Lecture 11: Noise and Color Sensing

Yuhao Zhu
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Logistics

WA 1 grades are posted.

Project idea document is posted. Feel free to work on your own idea too.
* The link is on the assignment page
e Can work in groups of 2

* Submit a one-page proposal describing what you want to work on by Oct. 26, 11:30 AM.






https://medium.com/storm-shelter/the-importance-of-film-grain-255f0246cd64 4
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Noise

Without noise, raw pixel value is proportional to light luminance

e ignore ADC quantization error, which itself also introduces noise

Two forms of noise:

* Fixed Pattern Noise; doesn’t vary from capture to capture but varies from pixel to pixel

 Temporal Noise; does vary from capture to capture

Temporal noise:

e Charge domain noise: the number of collected charges (electrons) is noisy

e \oltage domain noise: the voltage reading (converted from charges) is noisy

Any amplification (gain) amplifies the noise accumulated before the gain.



Temporal Noises
and SNR




Temporal Noise

Varies from shot to shot, but could be observed from neighboring pixels in
one shot if scene has relatively uniform luminance.

Charge-domain noise: the noise is represented in the collected charges

* Photon Shot Noise: due to random arrival of photons.

 Dark Current Noise (electronic shot noise): random arrival of (temperature-dependent)
thermal generation of electrons even without any incident photons.

Voltage-domain noise: noise in circuits that convert charges to voltage;
represented in the voltage measurement

* a.k.a. Read Noise (as the noise is generated in the process of reading the charges)



Observing Temporal Noise Spatially

Technically, temporal noise should be observed by comparing consecutive
frames, which requires taking multiple frames.

But if the scene has ~uniform illumination we can observe temporal noise
spatially by analyzing pixels in a single image.

* Think of M pixels in an image as taking M captures at a single pixel

Or, for a real scene which is unlikely unitformly illuminated, we can analyze
neighboring pixels, which likely are similarly illuminated.

* such as the example on the next slide



Photon Shot Noise Example

Photon shot noise is less significant
with longer exposure time (or
equivalently brighter scenes

https://en.wikipedia.org/wiki/Shot_noise 10



Photon Shot Noise

Photon emission is a random process. A light source with constant power on
average emits the same amount of photons per second, but in any given
constant period, the absolute amount of photons emitted will vary.

The relative deviation away from average is less significant for bright scenes

(lots of photons on average) and is more significant for dark scenes (few
photons on average).
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Photon Shot Noise Example

Histogram of raw pixel value distribution in an
image of sky (Canon 1D3, green channel).
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http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/
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Modeling Photon Shot Noise

The distribution of the number of photons received by a pixel is governed by
the Poisson distribution.
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https://en.wikipedia.org/wiki/Shot_noise 13




Signal to Noise Ratio (SNR)

Signal: mean value

Noise: Std. of value
SNR = Signal / Noise

4—50

/s

s(t): real output overlapped with noise

. true value

Essential Principles of Image Sensors, Takao Kuroda 14



Signal to Noise Ratio (SNR)

AKx e
Signal: mean value pk; ) = x
Noise: Std. of value
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https://en.wikipedia.org/wiki/Shot_noise 15



Signal to Noise Ratio (SNR)

A x e
Signal: mean value p(k; A) = T
Noise: Std. of value
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https://en.wikipedia.org/wiki/Shot_noise 15



What Dictates SNR?

When a pixel receives more photons (e.g., brighter scene, bigger pixel,
longer exposure), the SNR is higher, i.e., less noisy.

SNR =2 =1\/2

https://www.flir.com/discover/iis/machine-vision/how-to-evaluate-camera-sensitivity 16



What Dictates SNR?

When a pixel receives more photons (e.g., brighter scene, bigger pixel,
longer exposure), the SNR is higher, i.e., less noisy.
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https://www.flir.com/discover/iis/machine-vision/how-to-evaluate-camera-sensitivity 16



What Dictates SNR?

When a pixel receives more photons (e.g., brighter scene, bigger pixel,
longer exposure), the SNR is higher, i.e., less noisy.
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What Dictates SNR?

When a pixel receives more photons (e.g., brighter scene, bigger pixel,
longer exposure), the SNR is higher, i.e., less noisy.

— Bigger pixel —p
%” CCD %" CCD

& 1 ~ : at 10 ms shutter

SNR =2 =1\/2

Longer exposure

https://www.flir.com/discover/iis/machine-vision/how-to-evaluate-camera-sensitivity 16



Dark Current Noise (Electronic Shot Noise)

As temperature increases, electrons are
dislodged even without any incident photon

(unless sensor cooled to absolute zero
temperature).

Dark current adds a pedestal offset to the
actual electron read-out. But the offset is not
constant across time — hence “noise”.

e |f the offset was constant, the readings would still

be incorrect but won't constitute noise (since the
offset is not random).

Wi

o+

STI

2]

interface

‘h—-_____--_—--—-—

Ultra Low Noise CMOS Image Sensors. Assim Boukhayma. 17



Dark Current Noise (Electronic Shot Noise)

Dark current Iy represents the average (expected value) # of dark electrons/
sec/pixel, which follows Poisson distribution (similar to photon shot noise).

Over an exposure time t, average # of electrons (collected at each pixel)
contributed by dark currentis Iy x t.

So the dark current noise is sqrt (Ig x t)
* because dark current follows Poisson distribution
* |yincreases with the temperature

* therefore dark current noise increases with temperature and t.

* |qis also spatially non-uniform: a source of FPN.

18



"Hot"” Pixels From Dark Current Noise

135s exposure time g 30s éxpo’sure time

Usually dark current
noise is negligible,
since dark current is
very low (e.g., 50 e/s;
c.f., full well capacity >
10ke-), but can be
significant if long
exposure time is
required, e.g.,
astrophysical imaging.

http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/ 19



Cooling in James Webber Space Telescope

Backplane Optical Telescope Element (OTE)

Primary Mirror
ISIM

Sunshield

OTE Secondary
Mirror

—————————— ) ’-
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ot
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(9
€ Spacecraft Bus Startrackers

Passive cooling: sunshield to cool
three of the four cameras (37 K)

https://webb.nasa.gov/content/observatory/sunshield.html 20



Cooling in James Webber Space Telescope

Active cooling: cryocooler (7 K)

https://webb.nasa.gov/content/about/innovations/cryocooler.htm| 21



Read Noise

The circuits that covert photons to digital values suffer voltage fluctuation

e Remember eventually we read the voltage, not the photon count, so voltage fluctuation
in the circuit introduces noise.

* Could be thermal-induced (Johnson—Nyaquist noise, which is fundamental to all circuits
and is called kTC noise when manifested on capacitors), 1/t noise, or burst noise.

e Sources: various amplitiers (e.g., FD, SF, other gain controls), ADC (with additional
quantization errors), reset (of FD; can be suppressed by CDS), CDS circuit itself, etc.

Read noise can be both positive and negative, since voltage fluctuation can
be both positive and negative.

Read noise is modeled as a 0-mean Gaussian distribution.

22


https://en.wikipedia.org/wiki/Johnson%E2%80%93Nyquist_noise
https://en.wikipedia.org/wiki/Pink_noise
https://en.wikipedia.org/wiki/Burst_noise

Estimating Read Noise

Could be measured by reading a bias frame, which is an image captured at
dark (lens cap on or shutter closed) With O exposure time (or use highest possible shutter speed), 1.€.,
no light gets to the photodiodes and dark current is negligible, so the major
noise source is read noise (ignore FPN for now).

TR o ) x| Plot

i SR e’y i File Options

" Raw pixel value histogram of
1D3 I1SO 800 read noise Canon 1D3 at ISO 800.
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observed temporally, but since scene is

00000 uniform (dark), noise across pixels spatially

50000- equates temporal noise, i.e., standard

# of pixels

. deviation of pixel values is the 0 of read noise.
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ADU

http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/
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https://web.archive.org/web/20080317160806/http://users.libero.it/mnico/glossary/bias.htm

Three Slight Issues

First, signal voltage could be negative (recall: read noise is a zero-mean
Gaussian), which will be clipped to 0 by the ADC, contaminating analysis.

e A bias voltage is usua
is one reason why dar

ly added to the signal voltage (e.g., in the previous slide). The bias
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< frame pixels are not zero (even without any noise present).

Pixel histogram at different illumination levels
of Nikon D300, which doesn’t add ADC bias.

http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/ 24



Three Slight Issues

First, signal voltage could be negative (recall: read noise is a zero-mean
Gaussian), which will be clipped to 0 by the ADC, contaminating analysis.

e A bias voltage is usua
is one reason why dar

ly added to the signal voltage (e.g., in the previous slide). The bias

< frame pixels are not zero (even without any noise present).

* Black level raw value is stored as metadata (part of EXIF tag) of a raw image. It can be
read through raw processing APIs (e.g., rawPy) and must be subtracted from the raw

value of each pixel by

the raw image signal processing pipeline (usually called black-level

correction/compensation). We will see this in the ISP programming assignment.

25


https://www.photonstophotos.net/GeneralTopics/Sensors_&_Raw/Black_Level_Range.htm

Three Slight Issues

First, signal voltage could be negative (recall: read noise is a zero-mean
Gaussian), which will be clipped to 0 by the ADC, contaminating analysis.

Second, the read noise distribution should be measured for each ISO setting,

which affects gains, which amplity noise.

Third, it also assumes that no FPN is present, which is not true.

