
Yuhao Zhu 
http://yuhaozhu.com

Lecture 14: Feedback Loops in 
Camera: The 3A Algorithms

CSC 292/572, Fall 2022 
Mobile Visual Computing



Logistics

WA4 released. The last written assignment. 

Will post PA2 soon.
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Image Signal 
Processing 

(Signal reconstruction)

Where Are We

Optics 
(Gather light)

Image Sensing 
(Optical to electrical 

signal transformation)

Computer Vision 
(Semantics 

understanding)

Human Visual 
System 

(Eye, visual cortex)

Display 
(Generating lights)

Physical Scene 
(Objects, lights)

Modeling 
(Scene, optics)

Computer Graphics 
(Simulating light 

transport/lenses/etc.)

Video/Image 
De/Compression

Cloud/Storage
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The Roadmap
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Theoretical Preliminaries

Human Visual Systems

Color in Nature, Arts, Tech 
(a.k.a., the birth, life, and death of light)

Digital Camera Imaging

Modeling and Rendering

Applications

Optics in Camera

Image Sensor
Image Signal Processing

Image/Video Compression

Immersive Content
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RAW Pixels

Lens Sensor

Auto Exposure
Auto Focus

AWB AE AF

Auto White Balance

Demosaic
WB & Color 
Correction

HDR & Tone 
Mapping

Denoising Compression

The Feedback Loops



Feedback
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https://www.servethehome.com/nvidia-jetson-agx-xavier-module-for-robotics-development/nvidia-jetson-agx-xavier-soc/

Camera subsystem in 
Nvidia TX1 SoC

https://on-demand.gputechconf.com/gtc/2016/webinar/getting-started-jetpack-camera-api.pdf



Feedback

�7https://on-demand.gputechconf.com/gtc/2016/webinar/getting-started-jetpack-camera-api.pdf
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Auto White Balance

What Are They?

Auto Focus Auto Exposure
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Auto White Balance

What Are They?

Auto Focus Auto Exposure

Word of caution: 3A are very subjective!
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RAW Pixels

Lens Sensor

Auto Exposure
Auto Focus

AWB AE AF

Auto White Balance

Demosaic
WB & Color 
Correction

HDR & Tone 
Mapping
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Auto White Balance
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Does it look white? 
Should it look white?

https://photographylife.com/what-is-white-balance-in-photography
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Does it look white? 
Should it look white?

https://photographylife.com/what-is-white-balance-in-photography

It doesn’t look white as we are looking at the photo now, but would look 
white to our eyes when we were sitting in front of it at the moment.



“Color Constancy”

�11https://www.dpmag.com/how-to/shooting/what-is-white-balance-on-your-camera/

Objective colors under different illuminants 
are very different, but our subjective color 

perception is not nearly that different.
Clear blue poleward sky Overcast daylight sky



“Color Constancy”

�12https://photovideocreative.com/en/have-color-neutral-photo-with-smartphone-neither-too-bluish-nor-too-orange/

The objective color of 
the scene. Color is 

reddish because the 
illuminant is ~tungsten.

The color you actually 
see when in the scene.



Color Constancy and Chromatic Adaption

Human visual system adjusts to changes in 
illumination to preserve the relatively 
constant appearance of “white”.

�13https://www.cg.tuwien.ac.at/research/publications/2009/wilkie-2009-cc/



Color Constancy and Chromatic Adaption

Human visual system adjusts to changes in 
illumination to preserve the relatively 
constant appearance of “white”.

Informally, a white paper is seen as white 
under many light sources. But different light 
sources actually have very different colors.

�13https://www.cg.tuwien.ac.at/research/publications/2009/wilkie-2009-cc/



Color Constancy and Chromatic Adaption

Human visual system adjusts to changes in 
illumination to preserve the relatively 
constant appearance of “white”.

Informally, a white paper is seen as white 
under many light sources. But different light 
sources actually have very different colors.

Appearances of other colors adapt too, but 
don’t adapt fully.

�13https://www.cg.tuwien.ac.at/research/publications/2009/wilkie-2009-cc/



Von Kries Chromatic Adaption Model

Hypothesis: The cone responses adapt to the 
illuminant. Cones become more/less sensitive 
depending on the illuminant. 

• Each cone adapts independently. 

