
Google Bigtable Introduction and Performance Analysis

ABSTRACT

In this paper we will introduce how bigtable works, its basic
structure, implementation algorithm, advantages and comparison
with traditional SQL.

1. INTRODUCTION
People might be unfamiliar with term ‘Bigtable’, however we use
Google Map, Google Earth, Gmail and YouTube from time to
time and they are all powered by Bigtables. Unlike traditional
relation database. 1. It can efficiently handle large scale of data:
petabytes and across thousands of commodities. 2. No schema
database. 3. Suitable for handling semi structure data. 4. Self-
managed and handle massive workload with consistent low
latency and high throughput.

2. Data Model
Bigtable basically is a sparse, distributed, persistent
multidimensional sorted map, three important elements account
for constructing index for sorting and searching records. Rows,
columns and timestamp.

Figure 1 Webtable

2.1 Rows
Arbitrary string is used as row keys which size up to 64kb. Its’
atomically type value make it easy to update and to reason
system’s behavior. In the Webtable example above, reverse
domain name is used as row key to avoid conflictions. Index are
cut according to ranges as single unit called tablet. Client
operating queries within small range index is efficient.

2.2 Column Family
Column family follow a form of family: qualifier. Same types of
content grouped into one column key. Family key are created
before data loaded in. While traditional database allows
unbounded amount of columns, Bigtable restricted the number
around 100 and it barely changes over time. Control access with
disk and memory operations are performed at column family
level. Operations such as add new, view or create.

2.3 Timestamp
For each column, bigtables use timestamp (64-bit integer) to track
update of data cell. For sequential data, when new data wrote in, it
adds an additional layer of data with new timestamp. Data
structure can be viewed as 3D with third dimension. Timestamp is

also convenient for defining garbage-collect which means certain
data or only last versions of data will be kept.

3. API
Multiple clients can be used as functions to perform operations on
database. Hbase java, go client, python client and BigData tool
such as Apache, Hadoop can run map/reduce jobs that read from
write to cloud bigtable [1].

4. Bottom up Structures of Bigtable
Bigtable uses Google File System (GFS) [2] to save log and data.
It depends on cluster management system and scheduling tablets
assignment, compactions on shared machines. Next we introduce
elements of the structure.

4.1 SSTable
SSTable is a file format to stored persistent, ordered immutable
map from key to values. It contains block index (block of 64kb
size) and can be applied binary search to locate certain block.
Client loaded SSTable loaded into memory to do search without
touching disk.

4.2 Master and Tablets Server
There are two kinds of severs in Bigtable, master server and tablet
server. Master server mainly responsible for 1. Assigning tablets
to tablet server. 2. Detecting addition or expiration in tablets
sever. 3. Balancing workload between servers and avoid server
not vulnerable to Internet failure. 4. Garbage collections and
change of schema.

Tablets server major jobs: Interacting with clients and writing,
reading and splitting tables. In that situation there is only light
load for master server. It also keeps log with redo records as data
are wrote and updated. Recently commits will be loaded into
memory and older records stored into SSTable [3].

5. Implementation
Bigtable use a highly available and persistent distributed lock
services called Chubby. It ensures only one active master at any
time; and store all the location of Bigtable data. As a table grows,
it automatically split into multiple tablets and each of them 100-
200 MB by default.

5.1 Tablet location
Three level of hierarchy structure is used to store table location
information. First level is the chubby with root tablet, it stores
locations of all other user tablets and never split. In that way it
maintains the three level structures. This structure can save up to
261 tablets. Client can access table location through cache and the
worst situation of client’s cache is stale, it takes up to six round
trips through the structure. Table also contain log information to
help debugging and performance analysis.

Figure 2 Three level hierarchy structure

5.2 Tablet assignment
When a tablet server is started, it will create a lock on a uniquely
named file in the Chubby’s [4] “servers” directory. 1. It master
monitors those directory and look for new tablet servers. 2. Tablet
will stop serving and attempt to regain the lock and exclusive lock
is lost. When existing tablets changes a table is created or deleted
by merging the old ones. Master can track these changes and
when split happened, it will also notify master.

6. Compaction
As write operation keep executing, size of metastable might
exceed limit. In that situation old table was frozen and been wrote
to SSTable in GFS. Merging compactions will be executed
periodically and few SSTable will be read and wrote on a new
SSTable.
There are two kinds of compactions: major and non-major. Non
major will help to reserve deletion information or deleted data
which allows machine to reclaim data from deleted data and let
them disappears in a time fashion.

7. Compare with SQL Database
For SQL database, when data grow into large scale maintenance
and operation become impractical. In SQL server, data has to fit
into tables and if it can’t, new database structure need to be
designed which can be complex again and difficult to handle [5].
For Bigtables, it supports features like automatic repair, easier
data distribution and simpler data models. Since it is schema less
so that data could be inserted without any predefined schema [6].

