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ABSTRACT 
Spark, an open-source cluster-computing framework came out in 
2014, provides an interface for programming entire clusters with 
implicit data parallelism and fault-tolerance.  

Being hype in recent distributed computing field, Spark is being 
taken as an improvement of MapReduce cluster computing 
paradigm. We will focus on the Apache Spark cluster computing 
framework, an important contender of Hadoop MapReduce in the 
Big Data Arena. Spark provides great performance advantages 
over Hadoop MapReduce, especially for iterative algorithms, 
thanks to in-memory caching. Also, gives Data Scientists an 
easier way to write their analysis pipeline in Python and Scala, 
even providing interactive shells to play live with data.  

This research intends to compare these two distributed computing 
framework. What are their strengths and weaknesses? What are 
their unique characteristics respectively? Can Spark potentially 
replace Hadoop?  

1. INTRODUCTION 
The Big data is becoming more and more popular in recent days. 
Big data has created countless opportunities lots of fields 
including business, medical, insurance and other fields. 
Technically, big data refers to the datasets with a size ranges from 
terabytes to exabytes. It also has three characters: large volume, 
high dimensions and dramatically large varieties [1]. 

The technology about solving big data problems in processing 
data is urged to develop. In this paper, we will trace the 
MapReduce, Hadoop and Spark revolution and understand the 
differences between them. 

2.  MapReduce and Hadoop 
MapReduce is a programming model used for processing large 
data sets, which can be automatically parallelized and 
implemented on a large cluster of machines. It is also easy to use 
even for programmers without professional experience in parallel 
and distributed systems [2]. 

2.1 Programming Model 
The basic idea of programming model is inspired by the map and 
reduce in functional languages. Map can produce a set of 
intermediate key or value pairs by taking an input pair. The 
MapReduce library groups values by keys. The reduce function 
accepts an intermediate key I and values for that key, and it can 
merge these values to form a possibly smaller set of values. Here 
is an example of counting the number of occurrences of each 

word in a large collection of documents. User can define map and 
reduce functions similar to the following pseudo-code: 

 
map (String key, String value): 

// key: document name 
// value: document contents 
for each word w in value: 
  EmitIntermediate (w, “1”) 

Reduce (String key, Iterator values): 
// key: a word 
// values: a list of counts 
int result = 0; 
for each v in values: 
       result += ParseInt(v) ; 
Emit (AsString (result) );    [2] 

 

2.2 Implementation 
First, the user split inputs into M chunks by splitter function and 
create M map jobs and R reduce jobs.  One of these jobs is special 
and we call it the master. Map task is about reading the contents 
of the corresponding input split and do the Map function. 
Periodically, the map workers will write the data to local disk. 
The reduce worker will do reduce function when the master call it. 
Finally, when all tasks are finished, the master will call the user. 
Figure 1 is an overview of the execution flow [2]. 

There are also some interesting problems which can be better 
solved by using MapReduce. For example: 

 

Distributed Sort: We can use map function to emit a (key, 
record) pair by extracting the key. After that we can use reduce 
function to emits all pairs unchanged. 

Inverted Index: The map function can emit a sequence of (word, 
document) by parsing each document. The reduce function can 
combine all the sequences and sort the corresponding document 
IDs, then emit a (word, list (document ID)) pair [2]. 

 

So far, we only talked about the basic idea of how MapReduce 
works. To implement MapReduce in real problems, we also need 
to consider failure of each part of the whole task. We need to 



consider worker failure, master failure and semantics in the 
presence of failure. Furthermore, we will introduce an open 
source software for distributed computing. 