• Each cone’s “adaption factor” is inversely 
proportional to the cone's responses of the 
illuminant itself.

�14Color Imaging: Fundamentals and Applications (1e)
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10.3. Mechanisms of Chromatic Adaptation 535

focusing on the top frame for about 60 seconds, one should move one’s gaze to the
bottom frame. The image shown on the bottom should now look approximately
uniform, despite the fact that the left side is tinted red and the right side is tinted
green. This is because the photoreceptors in the retina have adapted to the red and
green fields. Staring at a blank piece of paper should result in an after-image that
is opposite to the adapting field (green/cyan on the left and reddish on the right).
See also Figure 5.20 for another example.

Another way to think about the von Kries receptor gain control is to consider
that the cones themselves become more or less sensitive based upon the physical
amount of energy that is present in a scene. For instance, if a scene is predomi-
nantly illuminated by “blue” light, then we would expect the S cones to become
less sensitive, while the L cones would become (relatively) more sensitive. Con-
versely, if there is more red energy in the illumination, such as with an incandes-
cent light bulb, then we would expect the short cones to become relatively more
sensitive than the long cones.

This example is illustrated in Figure 10.6. The spectral power distribution
(SPD) of incandescent illumination (e.g., CIE Illuminant/Source A; see Section
9.1.1) is illustrated by the green curve in Figure 10.6, while the individual cone
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Figure 10.6. An example of von Kries-style independent photoreceptor gain control.
The relative cone responses (solid line) and the relative adapted cone responses to CIE A
(dashed) are shown. The background color represents CIE A rendered into the sRGB color
space.
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Von Kries Chromatic Adaption Model

Neutral points all look as the same 
color under different illuminants. 

• Neural points: points whose spectral 
reflectance is 1 everywhere. Informally 
we call it the white point. 

• The color of a neural point is the color of 
the illuminant without illumination.
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White Balance, a.k.a., Camera Chromatic Adaptation

Human evolved over millions of years to 
learn to adapt to illuminants. But 
cameras don’t have this luxury — 
camera SSFs are fixed once fabricated. 

Goal: adapt colors so that the resultant 
image appears as the photographers 
“remember” based upon their 
adaptation state.

�16

Photo without AWB Photo with AWB



White Balance and Color Temperature

If a photo it assumed to be viewed under daylight (~D65, 
6500K), AWB forces the white object in the photo to be 
D65 (sRGB reference white, blue-ish). 

If the capture illumination is warmer (cooler), WB adds blue 
(red) to the scene. Some cameras allow you to explicitly set 
the temperature of the illumination for WB.

�17https://starlight-manual.readthedocs.io/en/latest/interface/

D65 (~6500K)
Add more blue when WB Add more red when WB



White Balance in Cameras
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[
SR
SG
SB] = T−1

srgb2xyz × T−1
xyz2lms ×

Lw2

Lw1
,0,0

0,
Mw2

Mw1
,0

0,0,
Sw2

Sw1

× Txyz2lms × Tcam2xyz × [
R
G
B]

Raw RGB in camera 
color space

Color correction 
matrix

Chromatic adaptation from capturing 
illuminant to viewing illuminantLinear sRGB color

Read: http://yuhaozhu.com/blog/chromatic-adaptation.html

http://yuhaozhu.com/blog/chromatic-adaptation.html


Ideal vs. Practical White Balance

Ideal white balance is easy if we know: 
• the illuminant of the capturing scene. 

• the illuminant of the viewing scene. 

If so, we can simply calculate the scaling factors of the LMS cone responses. 
• Remember, RGB/XYZ is just one linear transformation away from LMS. So knowing how 

to scale LMS basically means we know how to scale RGB values too. 

In reality: capturing illuminant is unknown. 

The real work of auto white balance is to estimate the capturing illuminant.
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(Semi-)Auto White Balance

How to know where a neutral point is (i.e., which pixel should look white 
under the capturing illuminant)?

