7ed, Angel & Shreiner

(1, 1, -1)

Perspective projection

Canonical view volume (a.k.a.,
Normalized Device Coordinate space)

Viewing frustum

(left, bottom, near)

(-1, -1, -1)

(right, top, far)

Near plane

Far plane

Normalized Device Coordinate (NDC) Space

44
COP

View
plane

Front
clipping
plane

Back
clipping
plane

View volume

Interactive Computer Graphics with WebGL 7ed, Angel & Shreiner

Perspective projection

NDC Space

Viewing frustum

(right x f / near, top x f / near, 1)

(right, top, far)
(1, 1, -1)

NDC Space (in XY Plane)

45

[0, 0]

[ld/n, td/n] [rd/n, td/n]

[ld/n, -td/n] [rd/n, bd/n]

[0, 0]

[-1, 1] [1, 1]

[-1, -1] [1, -1]

NDC SpaceImage Plane (still in
Camera Space)

* The image plane need not be symmetric
about the camera origin (pinhole).

NDC Space (in XY Plane)

46

[0, 0]

[-1, 1] [1, 1]

[-1, -1] [1, -1]

2n
(r − l)d 0 0 0

0 2n
(t − b)d 0 0

0 0 1 0
− r + l

r − l − t + b
t − b 0 1

NDC Space
Keep the z-axis unchanged

in this transformation.

[0, 0]

[ld/n, td/n] [rd/n, td/n]

[ld/n, -td/n] [rd/n, bd/n]

Image Plane (still in
Camera Space)

Overall Perspective Transformation

47

= [x y z 1] ×

2n
r − l 0 0 0

0 2n
t − b 0 0

− r + l
r − l − t + b

t − b
f + n
f − n 1

0 0 −2fn
f − n 0

[x y z 1] ×

d 0 0 0
0 d 0 0
0 0 f + n

f − n 1

0 0 −2fn
f − n 0

×

Perspective projection +
bound the near and far

clipping planes between
[-1, 1] along z-axis

Bound the x and y axes within
the FOV between [-1, 1]

2n
(r − l)d 0 0 0

0 2n
(t − b)d 0 0

0 0 1 0
− r + l

r − l − t + b
t − b 0 1

An Example

48

5.6 Perspective Projections with WebGL 249

COP

View
plane

Front
clipping
plane

Back
clipping
plane

View volume

FIGURE 5.35 Front and back clipping planes.

x

y

z

(left, bottom, –near)

(right, top, –near)
z = –near

z = –far

FIGURE 5.36 Specification of a frustum.

5.6.1 Perspective Functions
We will develop two functions for specifying perspective views and one for specifying
parallel views. Alternatively, we can form the projection matrix directly, either by
loading it or by applying rotations, translations, and scalings to an initial identity
matrix. We can specify a perspective camera view by the function

frustum = function(left, right, bottom, top, near, far)

whose parameters are similar to those in ortho. These parameters are shown in Fig-
ure 5.36 in the camera frame. The near and far distances are measured from the COP
(the origin in eye coordinates) to the front and back clipping planes, both of which
are parallel to the plane z = 0. Because the camera is pointing in the negative z direc-
tion, the front (near) clipping plane is the plane z = −near and the back (far) clipping
plane is the plane z = −far. The left, right, top, and bottom values are measured in the
near (front clipping) plane. The plane x = left is to the left of the camera as viewed
from the COP in the direction the camera is pointing. Similar statements hold for
right, bottom, and top. Although in virtually all applications far > near > 0, as

(left, bottom, near)

(-1, -1, -1)

Perspective projection

NDC Space

Viewing frustum

[l b n 1] ×

2n
r − l 0 0 0

0 2n
t − b 0 0

− r + l
r − l − t + b

t − b
f + n
f − n 1

0 0 −2fn
f − n 0

=

−n
−n

n(f + n) − 2fn
f − n
n

=
−n
−n
−n
n

⟹

−1
−1
−1
1

The Matrix is Independent of Focal Length

The perspective matrix is completely independent of the focal length d.
• It does depend on r, l, t, d, n, f, which uniquely define a frustum.

