Lecture 21: Rasterization Pipeline

Yuhao Zhu

http://yuhaozhu.com

yzhu@rochester.edu

http://yuhaozhu.com
mailto:yzhu@rochester.edu

The Roadmap

Rasterization and GPU

Modeling and Rendering

Graphics

Lighting, Camera,
and Material

V
| > Rendering ._:>

Modeling

https://docs.blender.org/manual/en/dev/render/introduction.htm| http://www.cgarena.com/freestuff/tutorials/max/thomas_highway/sergeant.html 3

Rendering Algorithm

Two fundamental problems: visibility and shading

Visibility: what part of the scene is visible by the camera?
* For each image pixel, which point in the scene corresponds to it?

* How many scene points for a pixel?

Shading: how does the visible part look like?

* What's the color ot each image pixel?

Theoretically shading is independent of visibility, but certain class of visibility
algorithms make realistic shading easier/natural to implement.

Visibility Problem

Two fundamental classes of visibility algorithms
 Object-centric (Rasterization)
* |mage-centric (Ray tracing)

Given a point P [x, y, z], what's the corresponding Given a pixel [u, v] on the sensor, what's
pixel coordinates [u, v] on the camera sensor? the associated point in the scene?

. . . : camera
regular grid of pixels aperture (center of projection)

origin 4 /
v
l \ ray miss

4

© www.scratchapixel.com @ www.scratchapixel.com

Visibility Algorithm

Rasterization is generally (much) faster than ray tracing.

Modern GPUs are well-optimized for rasterization, but hardware that
supports real-time ray tracing is there (e.g., Nvidia’s Turing GPUs).

Ray tracing allows for a natural implementation of realistic shading.

RenderMan (REYES) from Pixar is based on rasterization.

e Considered to be one of the best rasterization algorithm ever to be built

e Today's rasterization pipeline has many similarities with REYES

Pixar now uses RIS, which is purely based on ray tracing.

Shading

Heavily researched; always a speed-vs-realism trade-off.

Empirical modeling vs. physics simulation

* Simple solutions, e.g., assigning color to each scene point/triangle + interpolation

e Slightly better: empirical modeling (e.g., Phong model)

e Ultimately, we must simulate physics (e.g., light matter interaction, spectral information)

Local vs. global illumination

e Do we consider only direct lighting or also account for indirect illumination (e.qg.
reflection from other objects), a.k.a., global illumination?

Shading Complexity: Global lllumination

Shading Complexity: Modeling Light-Matter Interaction

Different materials Sl drastically

L. different appearancessiNes ded to model
- materlals and how thmct W|th light.

Local vs. Global lllumination

Direct Lighting Only Direct + Indirect Lighting

¢’ SIGGRAPH 9 DREAMWORKS 47 SIGGRAPH » DREAMWORKS

https://colinbarrebrisebois.com/2015/11/06/finding-next-gen-part-i-the-need-for-robust-and-fast-global-illumination-in-games/ 10

https://colinbarrebrisebois.com/2015/11/06/finding-next-gen-part-i-the-need-for-robust-and-fast-global-illumination-in-games/

https://www.tomlooman.com/lighting-with-unreal-engine-jerome/

11

https://www.tomlooman.com/lighting-with-unreal-engine-jerome/

12

Rasterization Pipeline

Rasterization-based Rendering

Scene Transformations
Camera Projection

Rasterization

Visibility/Blending

14

Rasterization-based Rendering

Converting scene objects to camera screen space
Scene Transformations

Camera Projection

Rasterization

Angle of view

Iy

Visibility/Blending

FIGURE 5.34 Specification of a view volume.

15

Rasterization-based Rendering

Which pixels are covered by each triangle?
Scene Transformations

Camera Projection

Rasterization

Visibility/Blending

16

Rasterization-based Rendering

What's the color of each pixel?
Scene Transformations

Camera Projection

Rasterization

Visibility/Blending

17

Rasterization-based Rendering

How to deal with multiple scene points mapped to the same pixel?
Scene Transformations

Camera Projection

e
i

Rasterization

(S S S S)

(S SS))
[/ /S

COP

Visibility/Blending

18

Scene Transformations

Camera Projection

Rasterization

Visibility/Blending

Scene
Transformation

19

Scene Transformation

For convenience and for reusing the same
objects across scenes.

The two killeroos are exactly the same
object, but are placed differently in the
same scene.