�20

Can be used as a neutral 
point (lucky!)Pre-made reference white card

https://photovideocreative.com/en/have-color-neutral-photo-with-smartphone-neither-too-bluish-nor-too-orange/https://www.vortexmediastore.com/pages/warmcards-white-balance-system



(Semi-)Auto White Balance
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If a white point is unavailable, specify the 
capture illuminant and use a pre-calculated 

adaptation matrix, which is calculated offline 
from known illuminants.

https://photographylife.com/what-is-white-balance-in-photography

https://photovideocreative.com/en/have-color-neutral-photo-with-smartphone-neither-too-bluish-nor-too-orange/

https://www.vortexmediastore.com/pages/warmcards-white-balance-system



Illuminant Estimation by AWB

Many heuristics:
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https://bmvc2019.org/wp-content/uploads/papers/0105-paper.pdf


Illuminant Estimation by AWB

Many heuristics:
• Assume that the average color of all pixels in an image is gray (e.g., [128, 128, 128] in 

sRGB) and scale all pixels accordingly. Fails when the scene is colorful (close-up flower).
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https://bmvc2019.org/wp-content/uploads/papers/0105-paper.pdf


Illuminant Estimation by AWB

Many heuristics:
• Assume that the average color of all pixels in an image is gray (e.g., [128, 128, 128] in 

sRGB) and scale all pixels accordingly. Fails when the scene is colorful (close-up flower).

• Assume that the brightest pixel is white. Fails quite often (night scene with traffic lights).
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Illuminant Estimation by AWB

Many heuristics:
• Assume that the average color of all pixels in an image is gray (e.g., [128, 128, 128] in 

sRGB) and scale all pixels accordingly. Fails when the scene is colorful (close-up flower).

• Assume that the brightest pixel is white. Fails quite often (night scene with traffic lights).

• Other techniques try to guess the illumination: bright image is probably outdoor; dim 
images are probably indoor, etc.
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https://bmvc2019.org/wp-content/uploads/papers/0105-paper.pdf


Illuminant Estimation by AWB

Many heuristics:
• Assume that the average color of all pixels in an image is gray (e.g., [128, 128, 128] in 

sRGB) and scale all pixels accordingly. Fails when the scene is colorful (close-up flower).

• Assume that the brightest pixel is white. Fails quite often (night scene with traffic lights).

• Other techniques try to guess the illumination: bright image is probably outdoor; dim 
images are probably indoor, etc.

Train deep learning models to predict capturing illuminant (example).
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https://bmvc2019.org/wp-content/uploads/papers/0105-paper.pdf


Aside: Illuminant Estimation in Augmented Reality

�23https://developers.google.com/ar/develop/lighting-estimation



Aside: Illuminant Estimation in Augmented Reality

�23https://developers.google.com/ar/develop/lighting-estimation



[
SR
SG
SB] = T−1

srgb2xyz × T−1
xyz2lms ×

Lw2

Lw1
,0,0

0,
Mw2

Mw1
,0

0,0,
Sw2

Sw1

× Txyz2lms × Tcam2xyz × [
R
G
B]

White Balance and Color Correction
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This “white balance” matrix normalizes the raw RGB of capturing 
illuminant to [1, 1, 1], which will be mapped to [1, 1, 1] in linear 

sRGB by Tcc. Twb technically doesn’t perform white balance.

In theory, color correction comes first and then white balance, but usually 
cameras perform WB before CC 

• through an equivalent transformation; read this article by Rowlands for why.

[
SR
SG
SB] = Tcc × Twb × [

R
G
B]

https://www.spiedigitallibrary.org/journals/optical-engineering/volume-59/issue-11/110801/Color-conversion-matrices-in-digital-cameras-a-tutorial/10.1117/1.OE.59.11.110801.full?SSO=1
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https://w
w

w
.vice.com

/en/article/w
nkq5n/this-picture-has-no-red-pixelsso-w

hy-do-the-straw
berries-still-look-red

Red Without Any Red Pixel

The cyan tint tricks your brain to 
think that the illuminant of the scene 
is cyan. So your brain subtracts cyan 
from colors it perceives. 

Subtracting cyan is like adding red 
(recall the RGB color cube), so the 
gray patches look red now.



https://en.wikipedia.org/wiki/The_dress �26 

Black and Blue or White and Gold?

https://en.wikipedia.org/wiki/The_dress
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Black and Blue or White and Gold?

Left: if your visual system thinks 
the illuminant is yellow, it will 
subtract yellow (add blue) from 
the colors. 

Right: if your visual system think 
the illuminant is blue, it will 
subtract blue (add yellow) from 
the colors. 

