
Yuhao Zhu
http://yuhaozhu.com
yzhu@rochester.edu

Lecture 22: Ray Tracing

CSC 259/459, Fall 2025
Computer Imaging & Graphics

http://yuhaozhu.com
mailto:yzhu@rochester.edu

The Roadmap

�2

3D Modeling

Rasterization and GPU
Ray Tracing

Shading

Rendering in AR/VR

Display and Camera

Theoretical Preliminaries

Human Visual Systems

Modeling and Rendering

Graphics

�3http://www.cgarena.com/freestuff/tutorials/max/thomas_highway/sergeant.htmlhttps://docs.blender.org/manual/en/dev/render/introduction.html

Lighting, Camera,
and Material

Modeling Rendering

Visibility Problem

Two fundamental classes of visibility algorithms
• Object-centric (Rasterization)

• Image-centric (Ray tracing)

�4

Given a point P [x, y, z], what’s the corresponding
pixel coordinates [u, v] on the camera sensor?

Given a pixel [u, v] on the sensor, what’s
the associated point in the scene?

Basic Idea of Ray Tracing

�5

foreach pixel in image
 ray = buildRay(camera, pixel)
 if (P = intersect(ray, mesh))
 pixel.color = shade(P)
 else
 pixel.color = backgroundColor

Basic Idea of Ray Tracing

�6

Can sample multiple rays
per pixel for anti-aliasingforeach pixel in image

 ray = buildRay(camera, pixel)
 if (P = intersect(ray, mesh))
 pixel.color = shade(P)
 else
 pixel.color = backgroundColor

�7

Generating Rays

What Defines a Ray?

�8

class Ray {
 …
 Vec3f O;
 Vec3f D;
 float tmin;
 float tmax;
};

Ray: O + tD, tmin <= t <= tmax

O

D

thit

tmin

tmax

A ray is defined by its original and the
directional vector.

We usually define ray as a segment, with
a min and a max.

• Its purpose will become clear later, but
briefly it allows us to reduce computation in
visibility test.

Generating a Ray in a Pinhole Camera

Very intuitive: connect a pixel and the pinhole to form a ray.

Remember in actual implementations the canvas is before the pinhole.

�9

f

Image Image

Generating a Ray Under an Ideal Thin Lens

Many rays incident on one pixel. So
for each pixel we need to sample
the lens multiple times to trace
multiple rays.

• Why trace many rays? Because the pixel
color depends on all incident rays.

• This is not something achievable using
only the perspective matrix.

�10

ff

Generating a Ray Under an Ideal Thin Lens

Goal: given an arbitrary Rout how do we find Rin?
• There is a unique ray, Rout, between a pixel P and a sample L on the lens

• There is a unique ray, Rin, going into the lens that generates Rout

• The closest point on Rin before the lens will hit P

�11

f

f

P
Rout

Rin

L

Generating a Ray Under an Ideal Thin Lens

Use geometrical optics principles to determine Rin for a given Rout

• Rays go through the lens center (chief ray) don’t change their directions

�12

f

f

P

L

Rout

Rin

Generating a Ray Under an Ideal Thin Lens

Use geometrical optics principles to determine Rin for a given Rout

• Rays go through the lens center (chief ray) don’t change their directions

• Rays parallel to the optical axis (parallel ray) pass through the lens focus

�13

f

f

P
L

Rout

Rin

Generating a Ray Under an Ideal Thin Lens

Steps:
• 1. use chief and parallel rays to find the intersection point S in the scene

• 2. find L on the lens from Rout

• 3. Rin is the ray between S and L

�14

f

f

P

L
Rout

Rin

S

Can Ray Tracing Capture DOF?

What’s described before doesn’t rely on whether the closest hit is actually in-
focus on the pixel.

• So it can inherent trace scene points that are out-of-focus, i.e., simulate depth of field.

�15

f

f

sensor plane

Lens Sampling

Each sensor plane point receives infinitely many rays, so we need to sample
many rays for a point to reduce noise (more in shading lecture).

• This is orthogonal to sampling multiple points per pixel.

�16http://www.pbr-book.org/3ed-2018/Camera_Models/Projective_Camera_Models.html

2048 samples/point 4 samples/point

* the artifacts from low sampling rate here is not aliasing; it’s due to high variance in Monte Carlo integration.