• r, l, t, d, n, f are related by the FOV (x and y) of the sensor.

Because the matrix transforms the visible region of the scene to a normalized
cube, and given a FOV, what’s visible to the camera is fixed, i.e., the frustum.

• In OpenGL/WebGL, the near clipping plane is placed at the focal length so that d never
shows up during the derivation, but that’s unnecessary and a bit confusing.

49

2n
r − l 0 0 0

0 2n
t − b 0 0

− r + l
r − l − t + b

t − b
f + n
f − n 1

0 0 −2fn
f − n 0d z

y FN

Image
plane

FOVy

Generating Pixel Coordinates in Screen Space

50

[0, 0]

[-1, 1] [1, 1]

[-1, -1] [1, -1]

NDC Space

[0, 0]

[ld/n, td/n] [rd/n, td/n]

[ld/n, -td/n] [rd/n, bd/n]

Image Plane (still in
Camera Space)

[0, 0]

[Px-1, Py-1]

-0.5 Px - 0.5

Py - 0.5

-0.5

Screen Space

Viewport
Transformation

Notes on Screen Space

Convention: the origin of
the screen space is the
center of the top-left pixel.

The screen space is still
continuous. That is, pixel
coordinates can be
fractional! Later we will
“rasterize” the screen space
to generate actual pixels at
integer coordinates.

51

[0, 0]

[-1, 1] [1, 1]

[-1, -1] [1, -1]

NDC Space

[0, 0]

-0.5 Px - 0.5

Py - 0.5

-0.5

Screen Space

* Note that pixel coordinates
can be fractional!

Viewport
Transformation

[Px-1, Py-1]

52

Rasterization
Shading

Visibility/Blending

Rasterization

Camera Projection

Scene Transformations

Which Pixels are Covered by Each Triangle?

53

Key Question: Is a Point Inside a Triangle?

54

Barycentric Coordinates

55

[xA, yA]

[xB, yB]
[xC, yC]

[x, y]

(x, y) = α(xA, yA) + β(xB, yB) + γ(xC, yC)

α + β + γ = 1

Barycentric Coordinates

56

[xA, yA]

[xB, yB]
[xC, yC]

[x, y]

(x, y) = α(xA, yA) + β(xB, yB) + γ(xC, yC)

α + β + γ = 1

α =
−(x − xB)(yC − yB) + (y − yB)(xC − xB)

−(xA − xB)(yC − yB) + (yA − yB)(xC − xB)

β =
−(x − xC)(yA − yC) + (y − yC)(xA − xC)

−(xB − xC)(yA − yC) + (yB − yC)(xA − xC)

Barycentric Coordinates Examples

57https://en.wikipedia.org/wiki/Barycentric_coordinate_system

Point in Triangle Test

58

[xA, yA]

[xB, yB]
[xC, yC]

V [x, y]

(x, y) = α(xA, yA) + β(xB, yB) + γ(xC, yC)

α + β + γ = 1

For any V that’s inside the triangle:
0 <= α, β, γ <= 1

For any V that’s outside the triangle:
Some of α, β, γ is outside the [0, 1] range.

Rasterization Algorithm (w/ Simple Shading)

59

Foreach triangle in mesh
 Perspective project triangle to canvas;
 Foreach pixel in image
 if (pixel is in the projected triangle)
 pixel.color = triangle.color; // shading

Could first find the
bounding box of the
triangle to narrow the

search space.
Visibility/Blending

Rasterization

Camera Projection

Scene Transformations

Shading

60

Visibility and
Blending

Camera Projection

Scene Transformations

Rasterization

Visibility/Blending

Shading

Visibility (Hidden Surface) Problem

When multiple points in the scene get projected to the same pixel, must
determine which point “wins”, i.e., gets to assign its color to the pixel.

Fortunately, perspective projection maintains the relative point depth.
Determining the relative depth is done using a depth-buffer or a z-buffer.

