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ABSTRACT 

In this paper we will introduce how bigtable works, its basic 
structure, implementation algorithm, advantages and comparison 
with traditional SQL. 

1. INTRODUCTION 
People might be unfamiliar with term ‘Bigtable’, however we use 
Google Map, Google Earth, Gmail and YouTube from time to 
time and they are all powered by Bigtables. Unlike traditional 
relation database. 1. It can efficiently handle large scale of data: 
petabytes and across thousands of commodities. 2. No schema 
database. 3. Suitable for handling semi structure data. 4. Self-
managed and handle massive workload with consistent low 
latency and high throughput. 

2. Data Model 
Bigtable basically is a sparse, distributed, persistent 
multidimensional sorted map, three important elements account 
for constructing index for sorting and searching records. Rows, 
columns and timestamp. 

 
Figure 1 Webtable 

2.1 Rows 
Arbitrary string is used as row keys which size up to 64kb. Its’ 
atomically type value make it easy to update and to reason 
system’s behavior. In the Webtable example above, reverse 
domain name is used as row key to avoid conflictions. Index are 
cut according to ranges as single unit called tablet. Client 
operating queries within small range index is efficient.  

2.2 Column Family 
Column family follow a form of family: qualifier. Same types of 
content grouped into one column key. Family key are created 
before data loaded in. While traditional database allows 
unbounded amount of columns, Bigtable restricted the number 
around 100 and it barely changes over time. Control access with 
disk and memory operations are performed at column family 
level. Operations such as add new, view or create. 
 

2.3 Timestamp 
For each column, bigtables use timestamp (64-bit integer) to track 
update of data cell. For sequential data, when new data wrote in, it 
adds an additional layer of data with new timestamp. Data 
structure can be viewed as 3D with third dimension. Timestamp is 

also convenient for defining garbage-collect which means certain 
data or only last versions of data will be kept. 

3. API 
Multiple clients can be used as functions to perform operations on 
database. Hbase java, go client, python client and BigData tool 
such as Apache, Hadoop can run map/reduce jobs that read from 
write to cloud bigtable [1]. 

4. Bottom up Structures of Bigtable 
Bigtable uses Google File System (GFS) [2] to save log and data. 
It depends on cluster management system and scheduling tablets 
assignment, compactions on shared machines. Next we introduce 
elements of the structure. 

4.1 SSTable 
SSTable is a file format to stored persistent, ordered immutable 
map from key to values. It contains block index (block of 64kb 
size) and can be applied binary search to locate certain block. 
Client loaded SSTable loaded into memory to do search without 
touching disk. 

4.2 Master and Tablets Server 
There are two kinds of severs in Bigtable, master server and tablet 
server. Master server mainly responsible for 1. Assigning tablets 
to tablet server. 2. Detecting addition or expiration in tablets 
sever. 3. Balancing workload between servers and avoid server 
not vulnerable to Internet failure. 4. Garbage collections and 
change of schema.  

Tablets server major jobs: Interacting with clients and writing, 
reading and splitting tables. In that situation there is only light 
load for master server. It also keeps log with redo records as data 
are wrote and updated. Recently commits will be loaded into 
memory and older records stored into SSTable [3].  

5. Implementation  
Bigtable use a highly available and persistent distributed lock 
services called Chubby. It ensures only one active master at any 
time; and store all the location of Bigtable data. As a table grows, 
it automatically split into multiple tablets and each of them 100-
200 MB by default.  

5.1 Tablet location 
Three level of hierarchy structure is used to store table location 
information. First level is the chubby with root tablet, it stores 
locations of all other user tablets and never split. In that way it 
maintains the three level structures. This structure can save up to 
261 tablets. Client can access table location through cache and the 
worst situation of client’s cache is stale, it takes up to six round 
trips through the structure. Table also contain log information to 
help debugging and performance analysis. 



 
Figure 2 Three level hierarchy structure 

5.2 Tablet assignment 
When a tablet server is started, it will create a lock on a uniquely 
named file in the Chubby’s [4] “servers” directory. 1. It master 
monitors those directory and look for new tablet servers. 2. Tablet 
will stop serving and attempt to regain the lock and exclusive lock 
is lost. When existing tablets changes a table is created or deleted 
by merging the old ones.  Master can track these changes and 
when split happened, it will also notify master. 

6. Compaction 
As write operation keep executing, size of metastable might 
exceed limit. In that situation old table was frozen and been wrote 
to SSTable in GFS. Merging compactions will be executed 
periodically and few SSTable will be read and wrote on a new 
SSTable. 
There are two kinds of compactions: major and non-major. Non 
major will help to reserve deletion information or deleted data 
which allows machine to reclaim data from deleted data and let 
them disappears in a time fashion.  