Why different visual systems think 
differently is anyone’s guess.

https://en.wikipedia.org/wiki/The_dress
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RAW Pixels

Lens Sensor

Auto Exposure
Auto Focus

AWB AE AF

Auto White Balance

Demosaic
WB & Color 
Correction

HDR & Tone 
Mapping

Denoising Compression

Auto Focus



Auto Focus

�29https://www.youtube.com/watch?v=tLwkjXIgHj4

Canon EOS 60D

https://www.androidauthority.com/smartphone-cameras-2020-1066830/



Recall: Circle of Confusion

If CoC is greater than a threshold, the point appears blur. 
• Multiple pixels get some rays from that point 

• Blur from defocus; c.f. motion blur

�30
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f
S S’

https://en.wikipedia.org/wiki/Bokeh
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Recall: Circle of Confusion

If CoC is greater than a threshold, the point appears blur. 
• Multiple pixels get some rays from that point 

• Blur from defocus; c.f. motion blur
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} Circle of 
confusion

https://en.wikipedia.org/wiki/Bokeh



Auto Focus

AF works by moving lenses while keeping the sensor fixed.
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Auto Focus

AF works by moving lenses while keeping the sensor fixed.
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The General Idea

AF is inherently about depth estimation. From depth we can use the Gauss 
lens equation to determine the correct lens position.
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The General Idea

AF is inherently about depth estimation. From depth we can use the Gauss 
lens equation to determine the correct lens position.
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The General Idea

AF is inherently about depth estimation. From depth we can use the Gauss 
lens equation to determine the correct lens position.
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The General Idea

AF is inherently about depth estimation. From depth we can use the Gauss 
lens equation to determine the correct lens position.
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The General Idea

AF is inherently about depth estimation. From depth we can use the Gauss 
lens equation to determine the correct lens position.
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The General Idea

AF is inherently about depth estimation. From depth we can use the Gauss 
lens equation to determine the correct lens position.
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Δd
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Active vs. Passive Auto Focus

Active AF: camera emits some sort of radiation, whose reflections off of the 
object are capture by the camera to calculate depth, from which lens 
adjustment is calculated. 

• IR light (structured light), Sonar, LiDAR 

Passive AF: nothing is emitted from the camera, which “passively” processes 
the light it receives to estimate depth and move the lens. 

• Phase detection AF 

• Contrast detection AF
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Phase Detection Auto Focus (PDAF)

�35http://www.exclusivearchitecture.com/?page_id=1291

Assuming a 
point source 

in scene



Phase Detection Auto Focus (PDAF)

�35http://www.exclusivearchitecture.com/?page_id=1291

Assuming a 
point source 

in scene

The AF lenses and AF sensors are 
fixed. They are placed in such a way 
that if the incident light is in-focus 
with by main lens, it will also be in-

focus on the AF sensors.



Phase Detection Auto Focus (PDAF)

�35http://www.exclusivearchitecture.com/?page_id=1291

Assuming a 
point source 

in scene

These masks make sure only a 
small “cone” of lights in each 
half of the lens is used in PD.

The AF lenses and AF sensors are 
fixed. They are placed in such a way 
that if the incident light is in-focus 
with by main lens, it will also be in-

focus on the AF sensors.



Phase Detection Auto Focus (PDAF)
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Phase Detection Auto Focus (PDAF)
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toward sensor.
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Peaks move farther. 
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away from sensor.

Assuming a 
point source 
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Phase Detection Auto Focus (PDAF)

�36

Peaks move closer. 
Lens should be moved 

toward sensor.

Peaks move farther. 
Lens should be moved 

away from sensor.

The amount of phase 
shift dictates how 

much to move the lens 
to focus!

Assuming a 
point source 

in scene



Math Behind PDAF
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Main lens Main 
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P

Assumption: everything is fixed; main lens is the only moving part. 
d1: distance between main sensor and AF lenses 
d2: distance between AF lens and AF sensor 
B: distance between the centers of the two AF lenses 
O: distance between the two pixels corresponding to P
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Math Behind PDAF
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As long as the scene point P is in-
focus, the offset between the 

corresponding pixels, O, is fixed 
and is known offline.

