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Logistics

WA 2 grades are posted.

Project idea document is posted. Feel free to work on your own idea too.
* The link is on the assignment page
e Can work in groups of 2

* Submit a one-page proposal describing what you want to work on by Oct. 26, 11:30 AM.
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The Roadmap
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Image Signal Processing in Digital Cameras

RAW Pixels

e a4 Denoising  Demosaic WB&C(.)|OI’ HDR&Tone Compression AWB AE AF
Correction Mapping
A

LAuto White Balance

Auto Exposure

Auto Focus

While general stages are the same, the order may vary. The actual
implementation in commercial cameras are mostly proprietary.

Forward path gathers various statistics, which enable the “3A" algorithms,
which control the lens, sensor, and the forward path in a feedback fashion.



Image Signal Processing in Digital Cameras

RAW Pixels

e a4 Denoising  Demosaic WB&C(.)|OI’ HDR&Tone Compression AWB AE AF
Correction Mapping
A

LAuto White Balance

Auto Exposure

Auto Focus

Speed and low energy consumption are critical, so the entire pipeline usually
is executed in a special processor, Image Signal Processor (ISP).

ISP used to be fixed-function pipeline, but is becoming more programmable
to flexibly support new computational photography algorithms.



Image Signal Processing Hardware

Qualcomm Snapdragon 865

| 2
Systems-on-a-chip (SoC) Samsung Galaxy 520
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https://arstechnica.com/gadgets/2019/12/qualcomms-new-snapdragon-865-is-a-step-backwards-for-smartphone-design/
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Image Signal Processing Hardware

Camera subsystem in Nvidia TX1 SoC
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ISP for Photography vs. for Machine Vision

Image reconstruction algorithms designed to produce visually pleasing
images for humans are not necessarily appropriate for computer vision tasks.

Co-design/co-train the ISP algorithms with down-stream vision tasks.

Rethink optics and sensor hardware design too.

Anscombe Networks (Differentiable, Low-Level Block) Differentiable, High-Level Block
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Dirty Pixels: Towards End-to-End Image Processing and Perception, SIGGRAPH 2021 9



Denoising

RAW Pixels ¥

WB | HDR & T
= 4 Denoising Demosaic &C? = &.one
Correction Mapping
A

Auto Exposure

Compression

T—Auto White Balance

AWB AE AF

Auto Focus

10



Denoising

Sensor/sensing introduces various sources of noise.

Post-processing stages impact (amplity) noise levels.

* Since they manipulate noisy signals.
Denoise as early as possible, and can denoise multiples times.

The easiest way to denoise an image is to blur the image.

e Always a trade-off between image details retained vs. noise removed.

Spatial denoising vs. temporal denoising

e Single-image denoising vs. video denoising

11
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https://skylum.com/luminar/noise-reduction

https://sk lum.corrﬂluminar/no_i'Sq_—r
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https://skylum.com/luminar/noise-reduction

Gaussian Filter

Original Image Gaussian-filtered Image
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A sample 2D Gaussian kernel

2D Gaussian distribution with mean [0, 0] and o=

A Gaussian filter also averages neighboring pixels, but gives
more weight to closer neighbors. It's still a low-pass filter.

https://slideplayer.com/slide/2489074/  https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm 14
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Issue with Simple Filtering

nal Image Gaussian-filtered Image

Issue: denoising using blurring works Orig
only when the scene is smooth (low
spatial frequency). When scenes are not
smooth (high frequency), i.e., with
edges, blurring will destroy edges and
the image looks less sharp.

e \ery similar to naive demosaic artifacts.

Solution: don’t blur across the edge!

Edges become less sharp after Gaussian filtering

https://slideplayer.com/slide/2489074/ 15



Bilateral Filter: Edge-Preserving Denoising

Original Image Gaussian-filtered Image

Solution: don’t blur across the edge!

What's an edge? A simple but effective
heuristic: pixel intensity or color
difference!
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Edges become less sharp after Gaussian filtering

https://slideplayer.com/slide/2489074/



Bilateral Filter: Edge-Preserving Denoising

ldea: Use the product of two kernels as the filtering kernel
* Weights in first kernel are dictated by pixel distance. Closer pixels have higher weights.