* We will later see a more sophisticated method to estimate read noise isolated from FPN.

26



PD

Reset

FD

Reset Noise: a Special Read Noise

Integration Transfer

[

Readout

AV

Vtransfer

Reset noise: Vieset is Not the same for each capture, usually thermal induced.

Eliminate reset noise by reading Vieset and Viransfer and taking the delta; this is

what Correlated Double Sampling does, among other things (in a few slides).

Without CDS, we read only Viransfer and the ADC circuit needs to be designea
with a fixed, offline-determined Vst in mind, introducing reset noise.

27



Gains and ISO




Signal Gain: ISO

A scaling factor (gain) applied to the actual measured voltage of a pixel.

e Each camera has a base ISO value (e.g., ISO 400). Doubling ISO effectively doubles the
measured voltage — equivalent to doubling exposure time.

e |SO is informally called camera sensitivity, but don’t confuse it with the spectral
sensitivity of the sensor.

Why use ISO gain?
* Boost image brightness at low light: increasing eftective exposure time without

increasing the actual exposure time

e Reduce the exposure time, which reduces motion blur (if one were to increase the
exposure time) and increases the frame rate

e Big caveat: shorter exposure time also reduces the SNR: noisy photo!

29



1ISO 100 1ISO 200 1ISO 400 1ISO 800 1ISO 1600

https://photographylife.com/what-is-iso-in-photography 30
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Noise From High ISO

ISO 100 IS0 3200

https://www.exposureguide.com/iso-sensitivity/ 32



Noise From High ISO

Camera+2 app on iPhone
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https://iphonephotographyschool.com/iphone-camera-controls/




Ultra Low Noise CMOS Image Sensors, Assim Boukhayma.

Where to

Apply ISO Gain?

Column amplifiers One single amplifier at the end

Line Cont

Charge to Voltage
Conversion Amplifer

Pixel Select
Switch

7N—o Reset/Sample

> | [

Row o L/ L /N LM\

Select 4

RST np

[T

Lo ] This is the SF; not
]

PPD

TX np ’ !

RS np i SN_iI ’
‘[>_'_|*' *{>—'_‘* o LM LM LM i

Pixel (n,1) Pixel (n,m)

PPD

I N = r g for the ISO gain.

Column parallel Correlated
Multiple Sampling and ADC

3
Column Parallel Analog S S
Amplification ’}\o. .’},\o. .>o. -’o.
o M I M LM i
2
k rk

3/ (&, - [ e L L

Clumn Parallel Horizontal T T .
Shift Digital Memories . . S Digital
- L «< . o A 4 4 4 Output
Digital Output ] ) 3 4
o o o O 0""."{'
Column Select Amplifier

https://www.edmundoptics.com/knowledge-center/application-notes/imaging/understanding-camera-sensors-for-machine-vision-applications/ 34



Ultra Low Noise CMOS Image Sensors, Assim Boukhayma.

Where to Apply ISO Gain?

Column amplifiers

RST np ’
nd *
nb i
SN

(T

olumn parallel Correlated
ultiple Sampling and ADC

-

Clumn Parallel Horizontal
Shift DigitaI/Memories

7
Digital Output

Applying the gain to the signal applies
the gain to the noise too! Applying
the gain early before much noise
trickles in helps SNR.

* |t's common to use column-level
amplitication. Some cameras have digital
gains (post ADC).

e We could also use an in-pixel amplifier.

e |SO gain circuity is usually called Adaptive
Gain Control (AGC) or Programmable
Gain Amplifier (PGA).

35


https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6879509

Apply ISO Gain After ADC

Applying ISO gains after ADC quantization, i.e., digital gain, magnifies the
guantization artifact (contouring).

Before quantization: 3.4, 4.1
After quantization: 3, 4

Increasing ISO by 10X: 30, 40

https://www.researchgate.net/figure/left-Input-image-quantized-to-16-levels-color-input-image-that-shows-visible-contouring_fig1_228982458 36



Gain Blocks

* Photon to electron conversion in PD Many blocks in signal chain can be seen
e electron charge to voltage conversion in FD . . :

e SF in read-out as applying gains even though their

o :t[r;ce:r ar:phﬂers (e.g., for ISO control) goals are not to amphfy signals.

o , etc.

* Photodiodes apply a photon to electron

Input —— | Block| —— Output conversion; unit of gain is photon/electron.
e FD converts charges to voltage, and has a

in Signal gain G Sou conversion gain with a unit of Volt/electron.
Cir Oout e ADCs convert voltages to raw pixel values,
a.k.a., ADUs (analog-to-digital units) or
SOut — GSm DNs (data numbers). ADC gains have units
— G of ADU/volt.
Oour = YO0iy

They also amplity noises.

37



Digital Output

111

110 T

101 T

100 T

011 +

010 +

001 +

000

1 Approximate gain line ADC gain is technically non-linear,

/ but for the simplicity of noise

analysis we assume it's linear.
- ADC input
Full-scale range [V] FSR = Vmax Vmin voltage range
2V~
ADC Gain G — -

ADC Resolution
FSR
N Voltage equivalent FSR
Vi ; | | ; : ; ; S to one LSB AVLSB — YN

1LSB 2LSB 3LSB 4LSB 5LSB 6LSB 7LSB FS=8LSB

Analog Input

https://www.allaboutcircuits.com/technical-articles/adc-offset-and-gain-error-specifications/ 38



ADC Quantization Error

1.0

— Analog
— Digital

0.5

0.0

Signal (V)

-0.5-

-1.0

0.5 -

LSB error

-0.5-

0 200 400 600 800 1000
Sample #

Figure 4. Analog input, digital output and LSB error waveforms.

2

GADC—q o

ADC guantization error can be
modeled as a “noise” source too.

e All voltages v within a LSB are
replaced with the same level Vy.

Assuming analog values are
uniformly distributed, the variance
introduced by quantization is:

Digital Image Processing 5e, Bernd Jahne  https://www.ti.com/lit/eb/slyy192/slyy192.pdt?ts=1672692692703 39



Other ADC Noises/Errors

Offset error and gain error are fixed for an ADC and can be compensated once characterized. They are
technically errors, not noises, just like quantization errors, but can be modeled as noises. Usually in modeling

we lump all ADC noise sources together as a single ADC noise.

Gain error
(ADC specific)

Offset error
(ADC specific)

A A
| +0.5 LSB Gain Error Nominal Gain
\ Z Point
/ k”_\ ' '
111 + , 991 = = = =« = = = = = = = = = - Actual Gain- - - v -
/ Point | '

Actual Response

110 + \_,, - 110 +

Actual Response

101 + o1 d | - ;
Q : Ideal Response o /
8 ! 8 // ! ! ' !
- 100 T ‘ - 100 T o . H..,RX‘Z o
c’ c’ / ! | | : |
= o1t - - - - - = 011 + ‘ . . .
Q / o | . Q ). \ : ' : |
010 + - A Z | 010+ - - - - // :
> Z | | ;.
001 N +1LSB Offset / .
- - . | 1 001 +- 7 .
600 — 000 -_
1LSB 2LSB 3LSB 4LSB 5LSB 6LSB 7LSB FS=8LSB 1LSB 2LSB 3LSB 4LSB 5LSB 6LSB 7LSB FS=8LSB

Analog Input Analog Input

https://www.nwengineeringllc.com/article/thermal-noise-in-communication-and-optical-systems.php

Read noise
(General to any circuit)

Noise Distribution

Time-Domain Noise

Voltage (V)

0.04

0.03

0.02

0.01

0

Voltage (V)

-0.01

-0.02

-0.03

-0.04

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150

Time (ms) # of Samples

https://www.allaboutcircuits.com/technical-articles/adc-offset-and-gain-error-specifications/
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Noise Propagation



Noise Amplification in the Signal Chain

Photon to electron conversion in PD
electron charge to voltage conversion in FD

SF in read-out

other amplifiers (e.g., for ISO control)
ADC, etc.

Input —— — Output

Sin : :
|
o Signal gain G
Sout — GSm
Oout = Gain

Recall that scaling a random
variable by a constant scales the
variance by the square of that
constant.

Amplitying a signal amplifies the
noise as well; SNR is unchanged
(assuming the block has no inherent
noise)!