Detine the mesh of the killeroo once with
respect to its local coordinate system, ana
transform it properly when place it in the
world coordinate system.

20

Example

A scene description tile from pbrt,
a pedagogical rendering engine.

Different transformations (translations)
when placed in the scene

-l Translate 100 200 -140
|Include "geometry/killeroo.pbrt"|
Material "plastic" "color Ks" [.3 .3 .3]
"float roughness" [.15]
- Translate —200 0 0
| Include "geometry/killeroo.pbrt"‘

Object description in its local
coordinate system (not shown here)

21

What Local Coordination Systems Are There?

Scene

Objects

Light sources

e Point light (shapeless)
* Area light

e Distant light

* Arbitrary shapes

Camera

* A special local frame,
where everything else
eventually has to be
translated to.

Camera frame

>

Local frame 1

\ |/

@& i
- iy

/7 1 N

>

Local frame 2

(light)

>

Local frame 3

22

Scene Transformations

L ocal to world
transformations

(3

D to 3

D)

T

o

Camera

World frame

23

Scene Transformations

|l ocal to world

transformations

(3

D to 3

V

D)

World to camera

transformation

(3

D to 3

V

D)

Camera Projection

(3D to 2

D)

A

-

Camera frame

24

Scene Transformations

Camera Projection

Rasterization

Visibility/Blending

Camera Projection

25

Camera Projections: Where 3D Becomes 2D

Perspective projection (P)

! x‘, =

)

Ad
-

Perspective Projection

\ \ ~ ‘\«_._.r)

@

\.

Orthographic Projection

http://www.pbr-book.org/3ed-2018/Camera_Models/Environment_Camera.html

26

Menu (FIO) Allies (F11) |

M’ ;

»
B
=

S
b 20
Yoo

o

¥
Caw

—- -

|

| -

" >

Environmental Camera Projection

Environmental camera

http://www.pbr-book.org/3ed-2018/Camera_Models/Environment_Camera.html 28

Camera Projection: Where 3D Becomes 2D

Fundamental question: given a point P [, y, z], what's the corresponding
pixel coordinates [u, v], it any, on the camera sensor?

* A point might not been seen by the sensor because ot occlusion and/or FOV.

There are many ways to project a 3D point to a 2D pixel. The most common
one Is "perspective projection”.
* |t simulates a pinhole camera model, which is roughly how human eyes work; many
cameras are built to mimic human eyes.

e But there are other projections that you can implement (after all, graphics is just
simulation), and many cameras that are built not to mimic human eyes (e.g., fish-eye

cameras,).

29

Convention: Placing Image Plane Before Camera

We assume the sensor is in front of the
pinhole — not possible physically, but
simplifies drawing.
e Of course the image is not upside down
anymore.

* Scene points could be either before or after
the image plane, i.e, does not artiticially
restrict where a scene point can be.

Angle of view

FIGURE 5.34 Specification of a view volume.

Interactive Computer Graphics with WebGL 7ed, Angel & Shreiner 30

Perspective Projection

Goal: convert P [x, v, z] to pixel
coordinates [u, v] on the sensor (with
H x W pixels and a focal length d)
using a transformation matrix.

We will do that in two general steps

(many caveats will be discussed later):

e Perspectively project P[x, vy, z] to P'[x’, y’,

d] in the image plane (still in the camera
space).

e Convert P’ to the pixel coordinates [u, v].

y O
| P’ [x,]
Z

X Camera PV

Convention: camera looks down z and looks

up to y. Positive z is the viewing direction.

wv]i ..-e Plxyz

center

-------- Focal lengthd |---------

~

Image plane/
sensor

31

Perspective Projection

PIx,y, Z]

L
Z
X Camera

center

henoooees Focal length d -

P’ [x,]

Image plane/
sensor

e Plx,y 7]

32

Perspective Projection Matrix

4 | _X,'d | yd)
X = — — — _—
Too, To1, To2, To3 i Z ’ 7 < dJ
T10, T11, T12, T13 s 3
X,V¥,2, 1] X ’ ’ ’ =[x, y, 2z, 1
X, y] T20, T21, T22, T23 X,y]
T30, T31, T32, T33

X’ = XToo + YT10 + ZT20 + T30 = xd/z

! f Pt

d/z 0 0 0

No Too, T1o, Tzo, T3o WOU|d
satisty this universally!