7. Compare with SQL Database 
For SQL database, when data grow into large scale maintenance 
and operation become impractical. In SQL server, data has to fit 
into tables and if it can’t, new database structure need to be 
designed which can be complex again and difficult to handle [5]. 
For Bigtables, it supports features like automatic repair, easier 
data distribution and simpler data models. Since it is schema less 
so that data could be inserted without any predefined schema [6].  

8. Spanner in Bigtable 
Spanner is a NewSQL distributed relational database and it 
support ACID properties and also SQL queries. Spanner data 
model is semi relational model. It can also provide consistent 
replication of data which is similar to megastore [7].  

8.1 Spanner Configuration 
Above is the Spanner server configuration, universe is a set of 
spanner consists several zones. Universe master maintain all 

zones and interactive debugging while placement driver can move 
data between zones automatically. It acts like tablet server and 

consist with location proxy and many other span servers. 

 
Figure 3 Spanner server configuration 

8.2 Spanserver Stack  

 
Figure 4 Spanner server stack 

The Paxos state machine are used for replication, the key-value 
mapping state of the replica is stored in the relative tablet.  We 
called the replicas Paxo group. There is a leader in every replica 
and the lock table contains two-phase locking: the maps key’s 
range and its’ lock state. If transaction only involve one Paxos 
group it will bypass the transaction manager however when 
multiple groups are involved, groups’ leaders coordinate to 
perform two-phase commit.  

9. PERFORMANCE OPTIMIZATION 
The fundamental working mechanism of Bigtable was introduced 
in the above sections. Further tuning and optimization are 
performed to improve the Bigtable performance and reliability.  

9.1 Data Compression 
Data compression is a common approach that is utilized in 
database optimization. The objective is to save disk storage space. 
Data that was compressed, once be queried, needs to be first 
decompressed before becoming retrievable. Hence there is a trade 
of between the degree of space reduction and accessing speed. 
Namely, the higher the degree of space reduction, the slower the 
assessing speed.  
In Google Bigtable, the priority objective is set to data accessing 
speed. End users have full control over the compression method 
and selection of the to-be-compressed data sections. The most 
popular approach is to implement a two-pass custom compression 
scheme [1]. In the first step, Bentley and McIlroy’s scheme is 
used to compress long common strings. The second step on the 



other hand, aims at small data pieces (16KB) with repetitions. 
Because both compression algorithms are fast pass and the two 
steps compression can well separate the dataset, the overall speed 
oriented design objective can be satisfied. Surprisingly, the space 
reduction performance did not encounter too much negative 
impact from implementing the two-pass method. As high as 10-to-
1 reduction ratio can be achieved, whereas a one-step common 
Gzip reduction have ratio from 3-to-1 or 4-to-1 [1]. This is due to 
the intrinsic naming scheme of Bigtable, such that users usually 
choose row names that allow similar data to be stored in 
adjacency.  

9.2 Data Reading 
Despite Bigtable is mostly used with very large volume of data, 
not all data are equally important or get equally queried. 
Therefore, it is intuitive to store and cache data according to the 
access frequency and pattern. Bigtable achieve this optimization 
through allocating data to different locality groups and caching 
data by reading frequency.  

In locality group method, users can aggregate, according to their 
specific needs, several columns to form a locality group. One 
common way to do so is to cluster the high frequent queried data 
together as a group and the less queried data together as the other 
group. The database reading efficiency hence can be greatly 
enhanced as a result of the reduction of full database scan. If some 
small pieces of data are very frequently accessed, users can also 
directly store those data as in-memory locality group, such that 
the reading frequency can be further improved.  

Bigtable implement two levels of caching: Scan Cache and Block 
Cache. The Scan Cache stores only the key-value pairs and it is 
suitable for applications where some data is read repeatedly. 
Block Cache directly cache the entire SSTable from Google File 
System (GFS) and it is suitable to read data that are in closely 
located locality groups. For example, sequential reading is a good 
candidate for Block Cache method.  
Finally, Bigtable can reduce disk access rate by apply a Bloom 
filter, which can determine the existence of a specific row/column 
pair without reading the disk. For certain applications (e.g. 
heterogeneous data are stored separately), Bloom filter can greatly 
reduce the initial indexing process time. However, if the 
application contains data that are evenly distributed, Bloom filter 
can hinder the reading speed.  

9.3 Commit-log Version Control 
Transactions are widely used in database system to assure stability 
and provide recovery options. For a distributed database system, 
the commit-log must be carefully controlled. It is both redundant 
and low efficient to keep an individual log for each machine.  
Bigtable keeps only one physical single log file, through append 
mutations to a single commit log server. Normal database 
performance can be improved significantly from the merge of 
logs, except for the recovery operation. To solve this issue, any 
machine needs recovery will be distributed into a number of 
servers to perform the recovery task. Commit-Log sorting is used 
as well to further improve the recovery process by avoiding 
duplicating log files.  