42



Noise Amplification in the Signal Chain

Photon to electron conversion in PD
electron charge to voltage conversion in FD

CE o Each block in the signal

other amplifiers (e.g., for ISO control) processing chain introduces
ADC, etc.

noises, which can be modeled as

lnput —— —— Output independent random variables.
The variance of their sum is the

Siq Signal gain G Sout , ,
- Block noise O 5 sum of their variances.
" o e Var(X+Y) = Var(X) + Var(Y)
S, = GS;. In general, SNR is worsened by

> 9 ) the signal processing chain.
Opur — m

43



Example (ignore FPN) Dark current

c)-dark current

Incident - Output
—> —_— — | R —>
Photons @ Voltage

Sin Gread Sou’c
O-photon O* O'read Oout
= (QOE X G read X S
O OE*G?> + G2 o’ + o°
out — read photon read dark—current read

* assuming no noise in photon to electron conversion
44



Apply Gains Earlier Improves SNR

Input — Galn Block — Output
Si. Sout Oour =
Ob
Oin O, Oout
Input — Block Galn — Output
Sin Ga St~ Cour =

O-in O-a O-O ut

G o. + 0, + 0

)

=+/G:(c;, +0;) + 0,

45



Modeling Multiple Blocks as One Block

5 =5,,01G, = 5,;,G

C = (GZ%G12 + 012)G22 + 022 = al%lGlsz2 + 012G22 + 022 = GZ%Z(GIGZ)Z + o2

G — G1G2 G — G1G2G3

If three gains are

| . ]
:> 6 =1/06tG5 + 03 combined: 0= \/G%GZZG% + 0G5 + 0%

46



Example (ignore FPN) Dark current

c)-dark current

et - Reac-out [
— — @ —_— —
Photons Voltage
Sin read Sou’c
O-photon O* O'read Oout

If the read-out chain consists of FD, SF, and an Adaptive Gain Control (e.g., column-level amp):

=QEXG,, XS,

_ 2
— \/ QE G read photon T Greadadark current T 0 read

* assuming no noise in photon to electron conversion

47



SNR and Input- vs. Output-Referred Noise

EXG
SNR = Q e

2(; 2
QE rea phat()n T Greadadark—current TO0 read

Input-referred noise
Sin (expressed in photon counts)

dXSin

G2 2 2 2
ph()ton T Gdark—current/ QE TO0 read/ QE /G read
— QE A Sin Sometimes input-referred
) ) noise is also expressed in
QL“o hOtOn T Ogurk—current T ead /G, read electron counts

48



SNR vs. Exposure Time

E %X S.
SNR = O -~

QE ‘ T Gc%ark—

hotOn current

# of photons/sec/pixel

N\
PxX QE Xt

PXQEXt+1,,, X+ 02
\

Recall: photon shot
Dark current: # of

variance = mean
electrons/sec/pixel

ead

/G2

read

Exposure

/ t|me

read

/G2

read

49



SNR Examples

29 : - iXon Ultra 888
Zyla 4.2 Plus

10 —
RS,
-
& 5-
o
0
>
N 2T
‘g‘ P
o 1-
>

0.48 -r T I T T T ]
1 10 25 50 100 500 1000
Photons / Pixel

https://andor.oxinst.com/learning/view/article/ccd-signal-to-noise-ratio 50



A Sensor Model with Temporal Noise

of incident photons at pixel (x, y); varies

/ with A and t. Subject to photon-shot noise.
X+u

y+v
Ox,y) = [ J [ J (Y(x,y,4,1) QE(4) dxdydA + 1,)q dt
Loy * Dark / \ Elementary
, - Read noise current charge
AV(X, y) — Q('Z y) G+ Nread

\ Gain (SF, ISO gain, etc.)

AV(x,
1, y) = | oo N )

/ Vmax

Raw pixel value

Max voltage corresponding
to max raw value

51



Fixed Pattern
Noise




Fixed Pattern Noise (FPN): Spatial Non-Uniformity

Better be called spatial non-uniformity; due to manufacturing variation of
circuity components across pixels, columns, etc. The variation is spatially
different (“noise”) but doesn’t vary with shots (“fixed"”).

Two FPN components:
e Dark signal non-unitormity (DSNU): non-uniformity without illumination

* Photo response non-uniformity (PRNU): non-uniformity under illumination

FPN can be removed/reduced by subtracting the pattern (at each exposure
time, illumination level, and/or ISO setting) if the pattern is known offline.

e |SO setting aftects gains, which amplity noise.

53



Two Components of DSNU

DCNU (dark current non-uniformity):

* Think of DCNU as the fact that each pixel has a different (but fixed) mean dark current.
Since actual dark current is inherently temporally varying, the effect of DCNU is not a
constant voltage offset, but we can average multiple frames to get the average dark
current of each pixel, which can be seen as the pattern of DCNU.

The effects of DCNU:

® increase with exposure time
. . } lllumination level
* unaffected by irradiance

* increase with ISO setting

Ultra Low Noise CMOS Image Sensors, Assim Boukhayma. Chapter 3.5. 54



Two Components of DSNU

SONU (spatial offset non-unitormity):

 Many circuit blocks add a voltage offset/bias (e.g., in-pixel amplitiers/column ADC) or

inherently introduce a voltage offset (e.g., charge injection on FD after PD to FD
transtfer). The offset voltage, while a constant for a pixel/column, varies across pixels.

* Think of SONU as adding a constant voltage offset to each pixel/column.

The effects of SONU:

* unaffected by exposure time

_ . . } lllumination level
e unaffected by irradiance

* increase with ISO setting

Ultra Low Noise CMOS Image Sensors, Assim Boukhayma. Chapter 3.5. 55
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Removing DSNU Using Dark-Frame Subtraction

Ca ptu re N dark frames, each captu red A raw Canon 20D image @ ISO 800 & 1ms exposure

photon) with an exposure time T and an
ISO setting.

Average the N dark frames to obtain an
averaged dark frame at <T, ISO>.

For an actual capture with <T, ISO>,

subtract the corresponding averaged
dark frame.

http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/ 57



Removing DSNU Using Dark-Frame Subtraction

Capture N dark frames' eaCh Captured The calibrated image after dark-frame subtraction
at dark (with lens cap on; O incident S e s

photon) with an exposure time T and an
ISO setting.

Average the N dark frames to obtain an
averaged dark frame at <T, ISO>.

For an actual capture with <T, ISO>,

subtract the corresponding averaged
dark frame.

http://theory.uchicago.edu/~ejm/pix/20d/tests/noise/ 57



PRNU

Think of/model PRNU as gain variations across pixels/columns.

e Under illumination, electrical output given the same amount of incident photons isn’t
uniform across pixels/columns (e.g., variation in full well capacity, quantum efficiency,
capacitances and transistors at each pixel/column, etc.).

The effects of PRNU:

® increase with exposure time
_ o . lllumination level
® increase with irradiance

* increase with ISO setting

Ultra Low Noise CMOS Image Sensors, Assim Boukhayma. Chapter 3.5. 58



Noise Amplification With PRNU

Photon to electron conversion in PD
electron charge to voltage conversion in FD

SF in read-out
other amplifiers (e.g., for ISO control)
ADC, etc.

Input —— — Output

Sin Signal gain G Sout ) ) 2
| . 6,,=1/GC0, +38 0-+0
Oin Gain noise Og Oout out o in=G b

Block noise oy,

Ignoring second-order terms: |Var(XY) = Var(X)Var(Y) + Var(X)(E(Y))* + Var(Y)(E(X))* = Var(X)(E(Y))* + Var(Y )(E(X))*
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A Sensor Model with Temporal Noise and FPN

Incident

Photons
Nsig

Gar

Dark current

—®—

Output

AGC Voltage

GFD GSF GAGC

(e.g., col amp)

T

The output voltage of an arbitrary pixel in an arbitrary frame (assuming reset noise is taken care of)

X + X,

szg GQE

((Xy + X}V

) Grp

Temporal noise (expressed as
random variables (r.v.) whose values
vary across captures)

FPN (expressed as r.v. whose values
are fixed across frames but vary

across pixels; *see caveats next slide)

read FD

+ X, + X;,

read—AGC col ofs

0 = Gsig — \/ Nsig)

[ . _ S _ _ A)
XNdc ~ Poisson(u = XNdc’ 0 =0y =, / XNdc)

+ X,

plx ofs

)X

GAGC

) GSF+Xf

read—SF

N,

Photon shot noise Sigs

Xy

~ ~ Poisson(u =
Sig

Dark current noise

Read noise eread FD/read—SF/read—AGC ~ N(//t = O’ O = Gvread—FD/read—SF/read—AGC
) ~ — —
PRNU G OE/FDISFIAGC N(u = GQE/FD/SF/AGC’ o GGQE/FD/SF/AGC)
SONU XVplx ofs/col—ofs ~ N('u = pix—OfS/COZ—OfS’ 0 = vazx ofs/col—ofs
DCNU XNdc ~ N(p = Ndca o = UNdC)

)
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A Note About Probabilistic Sensor Modeling

lt's correct to model temporal noises using random variables. When calculate the mean and std across
pixels (under uniform illumination) or frames, the goal is to use the sample mean/std to approximate the
expected value/std of the underlying distribution, which is what we care about.

It's technically incorrect to model FPN of a given sensor using random variables. It's true that there
probably is an underlying distribution of pixel manutacturing variations (which could be Gaussian), but the
spatial distribution on a given sensor is fixed once manufactured, which gives a distribution of samples.

* |Importantly, when we calculate mean/std of spatial non-uniformities over pixels, we are calculating the
sample mean/std, which are indeed what we care about, because they are statistics specific to the
sensor of interest. We are not using sample mean/std to approximate population mean/std (i.e.,
underlying distribution). For instance, Ggp represents the sample mean of FD gain across the pixels on
a particular sensor, not the expected value of the FD gain for a given manufacturing facility.

Also note that the spatial distribution on a given sensor is most likely not perfectly Gaussian, although close;
see https://www.emva.org/wp-content/uploads/EMVA1288General_4.0Release.pdf, Figure 13.

61
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Reducing FPN Using CDS

The SONU portion of FPN can be eliminated by Correlated Double Sampling
(CDS), which, for each pixel during each capture, reads twice — first the reset

voltage and second the actual voltage signal under exposure — and then
subtracts the two.

CDS can’t remove PRNU/DCNU, because the effects of dark current and gain
variations are not simply adding a constant voltage offset to each reading.

CDS can also suppress:

* reset noise (part of thermal-induced read noise).