 
Figure 1: Execution overview [2] 

2.3 Apache Hadoop 
Apache Hadoop is an open-source software alternative to 
Google’s MapReduce system and they are very similar in many 
respects. [3] 

It is built on YARN system for job allocation and resource 
management. It uses Java as its default language. All the files are 
kept in HDFS (Hadoop Distributed File System) 

Above are the key features of Hadoop but it also has several other 
modules. These include Pig, Ambari, Avro, Cassandra, Hive, Pig, 
Oozie, Flueme, and Sqoop. Pig is most use for data extraction, 
transformation, loading (ETL). Apache Sqoop are one tool 
designed for efficiently transferring bulk data between Apache 
Hadoop and structured databases. Apache Hive is similar to SQL 
language used for querying and management in HDFS. Oozie is a 
workflow scheduler system to manage jobs. Zookeeper can 
provide operational services for a Hadoop cluster group services. 
Flume is used for collecting, aggregating and moving large 
amounts of log data. Tez is a generalized data-flow programming 
framework, which can provide flexible functions to implement 
different tasks [4]. 

It is also worth to note what Hadoop is not. First, Hadoop is not a 
substitute for a database. It stores data but not index them. If you 
want to find something you need to first to generate index and it is 
very expensive to regenerating indexes. Second Hadoop is not a 
good place to learn Java programming since MapReduce is very 
complex and you should learn from simple [4]. 

3. Spark 
3.1 Spark Introduction 
Apache Spark, a fast and general engine for large-scale data 
processing, was originally developed in 2009 in UC Berkeley’s 
AMPLab, and open sourced in 2010 as an Apache project. [5] In 
Hadoop, Spark is taken as a module. With this being said, Spark is 
smaller compared with Hadoop system. Other modules in 
Hadoop, as mentioned above, includes Hadoop Distributed File 
System, Hadoop MapReduce, Hadoop YARN and Hadoop 
Common etc.  

3.2 Spark Components 
Spark have six main components, Spark core, SparkSQL, Spark 
Streaming, MLlib (for machine learning), GraphX and Standalone 
Scheduler. SparkSQL, Spark Streaming, MLlib and GraphX act as 
high-level libraries complementing Spark Core. Standalone 
Scheduler acts as Spark’s own cluster manager. Spark also 
supports Hadoop YARN and Mesos cluster to act as cluster 
manager for applications to run on.  
 
 

 
Figure 2: Component of Spark [6] 

3.2.1 Spark Core 
Spark acts as the base engine for large-scale parallel and 
distributed data processing. Its functions include: 

• memory management and fault recovery 

• scheduling, distributing and monitoring jobs on a cluster 

• interacting with storage systems 
 
API that defines resilient distributed datasets (RDDs), which are 
Spark’s main programming abstraction is also located in Spark 
Core. More about RDD is discussed in session 3.3. 

3.2.2 Spark SQL 
SparkSQL as a main component, supports querying data either via 
SQL or via the Hive Query Language. It is now integrated with 
the Spark stack which used to be as the Apache Hive port to run 
on top of Spark. Apart from providing support for different data 
sources, it makes it possible to weave SQL queries with code 
transformations. 

3.2.3 Spark Streaming 
Spark Streaming supports real time processing of streaming data, 
such as social media like Twitter and various messaging queues. 
The Processes of Spark Streaming include receives the input data 
streams and divides the data into batches followed by get 
processed by the Spark engine and generate final stream of results 
in batches. 

3.2.4 MLib 
MLlib is the library in Spark containing common machine 
learning (ML) functionality. MLlib includes all basic types of 
machine learning algorithms, including classification, regression, 
clustering, and collaborative filtering. Moreover, it supports 
model evaluation and data import. It also provides some lower-
level ML primitives, including optimization algorithm like basic 



gradient descent and stochastic gradient descent. All of these 
methods are designed to scale horizontally across a cluster. 

3.2.5 GraphX 
GraphX is a library for manipulating graphs, for example, an 
American domestic flight graph, and performing graph-parallel 
computations. Like Spark Streaming and Spark SQL, GraphX 
expands the Spark RDD API, letting us to create a directed graph 
with properties assigned by programmer, attached to each vertex 
and edge. GraphX also provides various operators for graphs 
manipulation like subgraph and a library of common graph 
algorithms like triangle counting. 

3.3 RDD 
RDD is Spark’s main programming abstraction. It is an 
immutable fault-tolerant, distributed collection of objects that can 
be manipulated in parallel. An RDD can have any type of object 
and is formed by loading an external dataset or distributing a 
collection from the driver program. 