8. Spanner in Bigtable
Spanner is a NewSQL distributed relational database and it
support ACID properties and also SQL queries. Spanner data
model is semi relational model. It can also provide consistent
replication of data which is similar to megastore [7].

8.1 Spanner Configuration
Above is the Spanner server configuration, universe is a set of
spanner consists several zones. Universe master maintain all

zones and interactive debugging while placement driver can move
data between zones automatically. It acts like tablet server and

consist with location proxy and many other span servers.

Figure 3 Spanner server configuration

8.2 Spanserver Stack

Figure 4 Spanner server stack

The Paxos state machine are used for replication, the key-value
mapping state of the replica is stored in the relative tablet. We
called the replicas Paxo group. There is a leader in every replica
and the lock table contains two-phase locking: the maps key’s
range and its’ lock state. If transaction only involve one Paxos
group it will bypass the transaction manager however when
multiple groups are involved, groups’ leaders coordinate to
perform two-phase commit.

9. PERFORMANCE OPTIMIZATION
The fundamental working mechanism of Bigtable was introduced
in the above sections. Further tuning and optimization are
performed to improve the Bigtable performance and reliability.

9.1 Data Compression
Data compression is a common approach that is utilized in
database optimization. The objective is to save disk storage space.
Data that was compressed, once be queried, needs to be first
decompressed before becoming retrievable. Hence there is a trade
of between the degree of space reduction and accessing speed.
Namely, the higher the degree of space reduction, the slower the
assessing speed.
In Google Bigtable, the priority objective is set to data accessing
speed. End users have full control over the compression method
and selection of the to-be-compressed data sections. The most
popular approach is to implement a two-pass custom compression
scheme [1]. In the first step, Bentley and McIlroy’s scheme is
used to compress long common strings. The second step on the

other hand, aims at small data pieces (16KB) with repetitions.
Because both compression algorithms are fast pass and the two
steps compression can well separate the dataset, the overall speed
oriented design objective can be satisfied. Surprisingly, the space
reduction performance did not encounter too much negative
impact from implementing the two-pass method. As high as 10-to-
1 reduction ratio can be achieved, whereas a one-step common
Gzip reduction have ratio from 3-to-1 or 4-to-1 [1]. This is due to
the intrinsic naming scheme of Bigtable, such that users usually
choose row names that allow similar data to be stored in
adjacency.

9.2 Data Reading
Despite Bigtable is mostly used with very large volume of data,
not all data are equally important or get equally queried.
Therefore, it is intuitive to store and cache data according to the
access frequency and pattern. Bigtable achieve this optimization
through allocating data to different locality groups and caching
data by reading frequency.

In locality group method, users can aggregate, according to their
specific needs, several columns to form a locality group. One
common way to do so is to cluster the high frequent queried data
together as a group and the less queried data together as the other
group. The database reading efficiency hence can be greatly
enhanced as a result of the reduction of full database scan. If some
small pieces of data are very frequently accessed, users can also
directly store those data as in-memory locality group, such that
the reading frequency can be further improved.

Bigtable implement two levels of caching: Scan Cache and Block
Cache. The Scan Cache stores only the key-value pairs and it is
suitable for applications where some data is read repeatedly.
Block Cache directly cache the entire SSTable from Google File
System (GFS) and it is suitable to read data that are in closely
located locality groups. For example, sequential reading is a good
candidate for Block Cache method.
Finally, Bigtable can reduce disk access rate by apply a Bloom
filter, which can determine the existence of a specific row/column
pair without reading the disk. For certain applications (e.g.
heterogeneous data are stored separately), Bloom filter can greatly
reduce the initial indexing process time. However, if the
application contains data that are evenly distributed, Bloom filter
can hinder the reading speed.

9.3 Commit-log Version Control
Transactions are widely used in database system to assure stability
and provide recovery options. For a distributed database system,
the commit-log must be carefully controlled. It is both redundant
and low efficient to keep an individual log for each machine.
Bigtable keeps only one physical single log file, through append
mutations to a single commit log server. Normal database
performance can be improved significantly from the merge of
logs, except for the recovery operation. To solve this issue, any
machine needs recovery will be distributed into a number of
servers to perform the recovery task. Commit-Log sorting is used
as well to further improve the recovery process by avoiding
duplicating log files.

10. PERFORMANCE EVALUATION
Bigtable is designed to process very large volume of data through
parallel computing. The key feature to test about the performance
if Bigtable is the scalability.

Reading and writing 1000-byte values to Bigtable was tested from
a single server to 500 servers [1]. 6 types of operation were tested:
scans, random reads from memory, random writes, sequential
reads, sequential writes and random reads from disk. All test
operations implement systematic key generation algorithm to
mitigate the performance variations caused by other programs
running on the machine.
The test results are shown in Figure . From a single server to 500
servers, we can see a throughput increase by more than a factor of
100[1] in general.

