
Spark vs. Hadoop MapReduce

Siyu Nan

University of Rochester
Rochester,NY

snan@u.rochester.edu

Zhongda Su
University of Rochester

Rochester,NY

zsu4@ur.rochester.edu

ABSTRACT
Spark, an open-source cluster-computing framework came out in
2014, provides an interface for programming entire clusters with
implicit data parallelism and fault-tolerance.

Being hype in recent distributed computing field, Spark is being
taken as an improvement of MapReduce cluster computing
paradigm. We will focus on the Apache Spark cluster computing
framework, an important contender of Hadoop MapReduce in the
Big Data Arena. Spark provides great performance advantages
over Hadoop MapReduce, especially for iterative algorithms,
thanks to in-memory caching. Also, gives Data Scientists an
easier way to write their analysis pipeline in Python and Scala,
even providing interactive shells to play live with data.

This research intends to compare these two distributed computing
framework. What are their strengths and weaknesses? What are
their unique characteristics respectively? Can Spark potentially
replace Hadoop?

1. INTRODUCTION
The Big data is becoming more and more popular in recent days.
Big data has created countless opportunities lots of fields
including business, medical, insurance and other fields.
Technically, big data refers to the datasets with a size ranges from
terabytes to exabytes. It also has three characters: large volume,
high dimensions and dramatically large varieties [1].

The technology about solving big data problems in processing
data is urged to develop. In this paper, we will trace the
MapReduce, Hadoop and Spark revolution and understand the
differences between them.

2. MapReduce and Hadoop
MapReduce is a programming model used for processing large
data sets, which can be automatically parallelized and
implemented on a large cluster of machines. It is also easy to use
even for programmers without professional experience in parallel
and distributed systems [2].

2.1 Programming Model
The basic idea of programming model is inspired by the map and
reduce in functional languages. Map can produce a set of
intermediate key or value pairs by taking an input pair. The
MapReduce library groups values by keys. The reduce function
accepts an intermediate key I and values for that key, and it can
merge these values to form a possibly smaller set of values. Here
is an example of counting the number of occurrences of each

word in a large collection of documents. User can define map and
reduce functions similar to the following pseudo-code:

map (String key, String value):

// key: document name
// value: document contents
for each word w in value:
 EmitIntermediate (w, “1”)

Reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
 result += ParseInt(v) ;
Emit (AsString (result)); [2]

2.2 Implementation
First, the user split inputs into M chunks by splitter function and
create M map jobs and R reduce jobs. One of these jobs is special
and we call it the master. Map task is about reading the contents
of the corresponding input split and do the Map function.
Periodically, the map workers will write the data to local disk.
The reduce worker will do reduce function when the master call it.
Finally, when all tasks are finished, the master will call the user.
Figure 1 is an overview of the execution flow [2].

There are also some interesting problems which can be better
solved by using MapReduce. For example:

Distributed Sort: We can use map function to emit a (key,
record) pair by extracting the key. After that we can use reduce
function to emits all pairs unchanged.

Inverted Index: The map function can emit a sequence of (word,
document) by parsing each document. The reduce function can
combine all the sequences and sort the corresponding document
IDs, then emit a (word, list (document ID)) pair [2].

So far, we only talked about the basic idea of how MapReduce
works. To implement MapReduce in real problems, we also need
to consider failure of each part of the whole task. We need to

consider worker failure, master failure and semantics in the
presence of failure. Furthermore, we will introduce an open
source software for distributed computing.

Figure 1: Execution overview [2]

2.3 Apache Hadoop
Apache Hadoop is an open-source software alternative to
Google’s MapReduce system and they are very similar in many
respects. [3]

It is built on YARN system for job allocation and resource
management. It uses Java as its default language. All the files are
kept in HDFS (Hadoop Distributed File System)

Above are the key features of Hadoop but it also has several other
modules. These include Pig, Ambari, Avro, Cassandra, Hive, Pig,
Oozie, Flueme, and Sqoop. Pig is most use for data extraction,
transformation, loading (ETL). Apache Sqoop are one tool
designed for efficiently transferring bulk data between Apache
Hadoop and structured databases. Apache Hive is similar to SQL
language used for querying and management in HDFS. Oozie is a
workflow scheduler system to manage jobs. Zookeeper can
provide operational services for a Hadoop cluster group services.
Flume is used for collecting, aggregating and moving large
amounts of log data. Tez is a generalized data-flow programming
framework, which can provide flexible functions to implement
different tasks [4].