61

Foreach triangle in mesh
 Perspective project triangle to canvas;
 Foreach pixel in image
 if (pixel is in the projected triangle)
 D = computeDepth(pixel)
 if (D < depthBuffer[pixel])
 shade(pixel)
 depthBuffer[pixel] = D

426 Chapter 8 From Geometry to Pixels

CB

A

COP

FIGURE 8.42 Image-space hidden-surface removal.

FIGURE 8.43 Polygon with
spans.

However, because image-space approaches work at the fragment or pixel level, their
accuracy is limited by the resolution of the framebuffer.

8.11.2 Sorting and Hidden-Surface Removal
The O(k2) upper bound for object-oriented hidden-surface removal might remind
you of the poorer sorting algorithms, such as bubble sort. Any method that involves
brute-force comparison of objects by pairs has O(k2) complexity. But there is a more
direct connection, which we exploited in the object-oriented sorting algorithms in
Section 8.11.1. If we could organize objects by their distances from the camera, we
should be able to come up with a direct method of rendering them.

But if we follow the analogy, we know that the complexity of good sorting al-
gorithms is O(k log k). We should expect the same to be true for object-oriented
hidden-surface removal, and, in fact, such is the case. As with sorting, there are
multiple algorithms that meet these bounds. In addition, there are related problems
involving comparison of objects, such as collision detection, that start off looking as
if they are O(k2) when, in fact, they can be reduced to O(k log k).

8.11.3 Scan Line Algorithms
The attraction of a scan line algorithm is that such a method has the potential to
generate pixels as they are displayed. Consider the polygon in Figure 8.43, with one
scan line shown. If we use our odd–even rule for defining the inside of the polygon,
we can see three groups of pixels, or spans, on this scan line that are inside the
polygon. Note that each span can be processed independently for lighting or depth
calculations, a strategy that has been employed in some hardware that has parallel
span processors. For our simple example of constant fill, after we have identified the
spans, we can color the interior pixels of each span with the fill color.

The spans are determined by the set of intersections of polygons with scan lines.
The vertices contain all the information that we need to determine these intersec-
tions, but the method that we use to represent the polygon determines the order in

Interactive Computer Graphics with WebGL 7ed, Angel & Shreiner

Foreach triangle in mesh
 Perspective project triangle to canvas;
 Foreach pixel in image
 if (pixel is in the projected triangle)
 D = computeDepth(pixel)
 if (D < depthBuffer[pixel])
 shade(pixel)
 depthBuffer[pixel] = D

Calculating Depth

62

zA

zB
zC

We know the depths (z-axis) of triangle
vertices (inverting the perspective matrix).

How about other pixels? Can we interpolate
based on barycentric coordinates?

z?

We know the depths (z-axis) of triangle
vertices (inverting the perspective matrix).

How about other pixels? Can we interpolate
based on barycentric coordinates?

Yes, but the barycentric coordinates need to
be calculated in the camera space (3D), not
in the screen space (2D)!

Calculating Depth

63

zA

zB
zC

z?

Visualizing Depth Map

64http://glampert.com/2014/01-26/visualizing-the-depth-buffer/https://forum.unity.com/threads/how-to-manually-write-to-depth-buffer-before-post-effects.528243/

Alpha Blending

65

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 7 51

Alpha Blending

� Alpha Blending is used to render translucent objects.
� 7KH�SL[HO·V�DOSKD�FRPSRQHQW�FRQWDLQV�LWV�opacity.
� Read-modify-write operation to the color framebuffer
� Result = alpha * Src + (1-alpha) * Dst

25% 50% 75% 100%Opacity:
© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

We can also simulate transparent
materials by blending colors from
different primitives when they map to
the same pixel.

• Use an alpha channel to represent opacity.

This is purely a hack. Not physically
based. Remember how to properly
simulate transparency?

• Will revisit this later.
Color = alpha x Foreground Color + (1 - alpha) * Background Color

66

Aliasing and Anti-Aliasing
in Shading

Simple Shading

Basic assumption: each triangle face is assigned a color.
• …or each triangle vertex has a color, and color of any point inside the triangle is

interpolated (per-vertex shading).

• …or each point’s color is calculated by incident lights and viewing angle (per-fragment
shading); can be empirical or physically-based.