33

Perspective Projection Matrix

d,0,0, 0
0,d, 0,0
y Y !1 , , , - ,k! ,k! ,k!k
210 x [oo 2 T] =Dk vk 2k K
0,0, 0,0 = [xd, vd, zd, z] = [xd/z, yd/z, d }
Homogeneous coordinates Cartesian coordinates

K=XToz +YylT13+2T2s + Taz =2 VK=yd = XTo1 + YyT11 + ZT21 + T31
! r 1 1 ! r 1 1

0 0 1 0 0 d 0 0

X'K=Xd =XToo+ YT1o0+ ZT20+ T30 Z’K=dk=dz = xTo2 + YT12 + ZT22 + T3>

f ! Pt f ! Pt

d 0 0 0 0 0 d 0

34

Mind the Z-Axis

Our matrix so tar will always
translate z-coordinate of any P to
the same z' = d. Good?

P1 and P2 are projected to the
same point P’, but P1 is visible and
P2 is not: critical for a rendering
engine to know.

Somehow we need to make sure
z1' < z2' after projection.

P1 [x1, y1, z1]

P2 [x2, y2, z2]

-

X

bemooo-ee Focal length d -

-/

P’ [X, V'

P1 [x1, y1, z1]
O

P2 [x2, y2, z2]

35

Maintaining Z-Order: Try 1

P1 [x1, y1, z1]

/ x / y
Y ZZ]F y ZZ]F Z,:Z P2 [x2, y2, z2]

y
f O To2 O f 'z
O f T2 O
) ¥ !1 - ,k, ,k, ,k,k
SRHER RS IPEIE e Xk, vk, z’k, KI
O O Ts2 O

2’ k=2zk =22 = xToo + yT1o + ZT20 + T30

Try 1: keep z the same before and after transformation

Problem: No one single matrix that universally works for all possible z values

36

Maintaining Z-Order: Try 2

X y P1 [x1, y1, z1]
X'=—f yV==f 7=(C7 P2 [x2, y2, z2]
< <
y
f O To2 O f 'z
O f Ti2 O
X,V¥,2, 1] X = |X’K, V’k, 2’k, k
X, ¥, 2, 1] 0 0 To 1 bk, y :
O O Ts2 O
Try 2: scale z with a constant, say C.
Same problem dS before. 2’k = Czk = Cz2 = XTOO + yT1O + ZT2O + T30

We need to bound z.

37

Maintaining Z-Order: Idea e

plane (f)
P1
0 n f P2
o >
Z .4/‘/‘ P’ [xX’, y’]
y
Z, @ >
-1 1 .
d Z
Image
plane

ldea: project the smallest z to 0 and largest z to 1 (or other fixed ranges).

* There is an artificial "near clipping plane” n and an artificial “tar clipping” plane f.

* Only points between these two planes are visible to the camera.

* Image plane can be anywhere; technically not related to Near and Far clipping planes.

38

Maintaining Z-Order: Solution

. e : 2’k=2'2=XxTo2+ YyT12+ zT22 + T3>
o bt

z’ _01 g 0 0

NT22 + T32 = -n [T22 = (f+n)/(f-n)

fToo + Tao=f T32 = -2fn/(f-n)

d 0 Toe O
0 d Tz O
0 0 Ta I|=|xk yk Zk K

0 0 Ti O

39

What About This Matrix?

xd vyd 1
=lxd yd 1 71— — —]
< < <

x vy z 1]X

OO O &
OO al O
— O O O
o = O O

The new z after transtormation is inversely proportionally to depth. We don't
need the near and far clipping planes any more.

* The visible region is no longer bounded.

This in theory is OK, but not used in practice:

 Numerical precision issue trickles in: 1/z could be too small or too large, exceeding
digital number representation precision. No need to render objects too far anyways.

See CGPP, Chapter 13.3 4

Perspective Transformation Matrix (So Far)

d 0 0 0O
0d 0 0 Tog Tyy Ty O
) Tio T;y Ty O
Perspective Projection |0 () It 1 Affine Transformation 1021712
f=n Iy Ty Ty 0O
—2fn
00 =2 0 I3y 13; I3 |

Perspective projection:

* is not an affine transtormation, which preserves line parallelisms.

* is a special case of projective transformation (a.k.a., homography), where all 16
coefficients can take arbitrary values (but only 15 free parameters/degrees of freedom
because uniformly scaling all coefticients doesn’t change the transtormation)

* is not needed in/used by ray tracing.

e models only pinhole cameras (not enough to simulate depth of field, etc.)