�17

Ray-Scene Intersection

Ray-Scene Intersection

Goal: calculate the [x, y, z] coordinates
of the closest hit between the ray and
the mesh.

Why closest hit?
• Preserve visibility (like the z-buffer in

rasterization)

�18

10

Model #v #v2 Metric curvature clustering ̸ < 30o Qav

(original) (coarsened) time (s) time (s) (%)
Lucy 14M 500k IQ(1.5) 213 (12 CPUS) 8357 3.73 0.77

500k IQ(1.5) 2822 (4CPUS) 3.73 0.77
David 507k 500k IQ (1.5) 76 6365 6.9 0.73
Statuette 5M 300k I (1.5) 319 165 10 0.69

300k IQ (1.5) 319 1665 8.4 0.71
300k AQ (1.5) 328 1826 16 0.62

Buddha 500k 20k IQ (1.5) 47 255 7.5 0.72
20k AQ (1.5) 49 295 17 0.61

TABLE I
PROCESSING TIMES AND QUALITY MEASURES FOR THE PROCESSED MESHES. THE COLUMNS ARE RESPECTIVELY THE NUMBER OF VERTICES OF THE
INPUT AND OUTPUT MESHES, THE METRIC USED FOR THE CLUSTERING, THE TIME SPENT ON THE CURVATURE MEASURE COMPUTATION AND ON THE

CLUSTERING, THE PERCENTAGE OF MINIMAL INTERNAL ANGLES BELLOW 30o AND THE AVERAGE TRIANGLE ASPECT RATIO.

Fig. 12. Coarsened versions of the rockerarm model (1000 vertices) and the
buddha model (20k vertices).

models (left : AQ metric; right: IQ metric). The anisotropic
behavior of the AQ metric is clearly visible in elongated
regions (the cloth around the Buddha’s neck), and sampling
remains isotropic in spherical regions (e.g. on the head). Note
that the sharp features located on the back of the model are
better preserved with the AQ metric.
On figure 13, we can see a closeup view of the Michelangelo

David remeshed to 500k vertices, illustrating that the limitation
of our approach in a remeshing point of view is only its
memory footprint.
Figure 15 shows a remeshed version of the Statuette model

to 500k vertices, using the IQ metric. the right side compares
the results between the IQ (top) and AQ (bottom) metrics.
Again, the anisotropic metric gives more pleasant results.
As the results table shows, the IQ metric is about 10 times
slower than the I metric. This is due to the QEM based center
localization, which requires for each iteration a 3× 3 singular
value decomposition in order to have a robust placement.
Anisotropic clustering exhibits a reasonable overhead com-

Fig. 13. Closeup view of the David model remeshed to 500k vertices
(Isotropic metric)

pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms

[x, y, z]

Valette, et al. [TVCG’08]

x
y

z

The Simplest Algorithm

�19

10

Model #v #v2 Metric curvature clustering ̸ < 30o Qav

(original) (coarsened) time (s) time (s) (%)
Lucy 14M 500k IQ(1.5) 213 (12 CPUS) 8357 3.73 0.77

500k IQ(1.5) 2822 (4CPUS) 3.73 0.77
David 507k 500k IQ (1.5) 76 6365 6.9 0.73
Statuette 5M 300k I (1.5) 319 165 10 0.69

300k IQ (1.5) 319 1665 8.4 0.71
300k AQ (1.5) 328 1826 16 0.62

Buddha 500k 20k IQ (1.5) 47 255 7.5 0.72
20k AQ (1.5) 49 295 17 0.61

TABLE I
PROCESSING TIMES AND QUALITY MEASURES FOR THE PROCESSED MESHES. THE COLUMNS ARE RESPECTIVELY THE NUMBER OF VERTICES OF THE
INPUT AND OUTPUT MESHES, THE METRIC USED FOR THE CLUSTERING, THE TIME SPENT ON THE CURVATURE MEASURE COMPUTATION AND ON THE

CLUSTERING, THE PERCENTAGE OF MINIMAL INTERNAL ANGLES BELLOW 30o AND THE AVERAGE TRIANGLE ASPECT RATIO.