• We will talk about more realistic shading later, but the general idea here applies.

Question: how to assign color to each pixel?
• Simple? If a pixel is inside a triangle, it gets the triangle color.

• Issue: a pixel is a continuous spatial region, not just a point on triangle.

67

Simple Shading

68

Simple Shading

69

Simple Shading

70

Simple Shading

71

Aliasing in Simple Shading

Remember: each image pixel will be sent to the display, which performs a
spatial reconstruction using a box filter. That is, the entire spatial region of a
pixel on the display will have the same color.

Effectively, we have sampled a continuous signal (which most likely is not
band-limited) at a low frequency (equivalent to image resolution), and then
reconstruct the signal using a box filter (on display; not what we can control).

72

What Do Cameras Do?

73

Pixel Array

What Do Cameras Do?

74

Original

What’s
Displayed

Super-Sampling

75

What cameras do is to average energy across the spatial region of a pixel.
• This is equivalent to applying a box filter and then sample once per pixel.

• The filter size is the same as the physical pixel size, but could also be larger if
considering per-pixel micro-lens and anti-aliasing filters.

But in rendering we can’t really take the average, since we don’t know what
the continuous function is.

What we do is to approximate this by super-sampling, i.e., sample many
times for each pixel, and then average the samples within each pixel.

76
Ren NgCS184/284A

Point Sampling: One Sample Per Pixel

Camera Projection

Scene Transformations

Shading

Visibility/Blending

Rasterization

77
Ren NgCS184/284A

Supersampling: Step 1

2x2 supersampling

Take NxN samples in each pixel.
Supersampling is done in the

rasterization stage. Each sample
corresponds to a fragment.
Each fragment is separately
shaded in the shading stage.

Camera Projection

Scene Transformations

Shading

Visibility/Blending

Rasterization

78
Ren NgCS184/284A

Supersampling: Step 2

Averaging down

Average the NxN samples “inside” each pixel.

The averaging takes place
in the blending step.

Camera Projection

Scene Transformations

Shading

Rasterization

Visibility/Blending

79
Ren NgCS184/284A

Supersampling: Step 2
Average the NxN samples “inside” each pixel.

Camera Projection

Scene Transformations

Shading

Rasterization

Visibility/Blending

80
Ren NgCS184/284A

Supersampling: Result
This is the corresponding signal emitted by the display

75%

100% 100% 50%

50%50%50%25%

Camera Projection

Scene Transformations

Shading

Rasterization

Visibility/Blending

Signal Sampling/Reconstruction Perspective

81

2D continuous signal
indecent on the sensor plane

Rendered image, i.e., 2D
discrete signal, one sample

per pixel in the render image

2D continuous signal, i.e.,
reconstruction by the display
(most likely using box filter)

Goal: minimize the
difference between

the two (up to a
scale difference).

“Optical image” in camera imaging
parlance. Never known analytically.

Cameras don’t need to know it
analytically; pixels simply integrate.

This process is what rendering (or
shading specifically) is really about.

We don’t have control over this, but the
rendering should ideally take into

account this filter. Cameras can’t; they
always use box filter, but we should!

Ideal Strategy

Since the continuous signal most
definitely will not be band-limited,
any sampling will lead to aliasing.

The idea is to pre-filter the
continuous signal to band-limit the
signal, since blur is less
objectionable than aliasing.

82

2D continuous signal
indecent on the sensor plane

Rendered image, i.e., 2D
discrete signal, one sample

per pixel in the render image

2D continuous signal, i.e.,
reconstruction by the display
(most likely using box filter)

Goal: minimize the
difference between

the two (up to a
scale difference).

Two Issues with the Ideal Strategy

1. Ideal pre-filtering needs a box
function in frequency domain, i.e.,
a sinc function in spatial domain

• but sinc has infinite support; can’t
realistically implement it.

2. Usually we don’t know the
analytical form of the continuous
function — cameras do.

• And they use a box filter at the pixels
(with potentially other anti-aliasing
filters) for pre-filtering.