* some read noise (the 1/f part, which is correlated between the two samples).
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CDS Circuits

Usually sits right before column ADC @)

VRst

? AZ
RSTe % SsH1
e Therefore after FD, SF, and column amp. e | ¢ T '
i —_|__ SH1
Cin -
PPD |
. . i - _T_Cobl ina 2 CL 8%2 Youz
Two implementations: Rs- [T I %C%
Pixel Column-level amplifier CDS =
* two sampling caps for reset and signal, ) - o
and then ADC takes differential input. RST- l z Column level CDS and ADC
L SN ¢ H + A%l:omp
e one sampling cap, and the subtraction E oo guiELiE rle | —2
i i [T T¢ o
happens on that cap by sequentially RS+ —— Cotumn-ove - T
sampling the reset and signal; then ADC s
Counter

takes the subtraction result as input.

Ultra Low Noise CMOS Image Sensors, Assim Boukhayma. Chapter 2.5.1 63



Effect of CDS

Incident Output
Photons @ - - AGC Voltage
Nsig GaE T Grp Gsr GAGC
Dark current (e.g., col amp)

First sample:

(Xy Grp + Xy,

rst

)GSF T X V@ oad—SF +V, pix— offset)GAGC T X V oad—AGC T Vcol—offset

read FD

Second sample (subtract Ny and Ng. because charge transter discharges FD):

(((X rst X sngQE XNdc)GFD + Y rea )GSF + Y read SF + V l-x OffSEt)GAGC + Y read—AGC + V col— OffSet + Y read CDS
: [ X Y ~ N —
XN i POlSSOH(ﬂ NSlg’ O = GSlg — NSlg) Vread FD’ Vread FD (//t O 0 = GVread FD)
For a specific pixel - Xy , Yy ~Np =0, 6 =0y )
. . read—SF’ read—SF read—SF
only temporal noises Xy, ~ Poisson(u = Ny, 6 =0, =+/Ng) X, Y,  ~Nu=0, =0, )
need to be Cons'dered X N N( B N V C B ) read—AGC’ read—AGC read—AGC
N.., H = rst“FD> O = Opg XV YV ~Nu=0, o= Oy )

read—ADC read—ADC read—ADC
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Effect of CDS

Incident Output
Photons @ - - AGC Voltage
Nsig GaE T Grp Gsr GAGC
Dark current (e.g., col amp)

First sample:

(Xy Grp + Xy,

rst

)Gsr+ Xy, ot VoirosedGace T Xy, oo T Veol—offser

read FD

Second sample (subtract Ny and Ng. because charge transter discharges FD):

(((X rst X sngQE XNdc)GFD T Y rea )GSF T Y read SF T V l)C offset)GAGC T Y read—AGC T V col— offset T Y read CDS
After subtraction:
(((X SlgGQE + X )GFD + X read FD o Y read FD)GSF + X rea —SF o YVread—SF)GAGC + X read—AGC - Y read—AGC - YVread—CDS

e Eliminated: the offset portion of FPN, reset noise (kTC-induced), and some amount of read noise (1/f component)
e Retained: PRNU/DCNU, other temporal noise (in fact, variance of non-reset/non-1/f read noise is doubled)
* [Introduced: read noise of the CDS circuitry itself

65



Signal Processing For
Noise Removal/Estimation



Recovering Noise-Free Images

Incident Output
— — A
Photons @ - GC Voltage
Nsig Gake T plx GAGC
Dark current (SFand FD)  (e.g., col amp)

1. Under the same illumination level D, take N captures and average them pixel-wise; this effectively calculates the expected
value of a composite random variable for each pixel:

t p t p t D t _ P P P
EI((X ngQE T XNdc)GplX T X Viead—pix + szx Ofs) AGC T X Viead- AGC col Ofs] (V. SI8 QE )GPUC i Vplx OfS) AGC i VCOl ofs

Ap terms are pixel-specitic constants

Xf\,sig ~ Poisson(y = N;,, ¢ =06, =4 /Ng,)
X}\,dc ~ Poisson(u = N, 6 =0, = \/Ngc)

X, ~Np =0, 6 =0y

read—FDl/read—SF/read—AGC read—FDlread—SFlread—AGC

67



Recovering Noise-Free Images

Incident Output
— — A
Photons @ - GC Voltage
Nsig Gake T p|x GAGC
Dark current (SFand FD)  (e.g., col amp)

1. Under the same illumination level D, take N captures and average them pixel-wise; this effectively calculates the expected
value of a composite random variable for each pixel:

t p t p t 1% [ P — 14 p 14 P
EI((X ngQE T XNdc)szx T X Viead—pix + szx Ofs) AGC T X Viead—AGce T Vcol Ofs] (V. SI8 QE + N, )GPUC i VPUC OfS) AGC i VCOl ofs

2. Average across all the pixels in the averaged frame obtained before. This effectively calculates the expected value of a
composite random variable:

E[((N; X5 +Xy X5 +X;,

sig“ G Gpix Vix—ofs + XS ] — (( sngQE + Ndc)G + V), pix— OfS)GAGC +V col—ofs

) GAGC wl ofs plx

S ~Y — . —
XGQE/pix/AGC N(//t GQE/plX/AGC’ o GGQE/pix/AGC)

pix—ofs/col—ofs

Xy, ~ N =Ny, o0=o0y)

U_GV

piX—OfS/COZ—OfS’ pix—ofs/col—ofs

68



Recovering Noise-Free Images

Incident Output
— — A
Photons @ - GC Voltage
Nsig Gake T p|x GAGC
Dark current (SFand FD)  (e.g., col amp)

1. Under the same illumination level D, take N captures and average them pixel-wise; this effectively calculates the expected
value of a composite random variable for each pixel:

t p t p t 1% [ P — 14 p 14 P
EI((X sngQE T XNdc)szx T X Viead—pix + szx Ofs) AGC T X Viead—AGce T Vcol Ofs] (V. SI8 QE + N, )GPUC i VPUC OfS) AGC i VCOl ofs

2. Average across all the pixels in the averaged frame obtained before. This effectively calculates the expected value of a
composite random variable:

E[((NSngg;QE T X]ide)XS T XS ) Gice T XS ] — (( SlgGQE T Ndc)G +V, pix— OfS)GAGC +V col—ofs

plx pzx ofs col ofs pl.X

3. We subtract the two above arithmetically, we get the expected value of FPN at D for a pixel:

FPN = ((N Sig QE )Glflx T V[flx Ofs) AGC T V(l:?ol ofs — (( SlgGQE T NdC)GPlx + Vi pix— OfS)GAGC VCOZ_OfS
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Recovering Noise-Free Images

4. We take a capture of a scene of interest, and for a pixel whose illumination level is D, we subtract its voltage reading (a
composite random variable itself) with the FPN at D corresponding to that pixel (we do this subtraction for all pixels):

VP =(Xy Gp.+ Xy )G" + X +VF )G

[ P _
sie.  OF pix read—pix Pix—ofs T XV +V FPN

GC read—AGC COl—OfS

_ (X! (P L NP i P p
N ((XNvigGQE * XNdc) Gpix N XVread—pix T Vpix—OfS) G

_((NSigGZE T NCIZ)C)GZI;ix T V]l;ix—ofs)GﬁGC N VfOl—OfS T ((NSigGQE T NdC)GPix T VPiX—OfS)GAGC T VCOZ—OfS

+ X, + VP

GC read—AGC col—ofs

— (X! —_N . YGP P P t _ NPYGP P t p !
o (XNSig N Slé’)GQEGpixGAGC T (XNdc Ndc)GpixGAGC * XVread—pixGAGC i XVread—AGC

+((V;

SlgGQE T Na’c)G x T Vi OfS)GAGC T VCOZ—ofS

pix pix—

Given this, there are a few interesting conclusions we can draw. 4.1: the expected value of each so-calculated pixel is the
true signal of that pixel, which means if we average over many frames, we will get a completely noise-free image.

EIVF] = ((NsigGQE T Ndc)Gpix T Vpix—ofS)GAGC T Vcol—ofs

The dark current offset and pixel/column voltage offsets are still there, but they are constant across pixels (hence not noise).
Consequently, the black level voltage won’t be 0. If the sensor first performs CDS before going through our subtraction

procedure, the constant voltage offsets will be eliminated, but dark current offset is still there.
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Recovering Noise-Free Images

4.2: each pixel itself, without averaging across frames, has a noise of the following form. We can see that the SONU is gone,
but the PRNU and DSNU, although fixed for the pixel, is still there in addition to temporal noises. So the effect is similar to
using CDS (which removes 1/f read noise and amplifies other read noises; see before).