41

Viewing Frustum

So far the visible part of the scene is
clipped by the near and far planes.

Viewing frustum

But the visible region should also be
bounded by the FOV (both
horizontal and vertical) of the sensor.

(left, bottom/ﬁea

FOV,

d Image
plane

Interactive Computer Graphics with WebGL 7ed, Angel & Shreiner 42

Viewing Frustum

The visible part of the scene is

Viewing frustum right, top, far) actually a frustum.

In rendering, we generally first map
the frustum to a normalized cube
that is independent of the actual
sensor resolution.

(left, bottom/ﬁea

/\\
/7 -’
7’
7
7’
7
Ve
’ _-"
s -

Far plane

-
-
>

* Then map the cube to the actual
sensor resolution; in this way, any
processing before that is decoupled
from the sensor, which could change.

Near plane

Interactive Computer Graphics with WebGL 7ed, Angel & Shreiner 43

Viewing Frustum

Canonical view volume (a.k.a.,
Normalized Device Coordinate space)

Viewing frustum

(left, b0jt\o< s\\

L /\,\\\ Far plane

Near plane

right, top, far) (1,1, 1)

—>

Projective projection

(-1, -1, -1)

Interactive Computer Graphics with WebGL 7ed, Angel & Shreiner 44

Normalized Device Coordinate (NDC) Space

Camera-Local Space NDC Space
Viewing frustum (1.1, 1)
|
(left, bottom, Aear) >
@ Projective projection

=

{ g " l
Y — / ('1 / _1 / _1)

This is what we get for [l, b, n] after the perspective
projection without being normalized to NDC. Before
normalization, the frustum is projected to a

hexahedron between [Id/n, bd/n, -1] and [rd/n, td/n, 1].

Interactive Computer Graphics with WebGL 7ed, Angel & Shreiner 45

N DC Space (In XY Plane) * The image plane need not be symmetric about the camera

origin (pinhole), i.e., the sensor center is off the optical axis.

[ld/n, td/n] [rd/n, td/n]
['1! 1] [1! 1]
. | = [0, 0]
[0, O]
[-1, -1] [1, -1]
[Id/n, bd/n] [rd/n, bd/n]
Image Plane (still in NDC Space

Camera Space)

NDC Space (in XY Plane)

[ld/n, td/n] [rd/n, td/n]

0, 0] e

[Id/n, bd/n] [rd/n, bd/n]

Keep the z-axis unchanged

Image Plane (still in in this transformation.

Camera Space)

['1! 1]

[1, 1]

[0, 0]

['1! '1]

NDC Space

[1! '1]

47

Overall Perspective Transformation

Bound the x and y axes within

0 0 0

0d 0 0

kv oz x]o 0 =51 x
—2fn

00 — 0

Perspective projection +

bound the near and far

clipping planes between
-1, 1] along z-axis

the FOV between [-1, 1]

r+1

0

2n
t—>b
t+ b

r—1

0

0

48

An Example

[l b n 1]X

Viewing frustum

r+ [

t+b

0
—n
0 —n —n
— | nfem-2m | = |77
1 —n —n
n
n
0
| >
Perspective projection
(-1 / '1 1 _1)

NDC Space

49

The Matrix is Independent of Focal Length

| 9 0 0
Image / r—1 :
plane 0 — 0 0

y _r+! t+b Jtn 1
r—1 t—>b —n
FOVy ,
pr > o o o

The perspective matrix is completely independent of the focal length d.

* |[tdoesdependonr,l, t, d, n,f, which uniquely define a frustum.
e r |, t, d, n, farerelated by the FOV (x and y) of the sensor.

Because the matrix transforms the visible region of the scene to a normalized
cube, and given a FOV, what's visible to the camera is fixed, i.e., the frustum.

* |In OpenGL/WebGL, the near clipping plane is placed at the focal length so that d never
shows up during the derivation, but that's unnecessary and a bit confusing.

Generating Pixel Coordinates in Screen Space

[Id/n,

[Id/n,

td/n]

[rd/n, td/n]

[0, 0]

od/n]

Image Plane (still in
Camera Space)

>

[rd/n, bd/n]

[_11 1]

[-1,

[1, 1]

[0, O]

;_1]

NDC Space

[1, -

>

-0.5

] °
[0, 0]

[Px-1, Py-1]

Screen Space

Px - 0.5

-0.5

Py - 0.5

Notes on Screen Space

Convention: the origin of
the screen space is the 11

[1, 1]

center of the top-left pixel.