83

2D continuous signal
indecent on the sensor plane

Rendered image, i.e., 2D
discrete signal, one sample

per pixel in the render image

2D continuous signal, i.e.,
reconstruction by the display
(most likely using box filter)

Goal: minimize the
difference between

the two (up to a
scale difference).

Camera’s Strategy

84

2D continuous signal
indecent on the sensor plane

Rendered image, i.e., 2D
discrete signal, one sample

per pixel in the render image

2D continuous signal, i.e.,
reconstruction by the display
(most likely using box filter)

Goal: minimize the
difference between

the two (up to a
scale difference).

Box filter: to blur/low-pass filter
the 2D continuous signal.

Pixel sampling: sample the pre-
filtered signal at the pixel

location to generate image.

Rendering Strategy

We don’t know the continuous
function, so we will sample it and
then reconstruct it.

Before the actual pixel sampling,
we will take the opportunity to
pre-filter the reconstructed
continuous signal to band-limit
the signal.

85

2D continuous signal
indecent on the sensor plane

Rendered image, i.e., 2D
discrete signal, one sample

per pixel in the render image

2D continuous signal, i.e.,
reconstruction by the display
(most likely using box filter)

Goal: minimize the
difference between

the two (up to a
scale difference).

Rendering Strategy

86

2D continuous signal
indecent on the sensor plane

Rendered image, i.e., 2D
discrete signal, one sample

per pixel in the render image

2D continuous signal, i.e.,
reconstruction by the display
(most likely using box filter)

Goal: minimize the
difference between

the two (up to a
scale difference).

Supersample: sample the 2D
continuous function at a rate

higher than the pixel resolution.

Pixel sampling: sample the pre-
filtered signal at the pixel

location to generate image.

Pre-filter: low-pass filter to
band-limit the reconstructed

signal above.

Reconstruction filter:
reconstruct a continuous signal

from the supersamples.

Rendering Strategy

86

2D continuous signal
indecent on the sensor plane

Rendered image, i.e., 2D
discrete signal, one sample

per pixel in the render image

2D continuous signal, i.e.,
reconstruction by the display
(most likely using box filter)

Goal: minimize the
difference between

the two (up to a
scale difference).

Supersample: sample the 2D
continuous function at a rate

higher than the pixel resolution.

Pixel sampling: sample the pre-
filtered signal at the pixel

location to generate image.

Pre-filter: low-pass filter to
band-limit the reconstructed

signal above.

Reconstruction filter:
reconstruct a continuous signal

from the supersamples.
Combine the two filters
(convolution) using one
single filter: convolution

is associative.

A Few Notes

87

The combined filter can be a box filter, or any other filter. There are many
filters that people have experimented; ultimately, there is virtually no hope
for perfect reconstruction on the display, so it’s all about the empirical
rendering quality.

• See: https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/
Image_Reconstruction

Can also use non-uniform sampling, or filter beyond a pixel’s spatial region.

This discussion is general to any shading, not just in rasterization pipeline.

https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Image_Reconstruction
https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Image_Reconstruction

Rasterization Pipeline Summary

88

Scene Transformations

Rasterization

Shading

Visibility/Blending

Command/Data Streams

To display

Both manipulate triangle vertices and so are lumped together
as “vertex processing”, which is made programmable in

rasterization pipeline to allow custom transformations.Camera Projection

248 Chapter 5 Viewing

Model-view Projection Perspective
division

FIGURE 5.33 Projection pipeline.

5.6 PERSPECTIVE PROJECTIONS WITH WEBGL

The projections that we developed in Section 5.5 did not take into account the prop-
erties of the camera: the focal length of its lens or the size of the film plane. Figure 5.34
shows the angle of view for a simple pinhole camera, like the one that we discussed
in Chapter 1. Only those objects that fit within the angle (or field) of view of the
camera appear in the image. If the back of the camera is rectangular, only objects
within an infinite pyramid—the view volume—whose apex is at the COP can appear
in the image. Objects not within the view volume are said to be clipped out of the
scene. Hence, our description of simple projections has been incomplete; we did not
include the effects of clipping.