Assumption: everything is fixed; main lens is the only moving part. 
d1: distance between main sensor and AF lenses 
d2: distance between AF lens and AF sensor 
B: distance between the centers of the two AF lenses 
O: distance between the two pixels corresponding to P

d1 d2

AF 
sensors

d1

d1 + d2
=

B
O

O =
(d1 + d2)B

d1
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Math Behind PDAF
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AF 
sensors

* The circles of confusion (CoC) on the AF sensors are usually very small because the apertures of the AF lenses are 
small (recall the DOF equation). So we will use pinhole camera models to analyze the AF lenses/sensors.

Small circles of 
confusion here.



Math Behind PDAF
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* The circles of confusion (CoC) on the AF sensors are usually very small because the apertures of the AF lenses are 
small (recall the DOF equation). So we will use pinhole camera models to analyze the AF lenses/sensors.

Small circles of 
confusion here.
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Math Behind PDAF
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Knowing Δo we can calculate Δd, which is 
how much the lens needs to be moved. 

The sign of Δd dictates whether to move 
the lens away or toward the sensor.



Actual Implementations
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Nikon F4
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Dual Pixel PDAF
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Table 1. Comparison of our model with PortraitFCN+ model from [Shen
et al. 2016a] on their evaluation data.

Model Training data Mean IoU
PortraitFCN+ [Shen et al. 2016a] 95.91%

Our model [Shen et al. 2016a] 97.01%
Our training data 97.70%

Table 2. Comparison of our model with Mask-RCNN [He et al. 2017] on
our evaluation dataset.

Model Training data Mean IoU
Mask-RCNN Our training data 94.63%
Our model Our training data 95.80%

3.5 Accuracy and E�iciency
We compare the accuracy of our model against the PortraitFCN+
model from Shen et al. [2016a] by computing the mean Intersection-
over-Union (IoU), i.e., area(output \ ground truth) / area(output
[ ground truth), over their evaluation dataset. Our model trained
on their data has a higher accuracy than their best model, which
demonstrates the e�ectiveness of our model architecture. Our model
trained on only our training data has an even higher accuracy,
thereby demonstrating the value of our training data (Table 1).

We also compare against a state-of-the-art semantic segmentation
model Mask-RCNN [He et al. 2017] by training and testing it on
our data (Table 2). We use our own implementation of Mask-RCNN
with a backbone of Resnet-101-C4. We found that Mask-RCNN gave
inferior results when trained and tested on our data while being a
signi�cantly larger model. Mask-RCNN is designed to jointly solve
detection and segmentation for multiple classes and may not be
suitable for single class segmentation with known face location and
high quality boundaries.
Further, our model has orders of magnitude fewer operations

per inference — 3.07 Giga-�ops compared to 607 for PortraitFCN+
and 3160 for Mask-RCNN as measured using the Tensor�ow Model
Benchmark Tool [2015]. For PortraitFCN+, we benchmarked the Ten-
sor�ow implementation of the FCN-8s model from Long et al. [2015]
on which PortraitFCN+ is based.

4 DEPTH FROM A DUAL-PIXEL CAMERA
Dual-pixel (DP) auto-focus systems work by splitting pixels in half,
such that the left half integrates light over the right half of the
aperture and vice versa (Fig. 5). Because image content is optically
blurred based on distance from the focal plane, there is a shift, or
disparity, between the two views that depends on depth and on
the shape of the blur kernel. This system is normally used for auto-
focus, where it is sometimes called phase-detection auto-focus. In this
application, the lens position is iteratively adjusted until the average
disparity value within a focus region is zero and, consequently, the
focus region is sharp. Many modern sensors split every pixel on the
sensor, so the focus region can be of arbitrary size and position. We
re-purpose the DP data from these dense split-pixels to compute
depth.

DP sensors e�ectively create a crude, two-view light �eld [Gortler
et al. 1996; Levoy and Hanrahan 1996] with a baseline the size of
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Fig. 5. A thin lens model showing the relationship between depth D , blur
diameter b , and disparity d . An out-of-focus object emits light that travels
through the camera’s main lens with aperture diameter L, focuses in-front
of the sensor at distance Di from the lens and then produces a three-pixel
wide blur (a). The le� and right half-pixels see light from opposite halves of
the lens. The images from the le� and right pixels are shi�ed with disparity
proportional to the blur size (b). When summed together, they produce an
image that one would expect from a sensor without dual pixels (c).