* Weights in second kernel are dictated pixel color. Similar pixels have higher weights.

Color difterence usually calculated as pixel value difference. The original
bilateral filtering paper [ICCV 98] uses perceptual difference.

J{"'\“‘;:\?\/b PR
W g TS N ™

5

(R R s
WSy i
'!‘ \ “\- s N Y

input spatial kernel f influence g in the intensity weight f X g output
domain for the central pixel for the central pixel

Fast Bilateral Filtering for the Display of High-Dynamic-Range Images, SIGGRAPH 2002  Bilateral Filtering for Gray and Color Images (ICCV 1998) 17



Bilateral Filter: Edge-Preserving Denoising

Noisy image Gaussian filtered image Bilateral filtered image

https://cs.brown.edu/courses/cs129/labs/lab_bilateral/index.html 18



Demosaicing

RAW Pixels

WB | HDR & T
= 4 Denoising Demosaic &C? = &.one
Correction Mapping
A

Auto Exposure

Compression

T—Auto White Balance

AWB AE AF

Auto Focus
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Need For Demosaicing (Spatial Color Reconstruction)
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Figure 7-2 The pattern of green, red and blue pixels in a raw image. The question marks represent unknown data needed for full color
channel resolution.
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Need For Demosaicing (Spatial Color Reconstruction)

What we have J@(/l)B (A)

What we need
to reconstruct

JCP(/DR(/D JCP(/DG(/D

400 450 500 550 600 650 700

A bayer-filtered

Red channel Green channel Blue channel

Bayer filter

Selection of Optimal Spectral Sensitivity Functions for Color Filter Arrays, IEEE Transactions on Image Processing, 2010 21



Need For Demosaicing (Spatial Color Reconstruction)

What we have J@(/l)B (A)

What we need
to reconstruct

JCP(/DR(/I) JCP(/DG(/D

Goal of demosacing: reconstruct the missing color values of each pixel as if
the corresponding color filters were there.

An artifact of using CFA for color sensing (spatial color sampling). Not
needed in monochromatic sensors or in sensors that use three chips.

Selection of Optimal Spectral Sensitivity Functions for Color Filter Arrays, IEEE Transactions on Image Processing, 2010 22



Demosaicing Idea

ldeally: reconstruct the continuous signal first and then resample.

* |f scene is smooth (band-limited), reconstruction and sampling becomes interpolation.

Intuitively: nearby pixels likely receive similar incident lights; missing pixel
color can be interpolated from the same channel in nearby pixels.

Reality: scene has high-frequency components so reconstruction will mostly
be aliased. Anti-aliased demosaicing.

23



Demosaicing Using Spatial Correlation

Assumption: scene is smooth, 4 ki K
° ° r) ‘)
i.e., low spatial frequency. > 8l 2 | »
_r 7
? ? ?

http://dmmd.net/main_wp/research/demosaicing/ 24



Demosaicing Using Spatial Correlation

Assumption: scene is smooth,
i.e., low spatial frequency.

Fails when the spatial frequency

in the scene is high, i.e., local
details are not smooth.

http://dmmd.net/main_wp/research/demosaicing/ 24



Demosaicing Using Spatial Correlation

Assumption: scene is smooth,
i.e., low spatial frequency.

Fails when the spatial frequency

in the scene is high, i.e., local
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http://dmmd.net/main_wp/research/demosaicing/ 24



Demosaicing Using Spatial Correlation

Assumption: scene is smooth,
i.e., low spatial frequency.

Fails when the spatial frequency
in the scene is high, i.e., local
details are not smooth.

