Lecture 22: Ray Tracing

Yuhao Zhu

http://yuhaozhu.com
yzhu@rochester.edu

http://yuhaozhu.com
mailto:yzhu@rochester.edu

The Roadmap

Ray Tracing

Modeling and Rendering

Graphics

Lighting, Camera,
and Material

V
| > Rendering ._:>

Modeling

https://docs.blender.org/manual/en/dev/render/introduction.htm| http://www.cgarena.com/freestuff/tutorials/max/thomas_highway/sergeant.html 3

Visibility Problem

Two fundamental classes of visibility algorithms

 Object-centric (Rasterization)

* |mage-centric (Ray tracing)

Given a pixel [u, v] on the sensor, what's
the associated point in the scene?

camera
origin

l ray miss

© www.scratchapixel.com

camera
origin

|

/

ray hit

Basic Idea of Ray Tracing

L

\ ray miss

© www.scratchapixel.com

foreach pixel 1n image
ray = buildRay (camera, pixel)
1f (P = 1ntersect (ray, mesh))

pixel.color
else
pixel.color

shade (P)

backgroundColor

Basic Idea of Ray Tracing

Can sample multiple rays

foreach pixel in image per pixel for anti-aliasing

ray = buildRay (camera, pixel)lk’/’
1f (P = 1ntersect (ray, mesh))
pixel.color = shade (P)
else
pixel.color = backgroundColor

Generating Rays

What Defines a Ray?

A ray is defined by its original and the

Ray: O + tD, tmin <=t <= tmax
directional vector.

O Tmin

We usually define ray as a segment, with
a min and a max.

* |ts purpose will become clear later, but

Lo - tmax
brietly it allows us to reduce computation in D
visibility test. class Ray |

Vec3f O;
Vec3f D;
float tmin;

float tmax;
by

Generating a Ray in a Pinhole Camera

Very intuitive: connect a pixel and the pinhole to form a ray.

Remember in actual implementations the canvas is before the pinhole.

Image Image

Generating a Ray Under an Ideal Thin Lens

Many rays incident on one pixel. So
for each pixel we need to sample
the lens multiple times to trace
multiple rays.

* Why trace many rays? Because the pixel
color depends on all incident rays.

e This is not something achievable using

only the perspective matrix.

10

Generating a Ray Under an Ideal Thin Lens

Goal: given an arbitrary Roy: how do we find R;,?
* There is a unique ray, Rout, between a pixel P and a sample L on the lens
* There is a unique ray, Rin, going into the lens that generates Rou

* The closest point on Ri, before the lens will hit P

11

Generating a Ray Under an Ideal Thin Lens

Use geometrical optics principles to determine Rj, for a given Rqut

e Rays go through the lens center (chief ray) don’t change their directions

-~
~
~
~
~
~
..
~

...
-~
-~

~
-~
~
~
~
~
~
~
..
~

12

Generating a Ray Under an Ideal Thin Lens

Use geometrical optics principles to determine Rj, for a given R
e Rays go through the lens center (chief ray) don’t change their directions

e Rays parallel to the optical axis (parallel ray) pass through the lens focus

13

Generating a Ray Under an Ideal Thin Lens

Steps:
e 1. use chief and parallel rays to find the intersection point S in the scene
e 2. findL on the lens from Ryt

* 3. Ry is the ray between S and L

el
Ll
el

14

Can Ray Tracing Capture DOF?

What's described before doesn’t rely on whether the closest hit is actually in-
focus on the pixel.

e So it can inherent trace scene points that are out-of-focus, i.e., simulate depth of field.

sensor plane

15

Lens Sampling

Each sensor plane point receives infinitely many rays, so we need to sample
many rays for a point to reduce noise (more in shading lecture).

e This is orthogonal to sampling multiple points per pixel.