It is also worth to note what Hadoop is not. First, Hadoop is not a
substitute for a database. It stores data but not index them. If you
want to find something you need to first to generate index and it is
very expensive to regenerating indexes. Second Hadoop is not a
good place to learn Java programming since MapReduce is very
complex and you should learn from simple [4].

3. Spark
3.1 Spark Introduction
Apache Spark, a fast and general engine for large-scale data
processing, was originally developed in 2009 in UC Berkeley’s
AMPLab, and open sourced in 2010 as an Apache project. [5] In
Hadoop, Spark is taken as a module. With this being said, Spark is
smaller compared with Hadoop system. Other modules in
Hadoop, as mentioned above, includes Hadoop Distributed File
System, Hadoop MapReduce, Hadoop YARN and Hadoop
Common etc.

3.2 Spark Components
Spark have six main components, Spark core, SparkSQL, Spark
Streaming, MLlib (for machine learning), GraphX and Standalone
Scheduler. SparkSQL, Spark Streaming, MLlib and GraphX act as
high-level libraries complementing Spark Core. Standalone
Scheduler acts as Spark’s own cluster manager. Spark also
supports Hadoop YARN and Mesos cluster to act as cluster
manager for applications to run on.

Figure 2: Component of Spark [6]

3.2.1 Spark Core
Spark acts as the base engine for large-scale parallel and
distributed data processing. Its functions include:

• memory management and fault recovery

• scheduling, distributing and monitoring jobs on a cluster

• interacting with storage systems

API that defines resilient distributed datasets (RDDs), which are
Spark’s main programming abstraction is also located in Spark
Core. More about RDD is discussed in session 3.3.

3.2.2 Spark SQL
SparkSQL as a main component, supports querying data either via
SQL or via the Hive Query Language. It is now integrated with
the Spark stack which used to be as the Apache Hive port to run
on top of Spark. Apart from providing support for different data
sources, it makes it possible to weave SQL queries with code
transformations.

3.2.3 Spark Streaming
Spark Streaming supports real time processing of streaming data,
such as social media like Twitter and various messaging queues.
The Processes of Spark Streaming include receives the input data
streams and divides the data into batches followed by get
processed by the Spark engine and generate final stream of results
in batches.

3.2.4 MLib
MLlib is the library in Spark containing common machine
learning (ML) functionality. MLlib includes all basic types of
machine learning algorithms, including classification, regression,
clustering, and collaborative filtering. Moreover, it supports
model evaluation and data import. It also provides some lower-
level ML primitives, including optimization algorithm like basic

gradient descent and stochastic gradient descent. All of these
methods are designed to scale horizontally across a cluster.

3.2.5 GraphX
GraphX is a library for manipulating graphs, for example, an
American domestic flight graph, and performing graph-parallel
computations. Like Spark Streaming and Spark SQL, GraphX
expands the Spark RDD API, letting us to create a directed graph
with properties assigned by programmer, attached to each vertex
and edge. GraphX also provides various operators for graphs
manipulation like subgraph and a library of common graph
algorithms like triangle counting.

3.3 RDD
RDD is Spark’s main programming abstraction. It is an
immutable fault-tolerant, distributed collection of objects that can
be manipulated in parallel. An RDD can have any type of object
and is formed by loading an external dataset or distributing a
collection from the driver program.

RDDs support two types of operations:

• Transformations: operations such as map, filter, join, union

etc. which performed on an RDD and yield a new RDD

containing the result.

• Actions: operations such as reduce, count, first etc. that

return a value after running a computation on an RDD.

It is worthy to note that transformations in Spark do not compute
their results right away. They just “remember” the operation to be
performed and the its respective dataset. The transformations are
only computed when an action is called and the output is then
returned to the driver program. This design enables Spark to run
more efficiently.

3.4 Features
It is important to note that Spark has no file management. Thus, it
runs on top of existing Hadoop Distributed File System (HDFS) to
provide advanced functionality.