— r P pP P I _ NP P P l P 4
Var[vp] o Var[(XNslg NSlg)GQEGplXGAGC + (XNa’c NdC)GplXGAGC + eread—pixGAGC + XVread—AGC]

_ 2 P P P )2 PP (3P )2 2 P )2 2
o GSlg(GQEGplXGA GC) NdC(GplXGA GC) Gvread—pix(GA GC) Gvread—AGC

4.3: if we want to show the noise both spatially and temporally (i.e., capture both FPN and temporal noises), then the
voltage value at each pixel is expresses as a random variable below:

r | S s S t AP \VYS S t S t n n
(XNSl.g Slg)XGQEXGpixXGAGC + (XNdc Ndc)XGpixXGAGC + XV,,ead_pixXGAGC + eread—AGC VCZF(XI XZ" . Xn) — H ( 01'2 + /412) _ H /’tzz
The variance of this random variable is: i1 i1

_ 2 2 2 2 2 2 2 2 2 2 2 2 D 2 D 2 2 2 2

Var = (O-SigGQEGpix + GsigUGQEGGpl-x T GsigGQEGGpl-x T GSigGGQEGGpDC +N dCUGpl-x +N dCGpix T Gread—pix)GAGC T Uread—AGC
~ 2 2 2 D 2 2 2 2
R (05,GorGphic + N, Ghiv + 01000 rp)Gice T Creaa—nce

We can see that when omitting high-order terms, the noise is the same as that without any FPN. So in general we can say
that the so-obtained image is FPN-free. Alternatively, we can say that given a uniform illumination D, the pixel value
differences in the image are due only to temporal noises.
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Dark-Frame Subtraction to Remove DSNU

Incident Output
— — A
Photons @ - GC Voltage
Nsig Gake T plx GAGC
Dark current (SFand FD)  (e.g., col amp)

1. Under the same illumination level D, take N captures and average them pixel-wise; this effectively calculates the expected
value of a composite random variable for each pixel:

t p t p t 1% [ P — 14 p 14 P
EI((X ngQE T XNdc)GplX T X Viead—pix + szx Ofs) AGC T X Viead—AGce T Vcol Ofs] (V. SI8 QE + N, )GPUC i Vplx OfS) AGC i VCOl ofs

When the illumination is O, the frame is called a dark frame. After averaging above what we get is essentially a DSNU

pattern (including both DCNU and SONU) under a given exposure time. Figure 3 of this article obtains the DSNU pattern
under an 1ms exposure time by averaging 16 dark frames.

P (3P P P
(Nchplx T szx 0fS> AGC T Vcol ofs

If the exposure time is set to 0, each capture is called a bias frame. Figure 2 of this article is obtained by averaging 100 bias
frames. In an averaged bias frame, the voltage reading of each pixel is (no dark current):

p p p
Vpix—OstAGC Vcal—OfS

(2


https://homes.psd.uchicago.edu/~ejmartin/pix/20d/tests/noise/
https://en.wikipedia.org/wiki/Bias_frame
https://www.photometrics.com/learn/advanced-imaging/pattern-noise-dsnu-and-prnu#:~:text=The%20basic%20difference%20between%20these,(hence%20'photo')

Dark-Frame Subtraction to Remove DSNU

2. We take a capture of a scene of interest with an exposure time T, and subtract, pixel-wise, the averaged dark frame
obtained at T. The voltage reading of each pixel is a random variable:

VP

VP =(Xy G +Xy )Gl +X;, — + VP )GP GC Y col—ofs

sig QE dc pPlX read—pix pl.X—OfS

+X, VP —(NPGP + VPGP

GC read—AGC col—ofs dc ~ pix pix—ofs

— Y! P P P I _ NP P P [ P [
XNSlgGQEGplXGAGC + (XNdc NdC)GplXGAGC + eread—pixGAGC + XVread—AGC

The expected value of this random variable (which can be approximated by averaging multiple frames) is the true signal

without dark current and voltage offsets, but PRNU is still there. In other words, the noise in the frame is due only to PRNU.

EIV?] = NG, Gl Gl

It's called dark-frame subtraction, which eliminates dark current noise and SONU. In astrophotography, it's called dark
current and bias correction (bias being the constant voltage offsets in our language). Note that it removes the impact of
dark current altogether (both DCNU and the shot noise of dark current). That's why it's often used in astrophotography,
where the exposure time is usually excessively long.

Two things need to be noted. First, the dark frame to be subtracted must be taken under the same exposure time as the
intended capture. Second, dark-frame subtraction does not eliminate FPN (which is a common misconception in online
articles) because PRNU is still there.
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https://en.wikipedia.org/wiki/Dark-frame_subtraction
https://www.cs.rochester.edu/courses/572/fall2022/decks/lect15-astro.pdf#page=17
https://www.cs.rochester.edu/courses/572/fall2022/decks/lect15-astro.pdf#page=17

Noise Analyses Using Dark Frames and Bias Frames

Here are a few interesting things we can do now that we have dark and bias frames.
1: If we subtract an averaged bias frame from a single bias frame and plot the pixel value histogram (or plot the histogram
over multiple frames), what we get is the output-referred read noise distribution of the sensor.

! P P ! P — P P P — Y! P !
(eread—pix + VplX—OfS)GAGC + eread—AGC + VCOZ—OfS (VplX—OfSGAGC + VCOZ—OfS) eread—pixGAGC + eread—AGC

Alternatively, we could also just plot the histogram of a single bias frame, in which case we will see a Gaussian with a non-
zero mean, where the mean is due to the constant pixel/column voltage biases, but the distribution still shows read noise.

400000 o0 25600 e Gaussian read noise distribution measured in raw values of a single bias
90 6400 frame for the Olympus E-M1 at a selection of high ISO settings.

350000 -

ISO 6400

300000 -

e The distributions are centered at the DN = 256, which shows the bias offset
added by the sensor (ADC bias or other pixel/column offsets). Without no
bias/offset, the negative values will be clipped to O.

250000 H
200000 H

150000 -

 The std increases with the ISO setting, because the ISO setting dictates the
gain, which amplifies the variance (noise).

100000 H

Number of pixels

50000 A

e Strictly speaking, the distribution is not purely from read noise, as PRNU/
SONU are still there. Subtracting the averaged bias frame eliminates SONU.

O I I I I I I I
0 64 128 192 256 320 384 448 512

Raw value (DN)

Physics of Digital Photography, Chapter 3.9.2. 74


https://web.archive.org/web/20150410033107/http://qsimaging.com/ccd_noise_measure.html

Noise Analyses Using Dark Frames and Bias Frames

2: If we subtract an averaged bias frame from an averaged dark frame, what we get is the dark current component of each
pixel or, more specifically, the expected value of output-referred dark current-induced voltage of a pixel:

P (3P P p P — (P P (L — NP (3P ;P
(Nchpix T Vpix—OfS)GAGC T VCOZ—OfS (Vpix—OfSGAGC T VCOl—OfS) - NchpixGAGC

3: Take a look at the expected value of a pixel after dark-frame subtraction (i.e., averaging over multiple frames with dark
frame subtraction), what we get is the PRNU distribution of the sensor, because the noise in the frame is due only to PRNU.

EIVF] =N SigGgEGgingGc

We can see that the affect of PRNU is dependent on the illumination level (incident irradiance and exposure time).
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https://en.wikipedia.org/wiki/Bias_frame

Flat-Field Correction to Remove Noise

1. Take a raw capture of a scene of interest R = ((vasigGgE T vadc)G]fix + th/m i T V;l;ix— OfS)GjGC T th/ e T Vfol—ofs
2. Obtain an averaged dark frame D = (Nchgix + Vgix_OfS)GﬁGC + VfOZ_OfS

3. Obtain an averaged flat-field frame, i.e. F = (N..G" PN\CIP P p P
1S = - + NHYGE. + V2 \GY .+ V
averaging frames under uniform illumination 8 Ok de” —pix —  pix—ofs” “AGC col—ofs

. ] : ¢ 1y — P P P
4. Obtain dark noise and bias-corrected flat-field frame F—-—D= NSigGQEGpixGAGC

5. Calculate the pixel average of the corrected flat-field frame 7 = N, ,G,,G .Gy

: : el ) — vt P P (P t _ NPCGP 3P ! p !
6. Obtain dark noise and bias-corrected raw frame R — D = XNSigGQEGpixGAGC + (XNdc NdC)Gpl.xGAGC + XVread_pl-xGAGC +Xy,

7. Calculate the final, calibrate image. After frame averaging, the only noise is photon shot noise

(R — D)m X&igGéEGﬁixGﬁgc + Xy, — NJ)GE Gloe + th/md_pl-ngGc +Xy
F—D N N . GP.GP. GP XNSigGQEGpixGAGC
— sig™~ QE™~ pix~ AGC
G GG, GG, G
OF QE™~pix OEYpixYAGC
=Xy GppG,;,Gage + Xy — NP G,;.Gige + Xi Gicge+ X,
N?ig OF pix AGC ( Ndc dc GgE P AGC Vread—pix GZEGPPUC AGC Vread—AGC GZEGPPLX'GEGC
(R—D)m t
El F—D | = XNSl.gGQEGpixGAGC

* See flat-tield images taken by the telescope at the Mees Observatory 76



https://web.archive.org/web/20130407013841/http://www.princetoninstruments.com/cms/index.php/ccd-primer/152-flat-field-correction
https://en.wikipedia.org/wiki/Flat-field_correction
https://www.cs.rochester.edu/courses/572/fall2022/decks/lect15-astro.pdf#page=22

Estimating Temporal Noise and FPN

Described by Emil Martinec here, which is very similar to the EMVA Standard 1288 (Release 4.0), which is a black-box model that
doesn’t specify the exact analytical form of the noise being measured, which we show here. Ignore dark current and DCNU.