2048 samples/point 4 salmples/point

* the artifacts from low sampling rate here is not aliasing; it's due to high variance in Monte Carlo integration.

http://www.pbr-book.org/3ed-2018/Camera_Models/Projective_Camera_Models.htm| 16

Ray-Scene Intersection

Ray-Scene Intersection

Goal: calculate the [x, y, z] coordinates
of the closest hit between the ray and
the mesh.

Why closest hit?

e Preserve visibility (like the z-bufter in
rasterization

Valette, et al. [TVCG'08

18

The Simplest Algorithm

Brute-tforce approach:
e iterate all triangles
* test intersection for each triangle

e return the closest hit, if any

Key task:

e Ray-triangle intersection test and calculate
the coordinates of the hit point, if any.

* General plan:

- Identify the intersection point between the ray and the plane in
which the triangle lies

- Test whether the intersection point is inside the triangle

Valette, et al. [TVCG'08

19

What Defines a Triangle?

A plane with three vertices.

* The vertices are guaranteed to be co-planar.

The plane that the triangles are in can be

expressed as an implicit equation and can
be calculated from the vertices.

A(V1, = V2) +B(Vl,—V2)+ C(Vl,— V2) =0

A(VL, = V3)+B(V1, = V3)+C(V1,-V3)=0 === >A:B:C: X
AXVI, +BXVlL,+CXV]l, =X

-

(" A

W,

V2

Plane normal: [A, B, C]

V1

V3

\

Plane: Ax + By + Cz = X

20

Ray-Triangle Intersection

P.=0.+D_Xt
P,=0,+D, Xt
P,=0,+D,Xt
AXP,+BXP +CXP, =1

v

1 -(AXO0,+BX0,+CXO0,)
[=
AXD,+BXD,+CXD,

O (O, Oy, Oy)

Ray: O+tD

V2

Plane normal: [A, B, C]

V1

V3
\ N
D

Plane: Ax + By + Cz = X

21

Three Caveats

1. The denominator is O if the normal is
perpendicular to the direction of the ray
(i.e., ray is parallel to the plane).

* Need a special test for whether the ray is
parallel with the plane (betore division).

1 -(AX0,+BX0,+CXxO0,)

[=
AXD,+BXD,+CXD,

Plane normal: [A, B, C]

O (Ox, Oy, O,)
V1

Ray: O+tD

V3
V2 N\
N

Plane: Ax + By + Cz = X

22

Three Caveats

2. A ray doesn't intersect with a plane if Plane normal: [A, B, C]
the triangle plane is behind the origin of
the ray

* |.e., tisnegative.

Plane: Ax + By + Cz = X

23

Three Caveats

2. A ray doesn't intersect with a plane if
the triangle plane is behind the origin of
the ray

* |.e., tisnegative.

3. Even it a real intersection point is
found, the intersection point could be
outside the triangle.

e Use barycentric coordinates to test whether a
point is outside of a triangle.

O (O, Oy, O;)

Ray: O

tD

Plane normal: [A, B, C]

V1

24

rute-force approach:

e iterate all triangles

* test intersection for each triangle

e return the closest hit, if any

Time complexity:

e O

of rays x

of triangles

rute-Force Approach is Extremely Inefficient

Valette, et al. [TVCG'08

25

Accelerating Ray-Scene
Intersection

Speeding Up Ray-Triangle Intersection Test

Prune the search space.
Only search part of the scene that does intersect the ray.

Key: how to partition the space?

intersect (space, ray) {
1f ray doesn’t 1ntersect space boundary:
return
else
foreach subspace 1n space

lgf:ii:>> 1f (subspace != empty)
intersect (subspace, ray)

Space vs. Object Partitioning

Space partitioning: One object
could be in different partitions

[~

/

Object partitioning: ditferent
partitions could overlap in space

28

Uniform Grid

i

Find the bounding box of the scene
Generate a uniform grid
Find intersecting cells

For each intersecting cell:
* [terate over all the containing triangles
e Get the closet intersection within the cell

e Update the global closet intersection

29

Grid Resolution

Too few cells:
o little speedup

Too many cells:

e Many empty cells to check and to store

A useful heuristics:

* The number of cells should be proportional
to the number of triangles

e #cell in each dimension = nM1/3}

30

When Uniform Grid Works

s e e R e A

‘5 . . % ! .. "~
s s W, g _,.)..!.' ":1‘
- -~ JP

.'-;':... . Kv :

Small objects roughly uniformly distributed in space

31

When Uniform Grid is Inefficient

4

| wcacRMdERERERSENARS! -ll-..n.-,-.- r.:

-

e

i 1 x...u

A ._{_

o g <
RS N

k@,z\i .;.
o BTN
ia.@ ,

.-.._ £l R.
m..
O‘

<4. ’

Objects sparsely distributed in space (“teapot in a stadium”)

32

Non-Uniform (Adaptive) Grid

Quadtree (2D)

https://en.wikipedia.org/wiki/Octree

Octree (3D)

33

https://en.wikipedia.org/wiki/Octree

Building K-D Tree

B

Recursively using axis-aligned planes to
Q split the space

Stop when certain terminating conditions
are met

A e # of objects in a cell < threshold
e Max tree depth met
: Organize the splits using a tree
> 9 P 9

Find the closest hit by traversing the tree

http://groups.csail.mit.edu/graphics/classes/6.838/598/meetings/m13/kd.html 34

Root —>| A
e [B fode. [
D
1 4 5 /6\

/2\ A— Primitive

http://groups.csail.mit.edu/graphics/classes/6.838/598/meetings/m13/kd.html 35

Current

Stack

Traversing K-D Tree

B

http://groups.csail.mit.edu/graphics/classes/6.838/5S98/meetings/m13/kd.html 36

Current
Stack

Traversing K-D Tree

B

e

http://groups.csail.mit.edu/graphics/classes/6.838/598/meetings/m13/kd.html 37

Current
Stack @

Traversing K-D Tree

http://groups.csail.mit.edu/graphics/classes/6.838/598/meetings/m13/kd.html 38

Current A
Stack @

Traversing K-D Tree

B

http://groups.csail.mit.edu/graphics/classes/6.838/598/meetings/m13/kd.html 39

Current
Stack

Traversing K-D Tree

B

\ BB A KA

: NN

http://groups.csail.mit.edu/graphics/classes/6.838/598/meetings/m13/kd.html 40

Traversing K-D Tree

B

1 VA

: [\ ~/a\

http://groups.csail.mit.edu/graphics/classes/6.838/598/meetings/m13/kd.html 41

Current
Stack

Traversing K-D Tree

B

http://groups.csail.mit.edu/graphics/classes/6.838/5S98/meetings/m13/kd.html 42

Current /1\ /5\ Result

Traversing K-D Tree

B

http://groups.csail.mit.edu/graphics/classes/6.838/598/meetings/m13/kd.html 43

Current /5\ A Result
Stack A

Traversing K-D Tree

B

4) 1 4 ’ 6
/A /
ups.csail.mit.edu/graphics/classes/6.838/598/meetings/m13/kd.h

http://gro .html 44

Binary Space Partitioning Tree

<~—

K-D tree is a special case of binary space

partitioning (BSP) tree, which recursively

split the space with planes (3D) or lines (2D)
o Arbitrary split planes here

Usetul when objects are large and non-axis-
aligned, in which case K-D tree will split
objects into different partitions

e Good reference: Ray Tracing with the BSP Tree
[Ize, Wald, Parker, 2008]

45

Bounding Volume Hierarchy (Object Partition)

BVH Tree Scene

Root —» A

Interior
< [ol— " e
node

2A
4
/I\ ? 3\ «<— Primitive

46

Object vs. Space Partitioning

Object partitioning: different
partitions could overlap in space

47

Bounding Volume Hierarchy (Object Partition)

e A, B, C, D, E are the bounding volumes, which are Axis-Aligned Bounding
Boxes (AABBs) here. Other (irregular) bounding volumes are possible.