Fig. 12. Coarsened versions of the rockerarm model (1000 vertices) and the
buddha model (20k vertices).

models (left : AQ metric; right: IQ metric). The anisotropic
behavior of the AQ metric is clearly visible in elongated
regions (the cloth around the Buddha’s neck), and sampling
remains isotropic in spherical regions (e.g. on the head). Note
that the sharp features located on the back of the model are
better preserved with the AQ metric.
On figure 13, we can see a closeup view of the Michelangelo

David remeshed to 500k vertices, illustrating that the limitation
of our approach in a remeshing point of view is only its
memory footprint.
Figure 15 shows a remeshed version of the Statuette model

to 500k vertices, using the IQ metric. the right side compares
the results between the IQ (top) and AQ (bottom) metrics.
Again, the anisotropic metric gives more pleasant results.
As the results table shows, the IQ metric is about 10 times
slower than the I metric. This is due to the QEM based center
localization, which requires for each iteration a 3× 3 singular
value decomposition in order to have a robust placement.
Anisotropic clustering exhibits a reasonable overhead com-

Fig. 13. Closeup view of the David model remeshed to 500k vertices
(Isotropic metric)

pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms

[x, y, z]

Valette, et al. [TVCG’08]

x
y

z

Brute-force approach:
• iterate all triangles

• test intersection for each triangle

• return the closest hit, if any

Key task:
• Ray-triangle intersection test and calculate

the coordinates of the hit point, if any.

• General plan:
- Identify the intersection point between the ray and the plane in

which the triangle lies

- Test whether the intersection point is inside the triangle

What Defines a Triangle?

A plane with three vertices.
• The vertices are guaranteed to be co-planar.

The plane that the triangles are in can be
expressed as an implicit equation and can
be calculated from the vertices.

�20

A(V1x − V2x) + B(V1y − V2y) + C(V1z − V2z) = 0
A(V1x − V3x) + B(V1y − V3y) + C(V1z − V3z) = 0
A × V1x + B × V1y + C × V1z = X

V1

V2

V3

Plane: Ax + By + Cz = X

Plane normal: [A, B, C]

A : B : C : X

Ray-Triangle Intersection

�21

Px = Ox + Dx × t

Py = Oy + Dy × t
Pz = Oz + Dz × t
A × Px + B × Py + C × Pz = 1

t =
1 − (A × Ox + B × Oy + C × Oz)

A × Dx + B × Dy + C × Dz

V1

V2

V3

Plane: Ax + By + Cz = X

Plane normal: [A, B, C]

O (Ox, Oy, Oz)

D

P (Px, Py, Pz)
Ray: O+tD

Three Caveats

1. The denominator is 0 if the normal is
perpendicular to the direction of the ray
(i.e., ray is parallel to the plane).

• Need a special test for whether the ray is
parallel with the plane (before division).

�22

t =
1 − (A × Ox + B × Oy + C × Oz)

A × Dx + B × Dy + C × Dz

V1

V2

V3

Plane: Ax + By + Cz = X

Plane normal: [A, B, C]

O (Ox, Oy, Oz)

D

P (Px, Py, Pz)
Ray: O+tD

Three Caveats

2. A ray doesn’t intersect with a plane if
the triangle plane is behind the origin of
the ray

• i.e., t is negative.

�23

V1

V2

V3

Plane: Ax + By + Cz = X

Plane normal: [A, B, C]

O (Ox, Oy, Oz)

D

P (Px, Py, Pz)
Ray: O+tD

Three Caveats

2. A ray doesn’t intersect with a plane if
the triangle plane is behind the origin of
the ray

• i.e., t is negative.

3. Even if a real intersection point is
found, the intersection point could be
outside the triangle.

• Use barycentric coordinates to test whether a
point is outside of a triangle.

�24

V1

V2

V3

Plane normal: [A, B, C]
O (Ox, Oy, Oz)

D

P (Px, Py, Pz)
Ray: O+tD

Brute-Force Approach is Extremely Inefficient

�25

10

Model #v #v2 Metric curvature clustering ̸ < 30o Qav

(original) (coarsened) time (s) time (s) (%)
Lucy 14M 500k IQ(1.5) 213 (12 CPUS) 8357 3.73 0.77

500k IQ(1.5) 2822 (4CPUS) 3.73 0.77
David 507k 500k IQ (1.5) 76 6365 6.9 0.73
Statuette 5M 300k I (1.5) 319 165 10 0.69