Figure 5 Scalability of Bigtable [1]

The operation benefits the most from the increase of server is the
ones whose performance is limited by the individual CPU. Such
as a scan or random reads from memory. As many as a factor of
300 was observed from the performance of scan or random reads
from memory. For reads and writes that touches disks, the
improvement was still significant but the rate of improvement
decays quickly with the increase of servers. Among all the tests
performed, random read from disk shows the worst scaling ability,
as shown in Figure with ‘+’ sign. This occurs because the
network can be easily saturated through distribution of query data.
The throughput therefore is limited.

The throughput per server under different server configurations
can be seen in Figure . The performance is not linearly increase at
all. Especially from a single server to fifty servers, there is a
significant drop of through put. The Google team explained this is
probably caused by the imbalance load in multiple server
configurations, where other programs running on the machine can
contend for CPU and network resources.

Figure 6 Throughput of each server [1]

11. BIGTABLE APPLICATIONS
More than 60 Google products use Bigtable, including Google
Analytics, Google Finance, Google Earth and Personalized search.
Currently Bigtable have more than 400 Bigtable clusters, with a

combined more than 25,000 servers. Figure shows the
distribution of servers in Bigtable clusters.

Figure 7 Cluster and server distribution [1]

The Bigtable can serve to end users as well as to internal data
batch processing. Tables varies widely from size, cell, schema,
compression ratio and etc. Here we briefly introduce three Google
products that use Bigtable.

11.1 Google Earth
Google Earth enable users to navigate across the globe surface by
pan, move, and view and annotate satellite images. Google Earth
uses two tables: one to preprocess the image data and the other to
serve client data.

The image table size for Google Earth is 70 TB, not compressed
and 0% stored in memory. This is because the table is not latency
sensitive. Through MapReduce, the overall processing speed is
about 1MB/s. In this table, each row corresponds to a segment of
geographic picture. Rows are named in a fashion that adjacent
geographic segments are stored close to each other, to improve
sequential reading performance.
The serving table is much smaller, only around 500GB, with 64%
compression ratio and about 33% are stored in memory. This is
because this tables deals with more than tens of thousands queries
per second. This table is also hosted across hundreds of servers.

11.2 Google Analytics
Google analytics provides website hosts the ability to analyze
their website traffic patterns through statistics including unique
visitors’ counts, page views per day and site tracking reports. It is
implemented through embedding a JavaScript.
Two basic tables are used in Google analytics: the raw click table
and the summary table. Both are not in memory storage due to the
lack of latency sensitivity. The raw click table is in about 200TB
in total size with compression rate of 14%. Each row name
corresponds to an end-user session. The summary table is about
20TB with 29% compression rate. It contains predetermined
summaries for each website. The table is populated by
periodically scheduled MapReduce job from the raw click table.

11.3 Personalized Search
Google Personalized Search enables users to store their click and
search histories across all Google products to achieve
personalized experience through usage pattern recognition.

Typical table size per user is 4TB with compression ratio of 47%.
Each user has a unique userId and is assigned a row using that
userId. MapReduce job was created to generate user profile and
the user profile was used to create personalized live search results.

12. CONCLUSIONS
Bigtable is a large-scale distributed storage and management
system for structured data developed by Google. Bigtable was
conceived due to traditional database systems, when face datasets
with very large scale, often encounter feasibility, performance or
prohibitive high cost challenges. Bigtable features robust
scalability to petabytes of data and thousands of machines [1].
Numerous conventional database implementation strategies are
utilized in Bigtable, such as parallel database strategy [2] and
main-memory database strategy. More than sixty Google products
are built upon Bigtable: Google Earth, Google Analytics and etc.
Besides, Bigtable is also commercially available for external
users. Data in Bigtable is indexed by a time stamp together with
row and column names which can be any arbitrary strings.
Bigtable is equipped with a simple and elegant data model to
enable user to control the layout and format of data dynamically.
The schema of Bigtable also allows end user to fully control the
locality of their data. [1]–[7]

13. Reference:
[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.

Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber, “Bigtable: A distributed storage system for
structured data,” 7th Symp. Oper. Syst. Des. Implement.
(OSDI ’06), Novemb. 6-8, Seattle, WA, USA, pp. 205–
218, 2006.

[2] M. Burrows, “The Chubby lock service for loosely-
coupled distributed systems,” OSDI ’06 Proc. 7th Symp.
Oper. Syst. Des. Implement. SE - OSDI ’06, pp. 335–350,
2006.

[3] A. Khetrapal and V. Ganesh, “HBase and Hypertable for
large scale distributed storage systems A Performance
evaluation for Open Source BigTable Implementations.”

[4] M. Database, “Google ’ s Bigtable Oriented Datab ases,”
vol. 3, no. 8, pp. 60–63, 2016.

[5] S. Ghemawat, H. Gobioff, and S. Leung, “The Google
File System,” 2003.

[6] A. Salehnia, “Relational Database Management Systems
(RDBMDS),” pp. 1–8.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplied Data
Processing on Large Clusters,” Proc. 6th Symp. Oper.
Syst. Des. Implement., pp. 137–149, 2004.