Mitigation: detect edges, and
then interpolate along the edges
but not across the edges.

http://dmmd.net/main_wp/research/demosaicing/ 24




RAW Pixels

WB | HDR & T
= 4 Denoising Demosaic &C? = &.one
Correction Mapping
A

Auto Exposure

Color Correction

Compression

AWB AE AF

T—Auto White Balance

Auto Focus

25



The Need for Color Correction

Camera SSFs do not overlap with LMS sensitivities
(or any other CMFs). Need to find a transformation,
ideally linearly, to other color spaces.
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https://www.cs.rochester.edu/courses/572/colorvis/camcolor.html
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The Goal

Calculate the transformation matrix
that converts the raw RGB values of a
color in the camera-internal space to
the true tristimulus values of a known

=
w
o
O
B
B
o
o
o
N
o

color space (e.g., XYZ). Minimize the
conversion error.

Correct colors for common materials
seen in nature. MacBeth
ColorChecker board is a common
calibration target.

https://www.youtube.com/watch?v=Q7Fh54VZcgE https://en.wikipedia.org/wiki/ColorChecker 27
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Color Correction Procedure

1. Calculate the XYZ tristimulus values of all
the patches under a known illuminant (e.g.,
D65). These will be our "ground truth” or
"actual color.” The spectral reflectance of

each patch in the checker (24 patches in
this check board) is known.

2. Take a picture of a Macbeth
“"ColorChecker” under the same illuminant.

True RGB

Color Conversion Matrices in Digital Cameras: a Tutorial, Andrew Rowlands 28



Color Correction Procedure

1. Calculate the XYZ tristimulus values of all
the patches under a known illuminant (e.g.,
D65). These will be our "ground truth” or
"actual color.” The spectral reflectance of

each patch in the checker (24 patches in
this check board) is known.

2. Take a picture of a Macbeth
“"ColorChecker” under the same illuminant.

True RGB

Color Conversion Matrices in Digital Cameras: a Tutorial, Andrew Rowlands 29



Raw RGB

Color Correction Procedure

3. Read the raw RGB values of each color
patch generated by the camera. Those
are the tristimulus values in the raw
camera color space, and most likely
don’t match the tristimulus values in the
CIE XYZ space.

True RGB

Color Conversion Matrices in Digital Cameras: a Tutorial, Andrew Rowlands 30



Color Correction Procedure

4. Now calculate the transformation matrix.
This is an overdetermined system (3x3
variables but 24x3 equations). Formulate

it as an optimization problem

e usually in the form of linear least squares (LLS).

e can use Fuclidean distance as loss but CIE
AE* is more common (and better)

Ryy X
G| = |1
By, Z

_AB

True RGB

Color Conversion Matrices in Digital Cameras: a Tutorial, Andrew Rowlands 31



Color Correction Procedure

5. Optimizations are not a perfect. Usually
a non-linear step in the end (through
look-up tables) brings the transformed
color further closer to the actual color.

6. The transformation matrix depends on
the illuminant. Usually cameras supply a
different matrix for a different illuminant
and interpolate for new illuminants.

True RGB

Color Conversion Matrices in Digital Cameras: a Tutorial, Andrew Rowlands 32



® ® Exploring Camera Color Space X -+ o
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Exploring Camera Color Space and Color Correction

Introduction

Do cameras see the same color as us? Can cameras always accurately reproduce colors that our eyes see? This interactive tutorial explores these questions and many more
interesting aspects of camera raw color space. In particular, we will walk you through an important concept in both color science and camera signal processing: color correction,
the process of correcting the color perception of a camera such that it is as close to ours as allowed. In the end, you will get to appreciate why you should never trust the color
produced by your camera and how you might build your own camera that, in theory, out-performs existing cameras in color reproduction.

Caveats. 1) This tutorial demonstrates the principle of color correction with many important, but subtle, engineering details omitted; we will mention them when appropriate. 2)
Color correction is one of the two components in camera color reproduction, the other being white balance (or rather, camera's emulation of chromatic adaption of human visual
system). We have a post that discusses the principles of chromatic adaptation and its application in white balance. The relationship of color correction and white balance is quite
tricky, but Andrew Rowlands has a fascinating article that demystefies it for you.