300k IQ (1.5) 319 1665 8.4 0.71
300k AQ (1.5) 328 1826 16 0.62

Buddha 500k 20k IQ (1.5) 47 255 7.5 0.72
20k AQ (1.5) 49 295 17 0.61

TABLE I
PROCESSING TIMES AND QUALITY MEASURES FOR THE PROCESSED MESHES. THE COLUMNS ARE RESPECTIVELY THE NUMBER OF VERTICES OF THE
INPUT AND OUTPUT MESHES, THE METRIC USED FOR THE CLUSTERING, THE TIME SPENT ON THE CURVATURE MEASURE COMPUTATION AND ON THE

CLUSTERING, THE PERCENTAGE OF MINIMAL INTERNAL ANGLES BELLOW 30o AND THE AVERAGE TRIANGLE ASPECT RATIO.

Fig. 12. Coarsened versions of the rockerarm model (1000 vertices) and the
buddha model (20k vertices).

models (left : AQ metric; right: IQ metric). The anisotropic
behavior of the AQ metric is clearly visible in elongated
regions (the cloth around the Buddha’s neck), and sampling
remains isotropic in spherical regions (e.g. on the head). Note
that the sharp features located on the back of the model are
better preserved with the AQ metric.
On figure 13, we can see a closeup view of the Michelangelo

David remeshed to 500k vertices, illustrating that the limitation
of our approach in a remeshing point of view is only its
memory footprint.
Figure 15 shows a remeshed version of the Statuette model

to 500k vertices, using the IQ metric. the right side compares
the results between the IQ (top) and AQ (bottom) metrics.
Again, the anisotropic metric gives more pleasant results.
As the results table shows, the IQ metric is about 10 times
slower than the I metric. This is due to the QEM based center
localization, which requires for each iteration a 3× 3 singular
value decomposition in order to have a robust placement.
Anisotropic clustering exhibits a reasonable overhead com-

Fig. 13. Closeup view of the David model remeshed to 500k vertices
(Isotropic metric)

pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms

[x, y, z]

Valette, et al. [TVCG’08]

x
y

z

Brute-force approach:
• iterate all triangles

• test intersection for each triangle

• return the closest hit, if any

Time complexity:
• O(# of rays x # of triangles)

�26

Accelerating Ray-Scene
Intersection

Speeding Up Ray-Triangle Intersection Test

Prune the search space.

Only search part of the scene that does intersect the ray.

Key: how to partition the space?

�27

intersect(space, ray) {
 if ray doesn’t intersect space boundary:
 return
 else
 foreach subspace in space
 if (subspace != empty)
 intersect(subspace, ray)
}

Space vs. Object Partitioning

�28

Space partitioning: One object
could be in different partitions

Object partitioning: different
partitions could overlap in space

Uniform Grid

Find the bounding box of the scene

Generate a uniform grid

Find intersecting cells

For each intersecting cell:
• Iterate over all the containing triangles

• Get the closet intersection within the cell

• Update the global closet intersection

�29

Grid Resolution

Too few cells:
• Little speedup

Too many cells:
• Many empty cells to check and to store

A useful heuristics:
• The number of cells should be proportional

to the number of triangles

• #cell in each dimension = n^{1/3}

�30

When Uniform Grid Works

�31

Small objects roughly uniformly distributed in space

When Uniform Grid is Inefficient

�32

Objects sparsely distributed in space (“teapot in a stadium”)

Non-Uniform (Adaptive) Grid

�33

Quadtree (2D) Octree (3D)