RDDs support two types of operations: 

• Transformations: operations such as map, filter, join, union 

etc. which performed on an RDD and yield a new RDD 

containing the result. 

• Actions: operations such as reduce, count, first etc. that 

return a value after running a computation on an RDD. 
 
It is worthy to note that transformations in Spark do not compute 
their results right away. They just “remember” the operation to be 
performed and the its respective dataset. The transformations are 
only computed when an action is called and the output is then 
returned to the driver program. This design enables Spark to run 
more efficiently.  

3.4 Features 
It is important to note that Spark has no file management. Thus, it 
runs on top of existing Hadoop Distributed File System (HDFS) to 
provide advanced functionality.  
 
Spark is outstanding because of its features such as provides a 
faster and more general data processing platform. As well as ease 
of use since makes it possible to write code more quickly with 
over 80 high-level operators. Some other important features 
include: 

• Optimizes arbitrary operator graphs. 
• Lazy evaluation of big data queries helping the 

optimization of the overall data processing workflow. 
• APIs in Scala, Java and Python. 
• Provides interactive shell for Scala and Python.  
• Works and Integrates well with the Hadoop ecosystem 

and data sources (HDFS, Amazon S3, Hive, HBase, 
Cassandra, etc.) 

4. Comparison of Spark and Hadoop 
Hadoop has been around longer than Spark as a big data 
processing technology. It has proven to be a great tool processing 

large data sets. However, MapReduce shows its advantage for 
one-pass computations whereas less efficient for multi-pass 
computations and algorithms. Map and Reduce are its only two 
phases which force each step in the data processing workflow into 
one Map phase and one Reduce phase. Users need to convert any 
use case into MapReduce pattern. 
 
Moreover, all job output data from one step to the next, has to be 
stored in the distributed file system before the next step begin. 
Therefore, with replication and disk storage issues, Hadoop tends 
to be slow. Also, Hadoop solutions normally include clusters that 
are hard to set up and manage. It also requires the integration of 
several tools for different big data use such as machine learning. 
 
If you wanted to do something complicated, you would have to 
arrange a series of MapReduce jobs and execute them in order. No 
later jobs could start until the previous job had finished 
completely. 
 
In Spark, software engineer would be able to develop 
complicated, multi-step data pipelines using directed acyclic 
graph (DAG) pattern. It also supports in-memory data sharing 
across DAGs, so that different jobs can work with the same data. 
This increases efficiency to a great extent.  
 
Spark is famous for its speed and ease of use. Different from 
Hadoop’s disk-based processing, Spark is an in-memory 
processing engine. It does allow use of disk but only for data 
doesn’t fit into memory. This quality itself makes Spark 
extraordinary in its speed. Other than the in-memory quality, the 
structure itself also makes it performs better than Spark. Winer of 
Daytona GraySort Contest in 2014 did sorting on disk (HDFS), 
without using Spark’s in-memory cache. The team sorted 100 TB 
of data on disk in 23 minutes, compared with the previous world 
record set by Hadoop MapReduce used 2100 machines and took 
72 minutes.[7] That is to say, as shown in Figure 1, Spark sorted 
the same data 3 times faster using 10 times fewer machines. This 
credits mainly to Spark’s RDD Resilient Distributed Dataset. 
 

 
Figure 3: Comparison of performance [7] 

5. Conclusion 
Spark performs better than Hadoop in many aspect as discussed 
above. First of all, with its in-memory quality, it requires less disk 
space, thus less expensive than Hadoop in general. Secondly, it’s 
easy to use with its over 80 higher level operators comparing to 
Hadoop’s only map-reduce phase. Last but not the least, Spark 
supports in-memory data sharing across DAGs, so that different 



jobs can work together with the same data comparing with 
Hadoop’s storing output data from one step to the next in the 
distributed file system before the next step begin. This also 
contributes to Spark’s high speed. However, we can’t say Spark is 
a potential replacement of Hadoop. They should be described as 
having a symbiotic relationship with each other. Hadoop has its 
own features that Spark does not possess, such as a distributed file 
system. Together, they contribute to better efficiency and greater 
user experience for big data computing.  
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