1. Take two captures under uniform illumination D; voltages of the same pixel in the two images:

t p p t P [ P
(X sngQEszx T X V read—pix T Vplx OfS) AGC T X Viead-AGe T VCOZ ofs XN E YN ~ Poisson(u = Slg, O = Oy = 4 /Nsig)
t p p t % [ P t
(Y Sl(g GQEGpl.X + Y read—plx + Vplx OfS) AGC + Y read AGC + VCOZ OfS XVread—FD/read—SF/read—AGC YVread—FD/read—SF/read—AGC ('M O 0 = Vread—FD/read—SF/read—AGC)
2. Subtract the two images pixel-wise; each pixel is expressed as:
Xy e & PGP Xt - Y, ! Xy / - Yy /
(( Slg Slg)GQEGplx T ( read—plx read—plx ) AGC T ( read AGC read AGC)

3. Now we want to calculate the variance across all pixels in this residual image, in which case FPN terms become random
variables. So the voltage of each pixel in the residual image is expressed as a new random variable:

Xy e & + (X, ! —Y! + (X, / —Y!

(( ug 5lg) GQE Gp ( read—plx rcad—plx) GAGC ( read—AGC read—AGC)
S —_— —

XGQE/plx/AGC N(M o GQE/pl-X/AGC, 0 = GGQE/pix/AGC)

Note that it's incorrect to use the following random variable, which assumes we sample both temporally AND spatially before
subtraction; instead, we sample temporally, subtract, and then sample spatially.

+ 7Y, + VP )

read—AGC COl—OfS

XL XS XS Xy / p Xt 1 — (Y}, X5 X3 Yy /
( NSlg GQE Gp + read—plx + VplX OfS) GAGC + read AGC + VCOZ OfS (( NSlg GQE Gp + read—plx plX OfS) GAGC
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https://homes.psd.uchicago.edu/~ejmartin/pix/20d/tests/noise/noise-p2.html
https://www.emva.org/wp-content/uploads/EMVA1288General_4.0Release.pdf

Estimating Temporal Noise and FPN

4. Now calculate the variance across N pixels. Assuming N is sufficiently large, the sample variance approaches the population

variance, which is expressed as:

Varl(X}, — Yy X5 Xo +(X;,

G :
Sig QFE p read—pix
5. Ignore high-order terms, the variance turns out to be exactly the output-referred temporal noise without any FPN:

~ 2 2 2 2 2 2
~ (zgsigGQEGpix T 2(;re(wl—pix)GAGC T zgread—AGC VCZI"(X - Y) — VCII’(X) + VCII”(Y)

_ 9,2

o Zaoutput—referred—tempoml—nOise
It is worth noting that this methodology to estimate temporal noise is almost exactly the same as that used in the EMVA
Standard 1288 (see Equation 18) with one caveat: the EMVA standard also subtracts the difference of the mean values of the
two images, which in the ideal case should be exactly the same. The standard does this correction to give “an unbiased

estimate even if the mean values are slightly different by a temporal noise source that causes all pixels to fluctuate in sync.”

_yt t _yt
YVread—pix + (XVread—AGC Yvread—AGC)]

DX

AGC

/8


https://www.emva.org/wp-content/uploads/EMVA1288General_4.0Release.pdf
https://www.emva.org/wp-content/uploads/EMVA1288General_4.0Release.pdf

Estimating Temporal Noise and FPN

6. Look at the temporal noise expression, we can see that the temporal noise scales linearly with the illumination level (Ns;g)
and has a constant intercept, which is the read noise.

2 2
60utput—referred—temp()ml—noise ~ SlgG Gple AGC T o ead—psz AGC T o ead AGC
2
stgG Gple AGC T 0 ead
Output-referred photon shot noise; increases linearly Output-referred read noise; a constant
with 0253=Nsig, which is the incident photon count w.r.t. to incident photon count

But ultimately what we can measure is in ADU/DN, so we have to consider ADC and its gain, in which case the output-referred
temporal noise, now in the unit of ADU/DN, is expressed as:

62 se ~ SlgG G2 GAGCG DC+(

2
output—referred—temporal—noise pix ead—pleAGCG ADC T o0 ead—AGCG ADC T OADC)

2 2
NSlgG GpleAGCG DC ead ( SlgGQE pleAGCGADC)GQE pl.XGAGCGADC + ead

N.c G =N G: unit is ADU/photon
_ NADUG_I_ g ADU unit | p

read
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Estimating Temporal Noise and FPN

To estimate the read noise, we regress a linear function of output-referred temporal noise vs. ADU under different illumination
levels. The ADU is calculated by first adding the two frames together, calculating the mean raw value, and divide that by two.

The intercept of the linear function is the best-fit read noise. The slope of the linear function has a unit of ADU/photon, i.e.,
how many ADUs are increased for one photon, which is sometimes called the “conversion factor” and is proportional to the
ISO and inversely proportional to the overall gain (how many incident photons are needed to increase ADU by 1).

Note that Nsg G = Napu is true only when all noises are eliminated. This is not achieved in what's described above, which
includes the voltage offset (below), and that’s why Martinec’s article says we need to subtract the bias when calculating Napu.

NSlgG +V, pix— ofSGAGCGADC +V col— ofSGADC

2 ~ 2
GOMZput—referred—tempwal—noise N SlgG GpleAGCG ADC T 0 read ( SlgGQE pleAGCGADC)GQE pleAGCGADC To read
Nsig G = Napu G; unit is ADU/photon
= Nupy/G + 00q

80



Estimating Temporal Noise and FPN

7: To calculate FPN, take a capture and calculate its the pixel variance, and subtract the temporal noise calculated before.
Intuitively, the capture has FPN+temporal noise, from which we subtract the temporal noise. What we are calculating is:

Varl(Xy, — Yo X5, X6 + Xy, =Y, X5 +(X), -Yy, )]
f g g f g g f g - slg szg QFE read —pix read —pix AGC read AGC read—AGC
Var{ (Z 5ngGQEZ plx + Z read—plx + Z pzx ()fs)ZGAGC + Zvread—AGC + ZVC()I—Q}‘S} 2
2 2078
= INg;,0 6" (Z; GQE - GAGC) + 0L GAGC) + o, col—ofs In fact, we get the overall output-referred FPN, not
just PRNU as the article describes, and the results
Zy,, ~ Poisson(p = Ny, o= o, \/stg) are exact, i.e., no omission of high-order terms.
4 — —
ZVread—FD/read—SF/read—AGC ~ N(ﬂ o O’ 0 = Gvread—FD/read—SF/read—AGC)

S ~yY p— . p—
XGQE/pix/AGC N(Iu GQE/[)ZX/AGC’ 9 GGQE/pix/AGC)

pix—ofs/col—ofs

)

O —O0

pix—OfS/COI_OfS’ Vpix—ofs/col—ofs

This method to estimate FPN is exactly the same as that used in the EMVA Standard 1288 (see Equations 16, 17, 18, 27).

We can report the FPN directly using the std (e- for input-referred noise or mV for output-referred noise) or as the ratio of std/
full-well capacity or std/voltage swing, which then is a % number.

2 2
\/ Szg (ZGQE meGAGC) T0 ( Dix— OfSZGAGC) T O, 01 ofs

FWC X Gp;,Gace

FPN =
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https://www.emva.org/wp-content/uploads/EMVA1288General_4.0Release.pdf

Another FPN Estimation

1. Under the same illumination level D, take N captures and average them pixel-wise; this effectively calculates the expected
value of a composite random variable for each pixel:

E[((Xy, Gop+ X\ )G + Xy + V0 DOh

! p — p P NP p p p
plx read—pix plX—OfS AGC + XV + V ] o ((NSlgGQE + NdC)G ) + V . )G + V

read—AGC col—ofs pix pix—ofs” ~AGC col—ofs

2. Calculate the standard deviation/variance across all the M pixels in the averaged frame obtained before. Given that M and
N are sufficiently large, this effectively calculates the standard deviation/variance of a composite random variable:

X7 ~Nu=G , O=0

Var|((N . ¢ g; —+ in] )X g; + X‘S/ )Xg; - X‘S/ ] GoriFpisFiaGe (u QL/FDISFIAGC GQE/FD/SF/AGC)
g 0] dc pix pix—ofs AGC col—ofs g

X5, ~Nu=V,

pix—ofsicol—ofs ix—ofs/col—ofs’ 0 = Oy

ix—ofs/col—ofs
= N2 6*(X5 X5 XS o(XS XS, X¢ oX(X5 X o2 ’
Sig ( Gor™ Gpix GAGC) + 0% Na"Gpix GAGC) + o Viix—ofs GAGC) i Veol—ofs Xy, ~Nu=N,, o6=oy)
dc dc

This is the same procedure as a method described in EMVA Standard 1288 (see Equations 28). The standard isn’t very clear
about the difference in applicability of the two methods (subtracting two images vs. averaging over multiple images).

https://isl.stanford.edu/~abbas/ee392b/lect07.pdf 82
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Dynamic Range



Dynamic Range of a Sensor

DR is a single number characterizing the ability of a camera to simultaneously
sense the brightness and the darkest points of a scene.
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Dynamic Range of a Sensor

DR — Maximal signal  Full well capacity
~ Noise floor O rond

DR is a single number characterizing the ability of a camera to simultaneously
sense the brightness and the darkest points of a scene.
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Dynamic Range of a Sensor

DR — Maximal signal  Full well capacity
~ Noise floor O rond

/

# of electrons sensed in the dark,
i.e., when no incident photon

DR is a single number characterizing the ability of a camera to simultaneously
sense the brightness and the darkest points of a scene.
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Dynamic Range of a Sensor

The max signal record
__— when a pixel is saturated

DR — Maximal signal  Full well capacity
~ Noise floor O rond
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# of electrons sensed in the dark,
i.e., when no incident photon

DR is a single number characterizing the ability of a camera to simultaneously
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Dynamic Range of a Sensor

The max signal record
__— when a pixel is saturated

DR — Maximal signal  Full well capacity
~ Noise floor O rond

/ S
Std. of read noise

# of electrons sensed in the dark,
i.e., when no incident photon

DR is a single number characterizing the ability of a camera to simultaneously
sense the brightness and the darkest points of a scene.
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Dynamic Range of a Sensor

The max signal record
__— when a pixel is saturated

DR — Maximal signal  Full well capacity
~ Noise floor B O rond

/ -
Std. of read noise

# of electrons sensed in the dark,
i.e., when no incident photon

DR is a single number characterizing the ability of a camera to simultaneously
sense the brightness and the darkest points of a scene.

| deally: maximal signal is full-well capacity; minimal signal: O
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Dynamic Range of a Sensor

The max signal record
__— when a pixel is saturated

DR — Maximal signal  Full well capacity
~ Noise floor B O rond

/ -
Std. of read noise

# of electrons sensed in the dark,
i.e., when no incident photon

DR is a single number characterizing the ability of a camera to simultaneously
sense the brightness and the darkest points of a scene.

| deally: maximal signal is full-well capacity; minimal signal: O

Bigger sensors improve DR, as we saw before.
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High DR doesn’t mean less noisy.