Step 1: Exploring Camera Color Space

In principle, cameras work just like our eyes. Our retina has three types of cone cells (L, M, and S), each with a unique spectral sensitivity, translating light into three numbers (the
L, M, S cone responses) that give us color perception. Similar to the three cone types, (most) cameras use three color filters (commonly referred to as the R, G, and B filters), each
with a unique spectral sensitivity and, thus, also translate light into three numbers. In this sense, you can really think of a camera as a "weird" kind of human being with
unconventional LMS cone fundamentals. Not all cameras use three filters though. Telescope imaging cameras use five filters, just like butterflies!

The left chart below shows the measured camera sensitivity functions of 48 cameras in two recent studies. The 48 cameras are classified into four categories: DSLR, point and
shoot, industrial cameras, and smartphone cameras. The sensitivities are normalized such that the most sensitive filter (usually the green filter) peaks at 1. What should be noted
is that the sensitivities functions measured here are not just the spectral transmittances of the color filters; rather, they are measured by treating the camera as a black box, and
thus reflect the combined effects of everything in the camera that has a spectral response to light, such as the anti-aliasing filter, IR filter, micro-lenses, the photosites, etc.

The default view shows the average sensitivities across the 48 cameras, but you can also select a particular camera from the drop-down list. As a comparison, we also plot the
LMS cone fundamentals in the same chart as dashed lines. As is customary, the LMS cone fundamentals are, each, normalized to peak at 1. As is usually the case in color science,
these normalizations merely introduce some scaling factors that will be canceled out later if we care about just the chromaticity of a color (i.e., the relative ratio of the primaries).



Color Reproduction vs. Noise

Color reproduction is concerned with:
* how easy is it for demosaicing algorithm to recover the missing colors in pixels?

e How easy is it for color correction to recover the tristimulus values of the light?

SNR consideration:

* how much noise is introduced in color reproduction?

SSFs of CFA affect both the accuracy of color reproduction and noise
reduction of the sensor.

* Trade-offs need to be carefully evaluated.

34



For Demosaicing

400 450 500 550 600 650 700 400 450 500 550 600 650 700

A A

When the SSFs overlap, the three channels are highly correlated, and one
channel’s information can be used to infer other channels in demosacing.

e Constant color ditterence heuristic: R/G (B/G) ratio is smooth across pixels. Usually G is
first interpolated spatially, and then R (B) is interpolated from R/G (B/Q).

SSFs that are too wide are bad too. In the extreme case, the SSFs completely
overlap: the three channel values are the same for any pixel.

e "Perfect” demosaicing! But...

e The camera is "color blind” — can detect only light intensity but not color.

Selection of Optimal Spectral Sensitivity Functions for Color Filter Arrays, IEEE Transactions on Image Processing, 2010 35



For Color Correction

First design: SSFs are narrower and have little overlap.

e Slight difference in light SPD might not be captured, making color correction harder.

Extreme case: the three SSFs are delta functions, then two lights havi
at the three detected wavelengths but differing widely elsewhere wil
RGB values — color correction is impossible.

Second design: wider SSFs that overlap signiticantly.

e RGB values of the two lights are ditterent in a

e Too wide is bad too, since raw RGB values wi

will have very large coefficients (amplify noise).

ng the same power
have the same raw

three channels. Easier to correct color.

be too similar. The color correction matrix

36



Impact of Color Correction on Noise

Raw RGB values
Linear sRGB values
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If <1, SNR is worse

Chapter 5.4, Image Processing for Embedded Devices: From CFA Data to Image/Video Coding 37



Two Color Filters

Relative Response

400 500 600 700
Wavelength (nm)

(a)

The nice thing about wider SSFs: they
allow in more lights, which helps SNR
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Image Sensor and Signal Processing for Digital Still Cameras. Junichi Nakamura
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Real Spectral Sensitivity Functions

SSFs of 28 real cameras (DSLR, point-and-
shoot, industrial and mobile cameras).
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Actual camera SSFs resemble CMFs, but they are less overlapped,

http://www.strollswithmydog.com/color-from-capture-to-eye/

presumably to improve SNR in the color correction process.

What is the Space of Spectral Sensitivity Functions for Digital Color Cameras? WACV 2013
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