Root —» A

Interior
o Jol— " [E
node

2A
4
/I\ ? 3\ «<— Primitive

48

Intersection Test Using BVH

ClosestHit = NA Current Ray-AABB Intersection Test

Stack

Intersection Test Using BVH

ClosestHit = NA Current E Ray-AABB Intersection Test

Stack |E|

Intersection Test Using BVH

ClosestHit = NA Current Ray-AABB Intersection Test

Stack |E| |E|

Intersection Test Using BVH

ClosestHit = NA Current @ Ray-AABB Intersection Test

Stack |E|

Intersection Test Using BVH

ClosestHit = NA Current /2\ ARay-Triangle Intersection Test

Stack |E|

Intersection Test Using BVH

ClosestHit = 2 Current E Ray-AABB Intersection Test

Distance to E > Distance to 2; Stop! Stack

Ray-AABB Intersection

O Tmin

55

A Subtle but Critical Case

O tmin

Should this be counted as a hit?

Yes; any ray segment that originates from within
an AABB must be treated as intersecting,.

56

Various Trade-offs Worth Considering

Time to build the tree vs. time to search.

* Incrementally update a tree (e.g., scene
slowing changing in an animation)?

e Can we built the tree offline?

Shape of the bounding volume.

e Tight bounding volumes provide more
precise intersect test, but are costly to build
and to search.

Tree structures take memory.

© www.scratchapixel.com

https://www.scratchapixel.com/lessons/advanced-rendering/introduction-acceleration-structure/bounding-volume-hierarchy-BVH-part1 57

An SM In Turing GPU

TURING TU102

Memory Controller Memory Controller Memory Controller Memory Controller Memory Controller

Memory Controller

‘Jﬂﬂ"ﬂ“

RT CORE

TURING SM

K‘E‘&_ﬂﬂ.j

RT CORE

TURNG SM

TPC

RT CORE

(LS

RT CORE

Raster

L= 1 = 1 =] =]

RT CORE

Engine

RT CORE

—— —m

e) =] w] e

RT CORE

RT CORE

L= 3 =] =] =]

RT CORE

TUHING SM TURING $M

i
1+
|

e =] =] -)

RT CORE

[o | =]] -]

RT CORE

L e] w) =] =]

PCI Express 3.0 Host Interface

- s a-r

&}

[=] e -] e)

RT CORE

TUIUNG SM

H
|

a

e e B

RT CORE

TPC

GigaThread Engine
ec________________________J |

Raster Engine

Raster

T T

'
N

RT CORE

Engine

H “I

M.‘W'W‘ﬁ. wur...m

RT CORE

IMI NG SH TPC

w
wu
et
Wi
nd
(=] = | =] &]

RT CORE

e T—=—as—==

lI-.H -

CORE
TPC

-K
RT

TURING £M

—
B
il
a
“ll

I[,-“‘.l-

RT CORE

I[I
E

= e e

RT CORE

TN T T T

RT CORE

RT CORE

Ll &] =] &)

RT CORE

[vancoe _ TPC M oauese _ TPC|

Bl
E

‘nm“ﬁ.j

RT CORE

H .‘I
"
En
&

L= 1w § =] =]

RT CORE

g
"
I ——

RT CORE

TURING SM

TPC

-.'-‘ ‘.-.?-“lll

RT CORE

ronwess W rumacae s au o T —

== mrm =mmm

RT CORE

TLRNG M

TPC

1
:

EmEsE=Em

RT CORE

I T L. =
RT CORE
|Ul NG SM TPC

[s] w] ow] =

RT CORE

TURNG SN

L=] e] =] =]

RT CORE

Raster

P

1
H
Hd
11
|+

‘.‘ n;- .;Z_ -

RT CORE
TPC

TURING S™

TURING 5M

Engine

T e
I ”I
13
12

[] = 1w | =]

RT CORE

B —

Lo] - | =] -

RT CORE

t"
!.-

L] -- -.Z- L=

RT CORE

DI T T R

RT CORE

L2 Cache

Raster Engine

= owmrs I’lmﬂ"-

RTOORE

T BTN ETED G

RT CORE

1:1-'::!;,‘- =

RT CORE

T T T T

RT CORE

™
0
“
4
ikl
52
"

ﬂ_‘ -_.-..:- L&)

RT CORE

JuRING M

o
RT CORE

vumv M TPC

ST B DTN BN

RT CORE

u.mne. M TPC

[e)) -).