DR is a single number characterizing
the ability of a camera to
simultaneously sense the brightness
and the darkest points of a scene.

SNR varies with light levels. At a given
light level, the SNR characterizes “how
noisy” the image it.

e Higher light level leads to higher SNR.

Dynamic Range and Signal to Noise Ratio

l .
‘«—— Dynamic range

|
— >

100,000

10,000

1,000 Signal /

Input Photons

T

@ Dynamic range
% Total noise
] ' _~
0 100 ' =
: . = Read noise
' _— . Srile K | \ 4
10 R e E
e s
T ‘ Photon shot noise
1 e - |
1 10 100 1,000 10,000 100,000

Consider only photon shot noise and read noise and

ignore dark-current noise here.

Image Sensor and Signal Processing for Digital Still Cameras, 2006. Junichi Nakamura
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DR and SNR Units

Often DR and SNR are

expressed in decibel or "stop”.

SNR

stop

= log,(SNR)

DR

stop

= log,(DR)

https://en.wikipedia.org/wiki/Dynamic_range

Factor (power)

31.6

32
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Typical Dynamic Range

Input “device”: (maximal signal/noise floor)

* Smartphone camera: 10 stops (iPhone 11)
e DSLR: 14.8 stops (Sony A/7R4)

e Human eyes: 10-14 stops (instantaneous, i.e., when the pupil size doesn’t change)
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https://blog.halide.cam/inside-the-iphone-11-camera-part-1-a-completely-new-camera-28ea5d091071
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https://www.cambridgeincolour.com/tutorials/cameras-vs-human-eye.htm

Dynamic Range of “Output Devices”

DR of light-emitting output “devices” is defined slightly differently.

88


http://scarlet.stanford.edu/~brian/papers/pdc/CIC10_Paper88.pdf
https://www.displayspecifications.com/en/model/fc6f10a4
https://www.cnet.com/news/what-is-uhd-alliance-premium-certified/
http://lumita.com/site_media/work/whitepapers/files/pscs3_rendering_image.pdf

Dynamic Range of “Output Devices”

DR of light-emitting output “devices” is defined slightly differently.

DR = highest illumination/lowest illumination
* Natural scenes: ~20 stops (measurement)

e Typical Display: ~10 stops (LG 27UK850); of course every display you buy touts HDR...
e HDR Display: 14.2 stops (UHD Alliance Certified HDR LCD display)
* Paper: 6-8 stops (typical value); related to pigment density
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Output “Device” lllumination

Range of Visible Luminance in Candellas per Meter Squared (cd/m’) Log Scale

.01 v 1 10 100 1000 10,000 100,000

Scene D ynamic Ran ge

10 cd/m’ 10,000 cd/m?

2,000 cd/m’

30,000 cd/m’

60 cd/m’
300 cd/m’

LG 27UK850-W Brightness: 350 cd/m?2

Displays will never reproduce the same
luminance in a scene (power of the sun!),
but tries to maintain the relative ratio.

Rendering the Print: the Art of Photography 89



Natural Scenes Have High Dynamic Range

Range of Visible Luminance in Candellas per Meter Squared (cd/m’) Log Scale

.01 A 1 10 100 1000 10,000 100,000

Scene I —————————
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Rendering the Print: the Art of Photography
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The Problem

.01 1 1 10 100 1000 10,000 100,000

Scene

Original Scene Dynam ic Range
A RN

Scene Referred Image Output Referred Image
LCD display DR is
not much better

-

o

Quality Inkjet Pigment Prim: * —a

e e ~ 3

SN
et o

:I'l'l'l'l'l'l'l'l'
.01 1 1 10 100 1000 10,000 100,000

Rendering the Print: the Art of Photography 91



Two Related Tasks in Sensor Signal Processing

Scene

Camera

Display

Print

High DR (natural) scenes

Lower DR capturing
device (e.g., camera)

Even lower DR output
device (e.g., display, paper)

1. HDR Imaging: how to capture an

DR scene with a lower

DR capturing

device. Limited by the camera.

2. Tone Mapping: how to display HDR
images on lower DR display devices.

Limited by the display medium.
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Color Sensing



Goal of Color Sensing

Daylight
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https://www.eyeworld.org/research-finds-human-visual-cortex-continues-development-mid-30s
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https://www.eyeworld.org/research-finds-human-visual-cortex-continues-development-mid-30s
https://9to5mac.com/2017/12/07/iphone-flikr-most-used-camera/

What if this is not true? Metamers in human

vision would not be metamers in camera

Goal of Color Sensing

vision: colors appearing ditterent to your eyes

would look the same in photos and vise versa.

Sensor color
| space
Daylight

100 =
80 <
‘2} 60 -
é’ 40
20

’ 400 500 600 700 SRGB

wavelength (nm)

/ space \
—_— | M cExvz  CMYK

space space
P space P

Cone \ /
responses I
CIE RGB
https://9to5mac.com/2017/12/07 /iphone-flikr-most-used-camera/ Space

https://www.eyeworld.org/research-finds-human-visual-cortex-continues-development-mid-30s
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How to Sense Color?

Principle of univariance: once a photon is converted to an electron, we lose
wavelength/color information (there is no red electron vs. blue electron).

How do humans sensor color? We have three types of cones, each has a

different spectral sensitivity to light.

e Light spectrum gets transformed to three numbers (L, M, S cone responses, or
equivalently the tristimulus values in a color space).

Cameras also need to somehow generate three numbers from light too.

The three values should ideally be the same as the LMS cone responses.

* Or can be converted to tristumulus values in one of the known color spaces.
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Sensor Spectral Sensitivity

Canon50D v Ettectively we need to have
) Camera Spectral Sensitivity three kinds of sensors, each
o Z:z has a unique spectral
i sensitivity function (SSF).
Ll EGene 06
EE::E: SSF(A): generated electrical
- energy per unit incident light

0.1

energy at a given A.

https://www.cs.rochester.edu/courses/572/colorvis/camcolor.html



Sensor Spectral Sensitivity

Canon 50D v

[ | RFilter 0.8
[ ] GFilter
[ ] BFilter

T " ILCone 06
T _IMCone o5

W S Cone

How should SSFs look like?

Camera Spectral Sensitivity e |deally: each sensor’s SSF

(sensor quantum e
microlens, filters,

mimics LMS and XYZ, since
CMFs in other color space
usually involve negative values
that are physically unrealizable.

e Reality: hard to be exact. SSF
depends on lots of things

ticiency,

manufacturability, etc.).

https://www.cs.rochester.edu/courses/572/colorvis/camcolor.html
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Sensor Spectral Sensitivity

Canon 50D

R Filter
[ ] GFilter
[ ] BFilter
T lLCone
— 1 MCone
W S Cone

S

(S
[ ] emFZ
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0.6
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0.4

Camera Spectral Sensitivity

https://www.cs.rochester.edu/courses/572/colorvis/camcolor.html

—+— Spectral Locus in Cam
—— Spectral Locus in LMS
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Sensor Spectral Sensitivity

Average

R Filter
[ ] GFilter
[ ] BFilter
T lLCone
— 1 MCone
W S Cone
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(S
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0.4

Camera Spectral Sensitivity

https://www.cs.rochester.edu/courses/572/colorvis/camcolor.html

—+— Spectral Locus in Cam
—— Spectral Locus in LMS
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Astrophysical Imaging Uses More Filters

Spectral transmittance of the five filters in the first SDSS camera

'u-band Il o-banc I r-vand [ -vand zband.

afil il rai
i

100

80

(o))
o

Transmittance[%)]

S
o
e ——

20

N R A

300 400 500 600 700 800 900 1000 1100
Wavelength[nm]

https://www.asahi-spectra.com/opticalfilters/sdss.htm| 100



: » » ‘. .o-' ’ ° ’ d'

~ An image from SDSS (False Colors) -

' .0 . o e (A, P S b .. W - Ry ~c. * .:. . g . ' 4 e "} " . i
. ' : . . . e o : ; '.. ¥4 o : .0 . : .-. : . g ) . » ¢
.. - ‘; ...: ol Yol ..\.. 5 s '0 -..... X8 ; b, - > .“0 A, s - -
A https://wWw.T.ac.es%eri/prOJects/SIG)@n-d-lg|ta’lrs|<y'-wr.ve-y-|msd?s-.' 101"
O o CECREE AL A TSRS W R B Ry I AT < g s 30’ N N 5

. . . » v ‘ - Yoo . . . . . e Th
W AF . R n'm.' - a ?- 2 ' a T L ‘alra | B -



Realizing “Three
Kinds of Sensors”



Take Three Separate Shots and Combined Them
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Sergey Prokudin-Gorsky

1906 by Dr. Adolf Miethe (1836 — 1944)

https://www.loc.gov/exhibits/empire/making.html  http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15463-111/www/proj1/www/machongm/ 103
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https://www.loc.gov/exhibits/empire/making.html

Use Three Sensors

Use three sensors Similar to “three shots” (previous slide)

(a) e — (b)

Figure 14.3 (a) Three-sensor camera. (b) Sequential colour camera.