10. PERFORMANCE EVALUATION 
Bigtable is designed to process very large volume of data through 
parallel computing. The key feature to test about the performance 
if Bigtable is the scalability. 

Reading and writing 1000-byte values to Bigtable was tested from 
a single server to 500 servers [1]. 6 types of operation were tested: 
scans, random reads from memory, random writes, sequential 
reads, sequential writes and random reads from disk. All test 
operations implement systematic key generation algorithm to 
mitigate the performance variations caused by other programs 
running on the machine. 
The test results are shown in Figure . From a single server to 500 
servers, we can see a throughput increase by more than a factor of 
100[1] in general.  

 
Figure 5 Scalability of Bigtable [1] 

The operation benefits the most from the increase of server is the 
ones whose performance is limited by the individual CPU. Such 
as a scan or random reads from memory. As many as a factor of 
300 was observed from the performance of scan or random reads 
from memory. For reads and writes that touches disks, the 
improvement was still significant but the rate of improvement 
decays quickly with the increase of servers. Among all the tests 
performed, random read from disk shows the worst scaling ability, 
as shown in Figure  with ‘+’ sign. This occurs because the 
network can be easily saturated through distribution of query data. 
The throughput therefore is limited. 

The throughput per server under different server configurations 
can be seen in Figure . The performance is not linearly increase at 
all. Especially from a single server to fifty servers, there is a 
significant drop of through put. The Google team explained this is 
probably caused by the imbalance load in multiple server 
configurations, where other programs running on the machine can 
contend for CPU and network resources.  

 
Figure 6 Throughput of each server [1] 

11. BIGTABLE APPLICATIONS 
More than 60 Google products use Bigtable, including Google 
Analytics, Google Finance, Google Earth and Personalized search. 
Currently Bigtable have more than 400 Bigtable clusters, with a 



combined more than 25,000 servers. Figure  shows the 
distribution of servers in Bigtable clusters.  

 
Figure 7 Cluster and server distribution [1] 

The Bigtable can serve to end users as well as to internal data 
batch processing. Tables varies widely from size, cell, schema, 
compression ratio and etc. Here we briefly introduce three Google 
products that use Bigtable.  

11.1  Google Earth  
Google Earth enable users to navigate across the globe surface by 
pan, move, and view and annotate satellite images. Google Earth 
uses two tables: one to preprocess the image data and the other to 
serve client data.  

The image table size for Google Earth is 70 TB, not compressed 
and 0% stored in memory. This is because the table is not latency 
sensitive. Through MapReduce, the overall processing speed is 
about 1MB/s. In this table, each row corresponds to a segment of 
geographic picture. Rows are named in a fashion that adjacent 
geographic segments are stored close to each other, to improve 
sequential reading performance.  
The serving table is much smaller, only around 500GB, with 64% 
compression ratio and about 33% are stored in memory. This is 
because this tables deals with more than tens of thousands queries 
per second. This table is also hosted across hundreds of servers.  

11.2 Google Analytics 
Google analytics provides website hosts the ability to analyze 
their website traffic patterns through statistics including unique 
visitors’ counts, page views per day and site tracking reports. It is 
implemented through embedding a JavaScript. 
Two basic tables are used in Google analytics: the raw click table 
and the summary table. Both are not in memory storage due to the 
lack of latency sensitivity. The raw click table is in about 200TB 
in total size with compression rate of 14%. Each row name 
corresponds to an end-user session. The summary table is about 
20TB with 29% compression rate. It contains predetermined 
summaries for each website. The table is populated by 
periodically scheduled MapReduce job from the raw click table.  

11.3 Personalized Search 
Google Personalized Search enables users to store their click and 
search histories across all Google products to achieve 
personalized experience through usage pattern recognition.  

Typical table size per user is 4TB with compression ratio of 47%. 
Each user has a unique userId and is assigned a row using that 
userId. MapReduce job was created to generate user profile and 
the user profile was used to create personalized live search results.   

12. CONCLUSIONS 
Bigtable is a large-scale distributed storage and management 
system for structured data developed by Google. Bigtable was 
conceived due to traditional database systems, when face datasets 
with very large scale, often encounter feasibility, performance or 
prohibitive high cost challenges. Bigtable features robust 
scalability to petabytes of data and thousands of machines [1]. 
Numerous conventional database implementation strategies are 
utilized in Bigtable, such as parallel database strategy [2] and 
main-memory database strategy. More than sixty Google products 
are built upon Bigtable: Google Earth, Google Analytics and etc. 
Besides, Bigtable is also commercially available for external 
users. Data in Bigtable is indexed by a time stamp together with 
row and column names which can be any arbitrary strings. 
Bigtable is equipped with a simple and elegant data model to 
enable user to control the layout and format of data dynamically. 
The schema of Bigtable also allows end user to fully control the 
locality of their data. [1]–[7] 
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