The screen space is still
continuous. That is, pixel
coordinates can be

[0, O]

fractional! Later we will
"rasterize” the screen space
to generate actual pixels at

[-1, ‘-1]

integer coordinates. NDC Space

[1, -

>

* Note that pixel coordinates
can be fractionall

] °
[0, 0]

[Px-1, Py-1]

-0.5 Px - 0.5

Screen Space

-0.5

Py - 0.5

52

Scene Transformations

Camera Projection

Rasterization

Visibility/Blending

Rasterization

53

Which Pixels are Covered by Each Triangle?

Key Question: Is a Point Inside a Triangle?

Barycentric Coordinates

(.X, y) — a(an yA) + :B(xBa yB) + }/(-XC? yC)

a+p+y=1

[X8, Y]

[XA, yA]

[Xc, ycl

56

Barycentric Coordinates

(.X, y) — a(an yA) + :B(xBa yB) + }/(xCa yC)

a+p+y=1

—(x —xp)Yc—yp) + (y — yp)(xc — xp)
— (X4 — xg)(Ye — ¥Yp) + (Va4 — yp)(Xc — Xp)

o =

—(X = X0)(Vs —Yo) + (v = yo) (x4 — X0)

b= —(xg — X)) Ya — Vo) + (Vg — Yo) (x4 — X¢)

[XB, yB]

[XA, YA

[xc, ycl

57

Barycentric Coordinates Examples

(1/2,/;\/2,0) _,(0,1,0) (1,0,0

(1/2,1/2,0) o(0,1,0)

(112,1/4.074) - (1/4,1/2,1/4) (1/2,1/4, 1/4) (1/4,1/2,1/4)

\\ | ” \
/ R R \ ~ ’ N
’ . [~_ o ’ \
)) . . | ~ \ ' N
/ // \\ \ :) \\
/ ~ \ ! s = \
[. ' ~ \
y LhJIy ‘ : ’ :)
-7 ! S ' 5)))
) ! . 7 \ ~ N
-7 S o [’ - \
N | < ! ’ '))
R ’ \ ~ . \
| , \ ~ N
| 4 =
1

(1/2,0,1/2) (1/4,1/4,1/2) (0,1/2,1/2) (120,12)N_ (1/4.1/4,1/2) [(0,1/2,172)

(0,0,1) (0,0,1)

https://en.wikipedia.org/wiki/Barycentric_coordinate_system 58

Point in Triangle Test

(X, y) — a(an yA) + ﬁ(xBa yB) + }/(.XC, yC)

a+p+y=1

For any V that’s inside the triangle:
O<=a,PB,y<="1

For any V that's outside the triangle:

Some of &, B, Y is outside the [0, 1] range.

[XB, yB]

[XA, YA

[xc, ycl

59

Rasterization Algorithm (w/ Simple Shading)

Foreach triangle 1in mesh
Perspective project triangle to canvas;
Foreach pixel 1n image
1f (pixel 1s 1n the projected triangle)
pixel.color = triangle.color; // shading

Scene Transformations

Camera Projection

Rasterization

Could first find the
bounding box of the

triangle to narrow the

search space.

Visibility/Blending

Scene Transformations

Camera Projection

Visibility/Blending

v

Visibility and
Blending

61

Visibility (Hidden Surface) Problem

When multiple points in the scene get projected to the same pixel, must
determine which point “wins”, i.e., gets to assign its color to the pixel.

Fortunately, perspective projection maintains the relative point depth.
Determining the relative depth is done using a depth-buffer or a z-buffer.

COP

(/S
(/)]

(4L L)

i’v

(/S

[/ /L))

d

Foreach triangle 1n mesh

Perspective project triangle to canvas;
Foreach pixel 1n 1image
1f (pixel 1s 1n the projected triangle)
D = computeDepth (pixel)
1f (D < depthBuffer|[pixel])
shade (pixel)
depthBuffer[pixel] = D

Interactive Computer Graphics with WebGL 7ed, Angel & Shreiner 62

Calculating Depth

ZA

We know the depths (z-axis) of triangle
vertices (inverting the perspective matrix).

How about other pixels? Can we interpolate
based on barycentric coordinates?