Spark is outstanding because of its features such as provides a
faster and more general data processing platform. As well as ease
of use since makes it possible to write code more quickly with
over 80 high-level operators. Some other important features
include:

• Optimizes arbitrary operator graphs.
• Lazy evaluation of big data queries helping the

optimization of the overall data processing workflow.
• APIs in Scala, Java and Python.
• Provides interactive shell for Scala and Python.
• Works and Integrates well with the Hadoop ecosystem

and data sources (HDFS, Amazon S3, Hive, HBase,
Cassandra, etc.)

4. Comparison of Spark and Hadoop
Hadoop has been around longer than Spark as a big data
processing technology. It has proven to be a great tool processing

large data sets. However, MapReduce shows its advantage for
one-pass computations whereas less efficient for multi-pass
computations and algorithms. Map and Reduce are its only two
phases which force each step in the data processing workflow into
one Map phase and one Reduce phase. Users need to convert any
use case into MapReduce pattern.

Moreover, all job output data from one step to the next, has to be
stored in the distributed file system before the next step begin.
Therefore, with replication and disk storage issues, Hadoop tends
to be slow. Also, Hadoop solutions normally include clusters that
are hard to set up and manage. It also requires the integration of
several tools for different big data use such as machine learning.

If you wanted to do something complicated, you would have to
arrange a series of MapReduce jobs and execute them in order. No
later jobs could start until the previous job had finished
completely.

In Spark, software engineer would be able to develop
complicated, multi-step data pipelines using directed acyclic
graph (DAG) pattern. It also supports in-memory data sharing
across DAGs, so that different jobs can work with the same data.
This increases efficiency to a great extent.

Spark is famous for its speed and ease of use. Different from
Hadoop’s disk-based processing, Spark is an in-memory
processing engine. It does allow use of disk but only for data
doesn’t fit into memory. This quality itself makes Spark
extraordinary in its speed. Other than the in-memory quality, the
structure itself also makes it performs better than Spark. Winer of
Daytona GraySort Contest in 2014 did sorting on disk (HDFS),
without using Spark’s in-memory cache. The team sorted 100 TB
of data on disk in 23 minutes, compared with the previous world
record set by Hadoop MapReduce used 2100 machines and took
72 minutes.[7] That is to say, as shown in Figure 1, Spark sorted
the same data 3 times faster using 10 times fewer machines. This
credits mainly to Spark’s RDD Resilient Distributed Dataset.

Figure 3: Comparison of performance [7]

5. Conclusion
Spark performs better than Hadoop in many aspect as discussed
above. First of all, with its in-memory quality, it requires less disk
space, thus less expensive than Hadoop in general. Secondly, it’s
easy to use with its over 80 higher level operators comparing to
Hadoop’s only map-reduce phase. Last but not the least, Spark
supports in-memory data sharing across DAGs, so that different

jobs can work together with the same data comparing with
Hadoop’s storing output data from one step to the next in the
distributed file system before the next step begin. This also
contributes to Spark’s high speed. However, we can’t say Spark is
a potential replacement of Hadoop. They should be described as
having a symbiotic relationship with each other. Hadoop has its
own features that Spark does not possess, such as a distributed file
system. Together, they contribute to better efficiency and greater
user experience for big data computing.

6. ACKNOWLEDGMENTS
We appreciate Course Instructor Tamal Tanu Biswas for teaching
us about database system design. We also want to thank course
TA Vojtech Aschenbrenner and Md Kamrul Hasan for inspiring
us this topic about Hadoop and Spark.

7. REFERENCES
[1] Ramez Elmasri, Shamkant B. Navathe, “7th Edition,

Fundamentals of Database Systems”, 2016, 911- 953. Print

[2] Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified
Data Processing on Large Clusters, 6th Symposium on
Operating Systems Design and Implementation, 2004

[3] Michael L. Scott, Parallel and Distributed Systems course
notes, April 2017

[4] Welcome to Apache™ Hadoop Retrieved April 23, 2017,
from http://hadoop.apache.org/

[5] Big Data Processing with Apache Spark – Part 1:
Introduction. (n.d.). Retrieved April 23, 2017, from
https://www.infoq.com/articles/apache-spark-introduction

[6] Tamal Tanu Biswas, University of Rochester, Database
Systems, lecture note 14, Spring 2017

[7] Apache Spark officially sets a new record in large-scale
sorting. (2016, October 27). Retrieved April 23, 2017, from
https://databricks.com/blog/2014/11/05/spark-officially-sets-
a-new-record-in-large-scale-sorting.html