With most graphics APIs, the application program specifies clipping parameters
through the specification of a projection. The infinite pyramid in Figure 5.34 becomes
a finite clipping volume by adding front and back clipping planes, in addition to the
angle of view, as shown in Figure 5.35. The resulting view volume is a frustum—a
truncated pyramid. We have fixed only one parameter by specifying that the COP is
at the origin in the camera frame. In principle, we should be able to specify each of
the six sides of the frustum to have almost any orientation. If we did so, however,
we would make it difficult to specify a view in the application and complicate the
implementation. In practice, we rarely need this flexibility, and usually we can get by
with only two perspective viewing functions. Other APIs differ in their function calls
but incorporate similar restrictions.

Angle of view

FIGURE 5.34 Specification of a view volume.

Rasterization Pipeline Summary

89

Rasterization

Shading

Visibility/Blending

Command/Data Streams

Vertex Processing

Vertex Stream

To display

A vertex shader that describes how to transform a
vertex; the shader is applied to all vertices.

uniform float t;
attribute vec4 vel;

const vec4 g = vec4(0.0, -9.8, 0.0);

void main() {
 vec4 position = gl_Vertex;
 position += t*vel + t*t*g;

 gl_Position = gl_ModelViewProjectionMatrix * position
}

Rasterization Pipeline Summary

90

Command/Data Streams

Vertex Processing

Vertex Stream

Fragment Stream

Rasterization

To display

Visibility/Blending

Shading

Potentially super-sampling

Rasterization Pipeline Summary

91

Rasterization

Command/Data Streams

Vertex Processing

Vertex Stream

Fragment Stream

To display

Visibility/Blending

Shading

Calculating colors for each fragment. This is abstracted
as “fragment processing”, which, like vertex

processing, is programmable in rasterization pipeline.

Rasterization Pipeline Summary

92

Rasterization

Command/Data Streams

Vertex Processing

Vertex Stream

Fragment Stream

Fragment Processing

Shaded Fragments

To display

Visibility/Blending

A fragment shader code that calculates fragment
color; the shader is applied to all fragments.

Texture mapping is fragment processing too (later).

uniform sampler2D myTexture;
uniform vec3 lightDir;
varying vec2 uv;
varying vec3 norm;

void diffuseShader() {
 vec3 kd;
 kd = texture2d(myTexture, uv);
 kd *= clamp(dot(-lightDir, norm), 0.0, 1.0);

 gl_FragColor = vec4(kd, 1.0);
}

Rasterization Pipeline Summary

93

Rasterization

Framebuffer Operation

To display

Command/Data Streams

Vertex Processing

Vertex Stream

Fragment Stream

Fragment Processing

Shaded Fragments
(a.k.a., Raster

Operation/ROP)

Blending

Z-buffer
visibility test

Anti-aliasing

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 7 51

Alpha Blending

� Alpha Blending is used to render translucent objects.
� 7KH�SL[HO·V�DOSKD�FRPSRQHQW�FRQWDLQV�LWV�opacity.
� Read-modify-write operation to the color framebuffer
� Result = alpha * Src + (1-alpha) * Dst

25% 50% 75% 100%Opacity:
© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Ren NgCS184/284A

Supersampling: Result
This is the corresponding signal emitted by the display

75%

100% 100% 50%

50%50%50%25%

Massively Parallel Processing

94

• 100’s of thousands to millions of triangles in a scene
• Complex vertex and fragment shader computations
• High resolution (3-5+ megapixel + supersampling)
• 30-60 frames per second (even higher for VR)

Slide credit: Ren Ng

95

Rasterization GPU Hardware

96
N

EE382N: Principles of Computer Architecture

12:KDW·V�LQ�D�*38"

12

Shader
Core

Shader
Core

Shader
Core

Shader
Core

Shader
Core

Shader
Core

Shader
Core

Shader
Core

Tex

Tex

Tex

Tex

Input Assembly

Rasterizer

Output Blend

Video Decode

Work
Distributor

Heterogeneous chip multi-processor (highly tuned for graphics)

Kayvon Fatahalian, 2008Kayvon Fatahalian

GPU Hardware (Maxwell)

97https://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3

Fixed-function units
(no programmability)

• Each Stream Multiprocessor (SM)
contains massively parallel
computing units for processing
vertices and fragments.