https://en.wikipedia.org/wiki/Octree

https://en.wikipedia.org/wiki/Octree

Building K-D Tree

Recursively using axis-aligned planes to
split the space

Stop when certain terminating conditions
are met

• # of objects in a cell < threshold

• Max tree depth met

Organize the splits using a tree

Find the closest hit by traversing the tree

�34

A

B

C

D1

2

3

4
5

6

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

K-D Tree

�35http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

A

B

C

D

A

B C1

2

3

4
5

6

DL1

L2 L3

L4 L5

1

2 3

4 5 6

Interior
node

Leaf
node

Root

Primitive

Traversing K-D Tree

�36

A

B

C

D1

2

3

4
5

6

A

B C

DL1

L2 L3

L4 L5

1

2 3

4 5 6

Current

Stack

A

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Traversing K-D Tree

�37

A

B

C

D1

2

3

4
5

6

A

B C

DL1

L2 L3

L4 L5

1

2 3

4 5 6

Current

Stack

B

C

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Traversing K-D Tree

�38

A

B

C

D1

2

3

4
5

6

A

B C

DL1

L2 L3

L4 L5

1

2 3

4 5 6

Current

Stack

L1

C D

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Traversing K-D Tree

�39

A

B

C

D1

2

3

4
5

6

A

B C

DL1

L2 L3

L4 L5

1

2 3

4 5 6

Current

Stack C D

1

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Traversing K-D Tree

�40

A

B

C

D1

2

3

4
5

6

A

B C

DL1

L2 L3

L4 L5

1

2 3

4 5 6

Current

Stack

L3

C

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Traversing K-D Tree

�41

A

B

C

D1

2

3

4
5

6

A

B C

DL1

L2 L3

L4 L5

1

2 3

4 5 6

Current

Stack C

3

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Traversing K-D Tree

�42

A

B

C

D1

2

3

4
5

6

A

B C

DL1

L2 L3

L4 L5

1

2 3

4 5 6

Current

Stack

L4

L5

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Traversing K-D Tree

�43

A

B

C

D1

2

3

4
5

6

A

B C

DL1

L2 L3

L4 L5

1

2 3

4 5 6

Current

Stack L5

4 5 Result
5

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Traversing K-D Tree

�44

A

B

C

D1

2

3

4
5

6

A

B C

DL1

L2 L3

L4 L5

1

2 3

4 5 6

Current

Stack

5 6 Result
5

http://groups.csail.mit.edu/graphics/classes/6.838/S98/meetings/m13/kd.html

Binary Space Partitioning Tree

K-D tree is a special case of binary space
partitioning (BSP) tree, which recursively
split the space with planes (3D) or lines (2D)

• Arbitrary split planes here

Useful when objects are large and non-axis-
aligned, in which case K-D tree will split
objects into different partitions

• Good reference: Ray Tracing with the BSP Tree
[Ize, Wald, Parker, 2008]

�45

Bounding Volume Hierarchy (Object Partition)

SceneBVH Tree

�46

2

1

4

AB

C

D E
3

A

B

C

1

D

2 3

E

4

Interior
node

Leaf
node

Root

Primitive

Object vs. Space Partitioning

�47

Space partitioning: One object
could be in different partitions

Object partitioning: different
partitions could overlap in space

Bounding Volume Hierarchy (Object Partition)

2

1

4

�48

AB

C

D E
3

• A, B, C, D, E are the bounding volumes, which are Axis-Aligned Bounding
Boxes (AABBs) here. Other (irregular) bounding volumes are possible.

A

B

C

1

D

2 3

E

4

Interior
node

Leaf
node

Root

Primitive

Intersection Test Using BVH

�49

2

1

4

AB

C

D E

A

B E

C D

2 3

4
3

1

Current

Stack

A

Ray

Ray-AABB Intersection TestClosestHit = NA

Intersection Test Using BVH

�50

2

1

4

AB

C

D E

A

B E

C D

2 3

4
3

1

Current

Stack

B

E

Ray-AABB Intersection Test

Ray

ClosestHit = NA

Intersection Test Using BVH

�51

2

1

4

AB

C

D E

A

B E

C D

2 3

4
3

1

Current

Stack

C

E D

Ray-AABB Intersection Test

Ray

ClosestHit = NA

Intersection Test Using BVH

�52

2

1

4

AB

C

D E

A

B E

C D

2 3

4
3

1

Current

Stack

D

E

Ray-AABB Intersection Test

Ray

ClosestHit = NA

Intersection Test Using BVH

�53

2

1

4

AB

C

D E

A

B E

C D

2 3

4
3

1

Current

Stack E

2 Ray-Triangle Intersection Test

Ray

3ClosestHit = NA

Intersection Test Using BVH

�54

2

1

4

AB

C

D E

A

B E

C D

2 3

4
3

1

Current

Stack

Ray

Ray-AABB Intersection TestEClosestHit = 2

Distance to E > Distance to 2; Stop!

Ray-AABB Intersection

�55

Ray: O + tD, tmin <= t <= tmax

O

D

thit

tmin

tmax

A Subtle but Critical Case

�56

Ray: O + tD, tmin <= t <= tmax

O

D

thit

Yes; any ray segment that originates from within
an AABB must be treated as intersecting.

tmin

tmax

Should this be counted as a hit?

tmin

tmax

Various Trade-offs Worth Considering

Time to build the tree vs. time to search.
• Incrementally update a tree (e.g., scene

slowing changing in an animation)?