RT CORE

2
H :H

m.:aul’mu..‘n:. -

RT CORE

vuwuz SH TPC

s] e] e) e]

RT CORE

EmEsEmEm
RT CORE
mm.c.,u TPC

L= 1 =] =] =]

RT CORE

Raster Engine

TUNING SM TUR NG 5M

= - N

—
'
1
I3

T T T

RT CORE

mu:uc M TPC

I ‘I

x:-n:*.s:ﬂ-r-

RT CORE

s
i B

T mEEEEETD

RT CORE
[LR NG SN TPC

e L

—

Dnnn.‘-

RT CORE

RT CORE

I .‘
»

n--‘-lm- =

High Speed Hub
NVLink - Two x8 Links

https://wccftech.com/nvidia-turing-gpu-architecture-geforce-rtx-graphics-cards-detailed/

Janonuo) Alowap Jano.nuo) Alowap Janonuo) Alowap Janonuo) Alowap

Janonuo) Alowap

_ auliap

Jano»*-

TURING SM

LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST

LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST LD/ST

96KB L1 Data Cache/Shared Memory

RT CORE

Recursive Ray Tracing

Why Recursive

e To implement realistic shading.

e The color of an exiting ray depends
on the colors of all incident rays.

e color here really means radiance.

e also depends on the surface material (diffuse vs.

specular vs. ...); later.

e How do we know the color of an
incident ray? Cast more rays!

Ray Trac

INg?

Valette, et al. [TVCG'08]

60

Why Recursive

e To implement realistic shading.

e The color of an exiting ray depends
on the colors of all incident rays.

e color here really means radiance.

e also depends on the surface material (diffuse vs.

specular vs. ...); later.

e How do we know the color of an
incident ray? Cast more rays!

Ray Trac

INg?

Valette, et al. [TVCG'08]

61

Simple Whitted-Style Recursive Ray Tracing

A simplification of Whitted-style ray tracing, assuming purely transparent surface.

transmit

castRay (ray, mesh) {

1f (P = nearestlIntersect(ray, mesh)) .
reflectRay = buildReflectRay (P) Shadow 7 retect
refractRay = buildRefractRay (P) B
reflectColor = castRay(reflectRay, mesh))

refractColor = castRay(refractRay, mesh))

reflect

primary

float kr
fresnel (dir, N, hitObject->ior, kr) P \stw
P.color = reflectionColor * kr + ‘ ‘vmwm
refractionColor * (1 - kr) oo con refiéct
else P.color = backgroundColor

https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-overview/light-transport-ray-tracing-whitted

62

https://blogs.nvidia.com/blog/2018/08/01/ray-tracing-global-illumination-turner-whitted/

Simple Whitted-Style Recursive Ray Tracing

https://blogs.nvidia.com/blog/2018/08/01/ray-tracing-global-illumination-turner-whitted/

Things to Remember

Ray tracing makes it easy (conceptually) to implement realistic shading.

Compared to rasterization, ray tracing is much more time consuming,
dominated by ray-scene intersection test, which is exacerbated by the need

for recursive ray tracing.

We can accelerate the testing using acceleration structures that prune the
search space. BVH is the most common acceleration structure.

Modern GPUs, while traditionally optimized for rasterization, now have
hardware support for ray tracing (e.g., BVH traversal, ray-AABB/triangle

iIntersection test).

64