• There are many SMs. Each can
execute a different program.

Inside an SM

98https://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/3

Running shaders
(vertex and fragment)

Cache for texture maps
(exploits data access
patterns to the texture map)

Texture sampling units

99
N

EE382N: Principles of Computer Architecture

15Execute shader

15

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

Kayvon Fatahalian, 2008Kayvon Fatahalian

100
N

EE382N: Principles of Computer Architecture

23Two cores (two fragments in parallel)

23

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 1

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 2

Kayvon Fatahalian, 2008Kayvon Fatahalian

101
N

EE382N: Principles of Computer Architecture

24Four cores (four fragments in parallel)

24

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

Kayvon Fatahalian, 2008Kayvon Fatahalian

102
N

EE382N: Principles of Computer Architecture

25Sixteen cores (sixteen fragments in parallel)

25

ALU ALU

ALUALU

ALU ALU

ALUALU

ALU ALU

ALUALU

ALU ALU

ALUALU

16 cores = 16 simultaneous instruction streams

Kayvon Fatahalian, 2008Kayvon Fatahalian

103
N

EE382N: Principles of Computer Architecture

26Instruction stream coherence

26

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

%XW«�PDQ\�IUDJPHQWV�should
be able to share an instruction
stream!

Kayvon Fatahalian, 2008Kayvon Fatahalian

N
EE382N: Principles of Computer Architecture

28Add ALUs

28

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processingCtx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

Kayvon Fatahalian, 2008Kayvon Fatahalian 104N
EE382N: Principles of Computer Architecture

27Recall: simple processing core

27

Fetch/
Decode

ALU
(Execute)

Execution
Context

Kayvon Fatahalian, 2008Kayvon Fatahalian

Single Shader Program Multiple Fragments/Vertices

105
N

EE382N: Principles of Computer Architecture

31Modifying the shader

31

Fetch/
Decode

<VEC8_diffuseShader>:

VEC8_sample vec_r0, vec_v4, t0, vec_s0

VEC8_mul vec_r3, vec_v0, cb0[0]

VEC8_madd vec_r3, vec_v1, cb0[1], vec_r3

VEC8_madd vec_r3, vec_v2, cb0[2], vec_r3

VEC8_clmp vec_r3, vec_r3, l(0.0), l(1.0)

VEC8_mul vec_o0, vec_r0, vec_r3

VEC8_mul vec_o1, vec_r1, vec_r3

VEC8_mul vec_o2, vec_r2, vec_r3

VEC8_mov vec_o3, l(1.0)

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

2 31 4

6 75 8

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

Kayvon Fatahalian, 2008Kayvon Fatahalian

106
N

EE382N: Principles of Computer Architecture

32128 fragments in parallel

32
= 16 simultaneous instruction streams

16 cores = 128 ALUs

Kayvon Fatahalian, 2008Kayvon Fatahalian

16 SMs, each with 8 ALUs. Each SM runs the same program (fragment shader)

107
N

EE382N: Principles of Computer Architecture

33128 [] in parallel

33

vertices / fragments
primitives

CUDA threads
OpenCL work items

compute shader threads

primitives

vertices

fragments

Kayvon Fatahalian, 2008Kayvon Fatahalian

16 SMs, each with 8 ALUs. Each SM runs a different program (shader)

108N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 7

59Vertex and Fragment Processing Share
Unified Processing Elements
� Load balancing HW is a problem

Heavy Geometry
Workload Perf = 4

Vertex Shader

Pixel Shader

Idle hardware

Heavy Pixel
Workload Perf = 8

Vertex Shader

Pixel Shader

Idle hardware

© NVIDIA Corp., 2007

109N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 7

60Vertex and Fragment Processing Share
Unified Processing Elements
� Load balancing SW is easier

Heavy Geometry
Workload Perf = 11

Unified Shader

Pixel

Vertex Workload

Heavy Pixel
Workload Perf = 11

Unified Shader

Vertex

Pixel Workload

© NVIDIA Corp., 2007