• Can we built the tree offline?

Shape of the bounding volume.
• Tight bounding volumes provide more

precise intersect test, but are costly to build
and to search.

Tree structures take memory.

�57https://www.scratchapixel.com/lessons/advanced-rendering/introduction-acceleration-structure/bounding-volume-hierarchy-BVH-part1

 An SM in Turing GPU

�58https://wccftech.com/nvidia-turing-gpu-architecture-geforce-rtx-graphics-cards-detailed/

�59

Recursive Ray Tracing

Why Recursive Ray Tracing?

�60

10

Model #v #v2 Metric curvature clustering ̸ < 30o Qav

(original) (coarsened) time (s) time (s) (%)
Lucy 14M 500k IQ(1.5) 213 (12 CPUS) 8357 3.73 0.77

500k IQ(1.5) 2822 (4CPUS) 3.73 0.77
David 507k 500k IQ (1.5) 76 6365 6.9 0.73
Statuette 5M 300k I (1.5) 319 165 10 0.69

300k IQ (1.5) 319 1665 8.4 0.71
300k AQ (1.5) 328 1826 16 0.62

Buddha 500k 20k IQ (1.5) 47 255 7.5 0.72
20k AQ (1.5) 49 295 17 0.61

TABLE I
PROCESSING TIMES AND QUALITY MEASURES FOR THE PROCESSED MESHES. THE COLUMNS ARE RESPECTIVELY THE NUMBER OF VERTICES OF THE
INPUT AND OUTPUT MESHES, THE METRIC USED FOR THE CLUSTERING, THE TIME SPENT ON THE CURVATURE MEASURE COMPUTATION AND ON THE

CLUSTERING, THE PERCENTAGE OF MINIMAL INTERNAL ANGLES BELLOW 30o AND THE AVERAGE TRIANGLE ASPECT RATIO.

Fig. 12. Coarsened versions of the rockerarm model (1000 vertices) and the
buddha model (20k vertices).

models (left : AQ metric; right: IQ metric). The anisotropic
behavior of the AQ metric is clearly visible in elongated
regions (the cloth around the Buddha’s neck), and sampling
remains isotropic in spherical regions (e.g. on the head). Note
that the sharp features located on the back of the model are
better preserved with the AQ metric.
On figure 13, we can see a closeup view of the Michelangelo

David remeshed to 500k vertices, illustrating that the limitation
of our approach in a remeshing point of view is only its
memory footprint.
Figure 15 shows a remeshed version of the Statuette model

to 500k vertices, using the IQ metric. the right side compares
the results between the IQ (top) and AQ (bottom) metrics.
Again, the anisotropic metric gives more pleasant results.
As the results table shows, the IQ metric is about 10 times
slower than the I metric. This is due to the QEM based center
localization, which requires for each iteration a 3× 3 singular
value decomposition in order to have a robust placement.
Anisotropic clustering exhibits a reasonable overhead com-

Fig. 13. Closeup view of the David model remeshed to 500k vertices
(Isotropic metric)

pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms

Valette, et al. [TVCG’08]

• To implement realistic shading.

• The color of an exiting ray depends
on the colors of all incident rays.
• color here really means radiance.

•also depends on the surface material (diffuse vs.

specular vs. …); later.

• How do we know the color of an
incident ray? Cast more rays!

Color?
Color?

Color?
Color?

Why Recursive Ray Tracing?

�61

10

Model #v #v2 Metric curvature clustering ̸ < 30o Qav

(original) (coarsened) time (s) time (s) (%)
Lucy 14M 500k IQ(1.5) 213 (12 CPUS) 8357 3.73 0.77

500k IQ(1.5) 2822 (4CPUS) 3.73 0.77
David 507k 500k IQ (1.5) 76 6365 6.9 0.73
Statuette 5M 300k I (1.5) 319 165 10 0.69

300k IQ (1.5) 319 1665 8.4 0.71
300k AQ (1.5) 328 1826 16 0.62

Buddha 500k 20k IQ (1.5) 47 255 7.5 0.72
20k AQ (1.5) 49 295 17 0.61

TABLE I
PROCESSING TIMES AND QUALITY MEASURES FOR THE PROCESSED MESHES. THE COLUMNS ARE RESPECTIVELY THE NUMBER OF VERTICES OF THE
INPUT AND OUTPUT MESHES, THE METRIC USED FOR THE CLUSTERING, THE TIME SPENT ON THE CURVATURE MEASURE COMPUTATION AND ON THE

CLUSTERING, THE PERCENTAGE OF MINIMAL INTERNAL ANGLES BELLOW 30o AND THE AVERAGE TRIANGLE ASPECT RATIO.