the mobile camera’s aperture (⇠1 mm). It is possible to produce a
synthetically defocused image by shearing and integrating a light
�eld that has a su�cient number of views, e.g., one from a Lytro
camera [Ng et al. 2005]. However, this technique would not work
well for DP data because there are only two samples per pixel and the
synthetic aperture size would be limited to the size of the physical
aperture. There are also techniques to compute depth from light
�elds [Adelson and Wang 1992; Jeon et al. 2015; Tao et al. 2013], but
these also typically expect more than two views.
Given the two views of our DP sensor, using stereo techniques

to compute disparity is a plausible approach. Depth estimation
from stereo has been the subject of extensive work (well-surveyed
in [Scharstein and Szeliski 2002]). E�ective techniques exist for
producing detailed depth maps from high-resolution image pairs
[Sinha et al. 2014] and there are even methods that use images from
narrow-baseline stereo cameras [Joshi and Zitnick 2014; Yu and
Gallup 2014]. However, recent work suggests that standard stereo
techniques are prohibitively expensive to run on mobile platforms
and often produce artifacts when used for synthetic defocus due
to poorly localized edges in their output depth maps [Barron et al.
2015].We therefore build upon the stereowork of Barron et al. [2015]
and the edge-aware �ow work of Anderson et al. [2016] to construct
a stereo algorithm that is both tractable at high resolution and well-
suited to the defocus task by virtue of following the edges in the
input image.
There are several key di�erences between DP data and stereo

pairs from standard cameras. Because the data is coming from a
single sensor, the two views have the same exposure and white
balance and are perfectly synchronized in time, making them robust

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.
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PDAF Recap

Pros: 
• Fast. Jump to in-focus position. No hunting for the correct lens adjustment. From one 

single phase shift, we can calculate exactly how to adjust the lens. 

Cons: 
• Requires physical calibration (AF sensor baseline, etc.) 

• AF doesn’t work when in live preview mode and when actually taking the picture, since 
the reflex mirror is up, and so AF sensors receive no light.
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Contrast Detection AF

Idea: in-focus objects are sharp, so 
adjust the lens until the object is sharp. 

Very simple design (no AF lens/
sensors/mirrors). Used by point-and-
shot and smartphone cameras.

�43http://www.exclusivearchitecture.com/?page_id=1291



Detecting Contrast is Tricky
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Detecting Contrast is Tricky

Problem 1: can we simply detect 
contract using the height of the peak? 

• No. The object to be focused could be 
dark; then the valley should be used.

�44http://www.exclusivearchitecture.com/?page_id=1291



Detecting Contrast is Tricky

Problem 1: can we simply detect 
contract using the height of the peak? 

• No. The object to be focused could be 
dark; then the valley should be used.

Solution: the gradient is what we 
ultimately should care about. 

• Calculate the gradient of a pixel by using 
the pixel values from a small block of 
neighboring pixels.

�44http://www.exclusivearchitecture.com/?page_id=1291



Detecting Contrast is Tricky

Problem 2: Can we simply use an 
absolute gradient threshold? 

• No. If the object has smooth surface, it’s 
in-focus gradient will be modest. 

Solution: trial and error. Slow!

�45https://www.wallpaperflare.com/yellow-flower-in-autofocus-photography-season-wildflowers-lost-dutchman-state-park-wallpaper-hrjvq http://www.exclusivearchitecture.com/?page_id=1291



CDAF Recap

Usually used by point-and-shot cameras. 
Pros: 

• Simple and lean hardware design. 

• Accurate as it directly operates on the image captured by the main sensor. 

Cons: 
• Slow.
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Active Auto Focus

Active AF directly measures depth. 
Particularly useful when the scene is 
textureless, where neither phase nor 
contrast can be easily detected. 

Two main principles: 
• Time-of-flight 

• Depth from stereo
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Time-of-flight Principle

LiDAR: Light Detection and Ranging (Sonar, Infrared light, etc.)

�48https://www.phonearena.com/news/iPhone-12-to-have-larger-12MP-sensors_id126865



Depth from Stereo (Triangulation)
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Depth from Stereo (Triangulation)
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Depth from Stereo (Triangulation)
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Depth from Stereo (Triangulation)
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Depth from Stereo (Triangulation)
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Depth from Stereo (Triangulation)
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Depth from Stereo (Triangulation)
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Depth from Stereo (Triangulation)
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Depth from Stereo (Triangulation)
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Structured Light

Correspondence is hard to establish if the 
surface is textureless. Structured light solves 
it by emitting lights with fixed pattern, 
creating textures.