Foreach triangle 1n mesh
Perspective project triangle to canvas;
Foreach pixel 1n 1image
1f (pixel 1s 1n the projected triangle)
D = computeDepth (pixel)
1f (D < depthBuffer|[pixel])
shade (pixel)
depthBuffer[pixel] = D

63

Calculating Depth

ZA

We know the depths (z-axis) of triangle
vertices (inverting the perspective matrix).

How about other pixels? Can we interpolate
based on barycentric coordinates?

Yes, but the barycentric coordinates need to
be calculated in the camera space (3D), not
in the screen space (2D)!

64

Visualizing Depth Map

¢

https://forum.unity.com/threads/how-to-manually-write-to-depth-buffer-before-post-eftects.528243/ http://glampert.com/2014/01-26/visualizing-the-depth-buffer/ 65

Alpha Blending

We can also simulate transparent
materials by blending colors from
different primitives when they map to
the same pixel.

e Use an alpha channel to represent opacity.

This is the correct physical model if

primitives are purely transparent (no

25% 50% 75% 100%

scattering, only absorption).

e More on this in volume scattering.

Color = alpha x Foreground Color + (1 - alpha) * Background Color

66

Alpha Blending Across Multiple Layers

'l

C=C1al((1-a2) (1-ax3) + C2 x2(1-x3) + C3 &x3

67

Aliasing and Anti-Aliasing
in Shading

Simple Shading

Basic assumption: each triangle face is assigned a color.
e Called “per-tace shading”.

e ...oreach triangle vertex has a color, and color of any point inside the triangle is
interpolated (per-vertex shading).

e ...oreach point’s color is calculated by incident lights and viewing angle (per-fragment
shading); can be empirical or physically-based.

e We will talk about more realistic shading later, but the general idea here applies.

Question: how to assign color to each pixel?

e Simple? If a pixel is inside a triangle, it gets the triangle color.

* |ssue: a pixel is a continuous spatial region, not just a point on triangle.

69

Simple Shading

Simple Shading

Simple Shading

Simple Shading

Aliasing in Simple Shading

Remember: each image pixel will be sent to the display, which performs a
spatial reconstruction using a box filter. That is, the entire spatial region of a
pixel on the display will have the same color.

Effectively, we have sampled a continuous signal (which most likely is not
band-limited) at a low frequency (equivalent to image resolution), and then
reconstruct the signal using a box filter (on display; not what we can control).

74

What Do Cameras Do?

AN
[NN KB

Pixel Array

What Do Cameras Do?

What's
Displayed

/6

Super-Sampling

What cameras do is to average energy across the spatial region of a pixel.

e This is equivalent to applying a box filter and then sample once per pixel.

* The filter size is the same as the physical pixel size, but could also be larger if
considering per-pixel micro-lens and anti-aliasing filters.

But in rendering we can't really take the average, since we don’t know what
the continuous function is.

What we do is to approximate this by super-sampling, i.e., sample many
times for each pixel, and then average the samples within each pixel.

a4

Scene Transformations

Camera Projection

Rasterization

Visibility/Blending

Point Sampling: One Sample Per Pixel

CS184/284A Ren Ng

Scene Transformations

Camera Projection

Rasterization

Visibility/Blending

Supersampling: Step 1

Take NxN samples in each pixel.

Supersampling is done in the

rasterization stage. Each sample
corresponds to a fragment.
Each fragment is separately

shaded in the shading stage.

2x2 supersampling
CS184/284A

Ren Ng

Scene Transformations

Camera Projection

Rasterization

Visibility/Blending

Supersampling: Step 2

Average the NxN samples “inside” each pixel.

The averaging takes place
in the blending step.

Averaging down
CS184/284A

Ren Ng

Scene Transformations

Camera Projection

Rasterization

Visibility/Blending

Supersampling: Step 2

Average the NxN samples “inside” each pixel.

CS184/284A

Ren Ng

Scene Transformations

Camera Projection

Rasterization

Visibility/Blending

Supersampling: Result

This is the corresponding signal emitted by the display

25%

50%

50%

50%

50%

CS184/284A

Ren Ng

Signal Sampling/Reconstruction Perspective

2D continuous signal
g
indecent on the sensor plane
Cameras don't need to know it

analytically; pixels simply integrate. -y @

"Optical image” in camera imaging
parlance. Never known analytically.