Fig. 12. Coarsened versions of the rockerarm model (1000 vertices) and the
buddha model (20k vertices).

models (left : AQ metric; right: IQ metric). The anisotropic
behavior of the AQ metric is clearly visible in elongated
regions (the cloth around the Buddha’s neck), and sampling
remains isotropic in spherical regions (e.g. on the head). Note
that the sharp features located on the back of the model are
better preserved with the AQ metric.
On figure 13, we can see a closeup view of the Michelangelo

David remeshed to 500k vertices, illustrating that the limitation
of our approach in a remeshing point of view is only its
memory footprint.
Figure 15 shows a remeshed version of the Statuette model

to 500k vertices, using the IQ metric. the right side compares
the results between the IQ (top) and AQ (bottom) metrics.
Again, the anisotropic metric gives more pleasant results.
As the results table shows, the IQ metric is about 10 times
slower than the I metric. This is due to the QEM based center
localization, which requires for each iteration a 3× 3 singular
value decomposition in order to have a robust placement.
Anisotropic clustering exhibits a reasonable overhead com-

Fig. 13. Closeup view of the David model remeshed to 500k vertices
(Isotropic metric)

pared to isotropic clustering (below 20%).
Figure 17 and table III compare the mesh quality between

our approach and [16]. One one hand, our approach provides
a triangulation with less quality than [16]. On the other hand,
table II shows that our approach provides a model which is far
more faithful to the original model, with a Hausdorff distance
about 4 times smaller than with [16]. Note that this table
also shows the average and RMS errors between the original
and coarsened models (in both directions, as these distances
measures are not symmetric), obtained with Metro [32].
Figure 16 shows the hand model coarsened to 300 vertices,

using qslim [28], our approach and VSA [4]. Clearly, our
results are close to the ones of qslim, VSA efficiently capturing
the anisotropy of the model, but failing to represent it with
the same precision. We tried our algorithm with two different
random initializations. In table II, we can see that in terms

Valette, et al. [TVCG’08]

Secondary Ray

Secondary Ray

Secondary Ray

• To implement realistic shading.

• The color of an exiting ray depends
on the colors of all incident rays.
• color here really means radiance.

•also depends on the surface material (diffuse vs.

specular vs. …); later.

• How do we know the color of an
incident ray? Cast more rays!

Simple Whitted-Style Recursive Ray Tracing

�62

castRay(ray, mesh) {
 if (P = nearestIntersect(ray, mesh))
 reflectRay = buildReflectRay(P)
 refractRay = buildRefractRay(P)
 reflectColor = castRay(reflectRay, mesh))
 refractColor = castRay(refractRay, mesh))

 float kr
 fresnel(dir, N, hitObject->ior, kr)
 P.color = reflectionColor * kr +
 refractionColor * (1 - kr)
 else P.color = backgroundColor
}

P

A simplification of Whitted-style ray tracing, assuming purely transparent surface.

https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-overview/light-transport-ray-tracing-whitted

https://blogs.nvidia.com/blog/2018/08/01/ray-tracing-global-illumination-turner-whitted/

Simple Whitted-Style Recursive Ray Tracing

�63https://blogs.nvidia.com/blog/2018/08/01/ray-tracing-global-illumination-turner-whitted/

Things to Remember

Ray tracing makes it easy (conceptually) to implement realistic shading.

Compared to rasterization, ray tracing is much more time consuming,
dominated by ray-scene intersection test, which is exacerbated by the need
for recursive ray tracing.

We can accelerate the testing using acceleration structures that prune the
search space. BVH is the most common acceleration structure.

Modern GPUs, while traditionally optimized for rasterization, now have
hardware support for ray tracing (e.g., BVH traversal, ray-AABB/triangle
intersection test).

�64