�50https://www.researchgate.net/figure/Principles-of-a-projected-structured-light-3D-image-capture-method-4-a-An_fig5_312541409

RGB 
camera

https://mspoweruser.com/most-popular-xbox-kinect-feature-coming-back-next-year/

IR projector IR camera

https://www.researchgate.net/figure/Principles-of-a-projected-structured-light-3D-image-capture-method-4-a-An_fig5_312541409
https://mspoweruser.com/most-popular-xbox-kinect-feature-coming-back-next-year/


Another Setup of Structured Light

�51https://moscownewsdaily.com/2019/11/17/google-pixel-4-review-overpriced-uncompetitive-and-out-of-touch/https://www.intelrealsense.com/depth-camera-d435/
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https://www.intelrealsense.com/depth-camera-d435/
https://ai.googleblog.com/2020/04/udepth-real-time-3d-depth-sensing-on.html
https://en.wikipedia.org/wiki/Structured-light_3D_scanner


Synthetic Depth of Field
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Auto Exposure

No single “correct” exposure of an image. 

For HDR scenes, it’s impossible to set one 
single proper exposure. 

Things you could change (knobs): 
• Aperture size (A) 

• Exposure time (T) 

• ISO (gain). Last resort really…
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Auto Exposure

Let’s assume that the scene has standard DR (HDR imaging discussed before), 
and the goal of AE is to allow “important” objects to be properly lit. 

• That is, important objects’ pixel values should be properly set. 

It’s a guessing game: 
• What are “important” objects for the photographer? 

• What is the “correct” pixel value for a properly-exposed object? 

• How to set the knobs given the properly exposure level?
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Auto Exposure: General Workflow
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Metering

Estimating/measuring the brightness of the “important” subjects. 

Informally, we compare the metering result with an ideal/“correct” target, i.e., 
compare how bright an image is and how bright a visually-pleasing image 
should be, from which we calculate how to adjust the exposure knobs. 

We meter using RAW pixel values, which are proportional to luminance. 
• Or convert to XYZ and use the Y value, which directly corresponds to luminance. 

Key challenge: what are “important” objects to meter? 
• Camera doesn’t know what you think is important
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Metering is Hard

�58https://shailendrarana.wordpress.com/2014/02/15/metering-in-smartphone-cameras/
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Metering is Hard

Trade-off: accurate metering requires 
big pixels, which limits sensor resolution. 

• Low resolution image makes metering 
harder: hard to tell what’s in the image to 
reason about metering results. 

• Small pixels are easily saturated, so might 
need iterative metering (slow). 

Could use a separate (small) sensor, i.e., 
a separate metering system. Or use the 
main image sensor.
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Metering is Hard

Trade-off: accurate metering requires 
big pixels, which limits sensor resolution. 

• Low resolution image makes metering 
harder: hard to tell what’s in the image to 
reason about metering results. 

• Small pixels are easily saturated, so might 
need iterative metering (slow). 

Could use a separate (small) sensor, i.e., 
a separate metering system. Or use the 
main image sensor.
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© Marc Levoy

✦ What’s this scene?  What should the exposure be?

(Marc Levoy)

Metering is Hard

Trade-off: accurate metering requires 
big pixels, which limits sensor resolution. 

• Low resolution image makes metering 
harder: hard to tell what’s in the image to 
reason about metering results. 

• Small pixels are easily saturated, so might 
need iterative metering (slow). 

Could use a separate (small) sensor, i.e., 
a separate metering system. Or use the 
main image sensor.
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AF/AE/AWB: Why Are They Hard?

They are very subjective and personal. 
• What are important objects that viewers/photographers want to focus on? 

• What objects do viewers/photographers deem important and thus have to be well-lit? 

• What will the illuminant be when a photo is viewed later? 

• What objects do the viewers think should be perceived as white? 

Fundamentally, these are all computer vision problems: understanding the 
semantics in the image. Can computer vision/AI help? 

• Detect/track interesting objects? 

• Photo capturing history? 

• Emotion? Sound? Weather? Other hints/modalities?
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