The Manual of Photography and Digital Imaging 10ed, Allen and Triantaphillidou 104



Use Three Sensors

Use three sensors

(a) —

Figure 14.3 (a) Three-sensor camera. (b) Sequential colour camera.

https://pro.sony/ue_US/products/handheld-camcorders/pxw-x180  The Manual of Photography and Digital Imaging 10ed, Allen and Triantaphillidou 105
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Multi-Chip Sensing in Astrophysics

80
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https://www.asahi-spectra.com/opticalfilters/sdss.asp

https://www.sdss.org/dr16/imaging/imaging_basics/
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Vertical Stacking

Longer-wavelength light
penetrates deeper into silicon.

Silicon color absorption Foveon X3 sensor stack

r ~7 microns 1
Blue

'<absorption Blue sensor _T
¥
by <Green A
© absorption ol
= 5
e E.
0 <§§d s
, sorption
j P Red sensor 8
o 0
m _l

https://en.wikipedia.org/wiki/Foveon_X3_sensor  https://www.dpreview.com/articles/1431165397/sigma-dp3-merrill-foveon-75mm-equivalent 107
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Bryce Bayer (1929 — 2012) UR Alum

Color Filtering Array

Bayer Pattern

Incoming light

Filter layer

Sensor array

Resulting pattern

https://en.wikipedia.org/wiki/Bayer_filter 108
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Color Filtering Array

Each filter has a unique spectral transmittance function, which characterizes
the percentage of photons that can get through at each wavelength.

% NIR region
(@) Infrared cut filter ©Organic color filter (0) <100
/ Py Secondary
Incident light = _ < [transmission

B l__ FCE"U 50
G —— §
o
|_

Of | ! !
40 600 800 1000

Wavelength (nm)

/

Microlens array Photodiode

https://www.mdpi.com/1424-8220/19/8/1750 110



Filters Dim Lights

Spectral transmittance of

the micro-lenses
o Ye(x,y) = [ ®(1) R(A) IR(A) M(1) CFAR(A)dA
Spectral transmittance Spectral transmittance of the
m of IR filter red filter in the CFA
NIR region
(3) Infrared cut filter ©Organic color filter (0) <100
/ _ Py Secondary
Incident light % _ < [transmission
o L_ | E 50
G R T— - J N Z
©
o~ — Ol
/ 40 600 800 1000
Microlens array Photodiode Wavelength (nm)

https://www.mdpi.com/1424-8220/19/8/1750 111



Reading Sensor Specification: ONSemi NOII4SM6600A

ELECTRO OPTICAL SPECIFICATIONS

Monochromatic sensor

Spectral Response Curve
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https://www.onsemi.com/pub/Collateral/NOI14SM6600A-D.PDF

Parameter Specification
FPN (local) <0.20%, 2 LSB10  ff———
PRNU (local) <1.5%
Conversion Gain 43 uV/e
Output Signal Amplitude 0.6V
Saturation Charge 21500 e-
Sensitivity (peak) 411 V.m2/W.s
4.83 V/lux.s
Sensitivity (visible) 328 V.m?2/W.s
2.01 V/lux.s
Peak QE * FF 25% 44—
Peak Spectral Response 0.13 A/\W
Fill Factor 35%
Dark Current 3.37 mV/s
78 e-/s / %____.
Dark Signal Non Uniformity 8.28 mV/s
191 e-/s
Temporal Noise 24 RMS e- ﬂm—m-
Signal/Noise Ratio 895:1 (40 dB)
Dynamic Range 59 dB
Spectral Sensitivity Range 400 - 1000 nm
Optical Cross Talk 15%
4%
Power Dissipation 225 mW
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Reading Sensor Specification: ONSemi KAF-8300
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Table 6. SPECIFICATIONS

Description Symbol Min. Nom. Max. Unit
ALL DEVICES
Minimum Column MinColumn 575 - - mV
Linear Saturation Signal Ne-SAT 25.5 - - ke
Charge to Voltage Conversion Q-Vv 22.5 23.0 - uV/e
Linearity Error LeLow10 -10 - 10 %
LeLow33 -10 - 10
LeHigh -10 — 10
Dark Signal (Active Area Pixels) AA_ DarkSig - - 200 e’/s
Dark Signal (Dark Reference Pixels) DR_DarkSig - - 200 e’/s
Readout Cycle Dark Signal Dark _Read — - 15 mV/s
Flush Cycle Dark Signal Dark_Flush - 43 90 mV/s
Dark Signal Non-Uniformity DSNU - 1.30 3.0 mV p-p
DSNU_Step — 0.14 0.5
DSNU _H — 0.40 1.0
Dark Signal Doubling Temperature AT - 5.8 - °C
Dark Reference Difference, DarkStep -3.5 0.15 3.5 mV
Active Area
Total Noise Dfld_noi — - 1.08 mV
Total Sensor Noise N — 16 - e’ rms
Linear Dynamic Range DR - 64.4 - dB
Horizontal Charge Transfer HCTE 0.999990 | 0.999995 - %
Efficiency
Vertical Charge Transfer Efficiency VCTE 0.999997 | 0.999999 - %
Blooming Protection X b 1,000 - - X EgaT
Vertical Bloom on Transfer VBloomF -20 - 20 mV
Horizontal Crosstalk H_Xtalk -20 - 20 mV
Horizontal Overclock Noise Hoclk_noi 0 - 1.08 mV
Output Amplifier Bandwidth f_3dB 88 — 159 MHz
Output Impedance, Amplifier RouTt 100 - 180 Q
Hclk Feedthru VHET — - 70 mV
Reset Feedthru VRET 500 710 1,000 mV
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Reading Sensor Specification: ONSemi KAF-8300
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Table 6. SPECIFICATIONS

Description Symbol Min. Nom. Max. Unit
ALL DEVICES
Minimum Column MinColumn 575 - - mV
Linear Saturation Signal Ne-SAT 25.5 - - ke
Charge to Voltage Conversion Q-Vv 22.5 23.0 - uV/e
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Total Sensor Noise N — 16 - e’ rms
Linear Dynamic Range DR - 64.4 - dB
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Vertical Charge Transfer Efficiency VCTE 0.999997 | 0.999999 - %
Blooming Protection X b 1,000 - - X EgaT
Vertical Bloom on Transfer VBloomF -20 - 20 mV
Horizontal Crosstalk H_Xtalk -20 - 20 mV
Horizontal Overclock Noise Hoclk_noi 0 - 1.08 mV
Output Amplifier Bandwidth f_3dB 88 — 159 MHz
Output Impedance, Amplifier RouTt 100 - 180 Q
Hclk Feedthru VHET — - 70 mV
Reset Feedthru VRET 500 710 1,000 mV
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Reading Sensor Specification: ONSemi KAF-8300

The two green filters have slightly different Having microlenses improves spectral
spectral sensitivities! sensitivities because the FF improves!
KAF-8300 Quantum Efficiency KAF-8300 Quantum Efficiency
45% 70%
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i ) . ] Figure 8. Typical Quantum Efficiency (All Monochrome Versions)
Figure 7. Typical Quantum Efficiency (Color Version)
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Reading Sensor Specification: Teledyne Prime-95B

Being a scientific image sensor, the
noise performance is much better

Specifications Camera Performance
Sensor GPixel GSense 144 BSI CMOS Gen |V, Grade 1 in imaging area
Active Array Size 1200 x 1200 pixels (1.44 Megapixel)
Pixel Area 11pym x 11pm (121pm?2)
13.2mm x 13.2mm 100

Sensor Area _
18.7mm diagonal

90
Peak QE% >95% ﬂm—-’-‘
_ 1.6e- (Median) — 80
Read Noise 1 8e- (RMS) 4"-—”"“ o%
= > 70
_ 80,000e- (Combined Gain) O
Full-Well Capacity _ _ Z
10,000e- (High Gain) w60
@)
Dynamic Range 50,000:1 (Combined Gain) —
b 50
8t Denth 16-bit (Combined Gain) ;
it De
P 12-bit (High Gain) ) 40
>
Rolling Shutter < 30
Readout Mode _ D)
Effective Global Shutter G 20
Binning 2x2 (on FPGA)
10
Linearity >99.5%
0
Cooling Performance Sensor Temperature Dark Current 200 500 400 >00 600 700 800 900 1000
Air Cooled -202C @ 25°C Ambient 0.55e-/pixel/second ﬁw‘ WAVELENGTH (NM)
Liquid Cooled -25°C @ 25°C Ambient 0.3e-/pixel/second
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