> |: ° ° ° h
Rendered image, i.e., 2D Goal: minimize the

difference between

This process is what rendering (or discrete signal, one sample

the two (up to a

shading specifically) is really about. er pixel in the render image ,
J 5P Y) Y PET P 0 scale difference).
We don’t have control over this, but the ,
rendering should ideally take into _—~""| 2D continuous signal, i.e., |
account this filter. Cameras can't; they reconstruction by the display |€ -—]

always use box filter, but we should! (most likely using box filter)

Ildeal Strategy

: : : 2D continuous signal
Since the continuous signal most |
indecent on the sensor plane

definitely will not be band-limited,
any sampling will lead to aliasing.

The idea is to pre-filter the
continuous signal to band-limit the
signal, since blur is less
objectionable than aliasing.

Y

Rendered image, i.e., 2D
discrete signal, one sample

per pixel in the render image

Goal: minimize the
difference between

the two (up to a

scale difference).

84

Two Issues with the ldeal Strategy

; ; 2D continuous signal
1. Ideal pre-tiltering needs a box . %
indecent on the sensor plane

function in frequency domain, i.e.,
a sinc function in spatial domain @

* but sinc has infinite support; can't

realistically implement it. Rendered image, i.e., 2D

discrete signal, one sample
2. Usually we don’t know the oer pixel in the render image

analytical form of the continuous
function — cameras do.

* And they use a box filter at the pixels
(with potentially other anti-aliasing
filters) tor pre-tiltering.

85

Camera’s Strategy

Box filter: to blur/low-pass filter <} 2D continuous signal
| —————
the 2D continuous signal. indecent on the sensor plane

Pixel sampling: sample the pre- Rendered image, i.e., 2D
filtered signal at the pixel | :> discrete signal, one sample
location to generate image. per pixel in the render image

2D continuous signal, i.e.,

reconstruction by the display |4

(most likely using box filter)

Goal: minimize the

difference between
the two (up to a
scale difference).

86

Rendering Strategy

We don’t know the continuous
function, so we will sample it ana
then reconstruct it.

Before the actual pixel sampling,
we will take the opportunity to
ore-tilter the reconstructed
continuous signal to band-limit
the signal.

2D continuous signal
e ——
indecent on the sensor plane

Y

Rendered image, i.e., 2D
discrete signal, one sample

per pixel in the render image

2D continuous signal, i.e.,

reconstruction by the display [€ —

(most likely using box filter)

Goal: minimize the
difference between

the two (up to a

scale difference).

87

Rendering Strategy

Supersample: sample the 2D < | 2D continuous signal PR
continuous function at a rate indecent on the sensor plane|

higher than the pixel resolution.

'

" Combine the two filters Rendered image, i.e., 2D

(convolution) using one discrete signal, one sample
single filter: convolution per pixel in the render image

Is associative.

Goal: minimize the

difference between
the two (up to a
scale difference).

}‘

!

ixel sampling: sample the pre-

2D continuous signal, i.e.,
filtered signal at the pixel

reconstruction by the display e
(most likely using box filter)

location to generate image.

88

A Few Notes

The combined filter can be a box filter, or any other filter. There are many
filters that people have experimented; ultimately, there is virtually no hope
for perfect reconstruction on the display, so it's all about the empirical
rendering quality:.

* See: https://pbr-book.org/3ed-2018/Sampling_and Reconstruction/
lmage Reconstruction

Can also use non-uniform sampling, or filter beyond a pixel’s spatial region.

This discussion is general to any shading, not just in rasterization pipeline.

89

https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Image_Reconstruction
https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Image_Reconstruction

Rasterization Pipeline Summary

Command/Data Streams

|
Scene Transformations
Camera Projection

Both manipulate triangle vertices and so are lumped together
as “vertex processing”, which is made programmable in
rasterization pipeline to allow custom transformations.

Angle of view

Visibility/Blending

To display

Rasterization Pipeline Summary

Command/Data Streams

| A vertex shader that describes how to transform a

Vertex Processing vertex; the shader is applied to all vertices.

Vertex Stream uniform float t;

. . attribute vecd vel;
Rasterization

const vec4d g = vec4(0.0, -9.8, 0.0);

void main () {

position += t*vel + t*t*g;

gl Position = gl ModelViewProjectionMatrix * position
Visibility/Blending }

To display

91

Rasterization Pipeline Summary

Command/Data Streams

Vertex Processing

Potentially super-sampling

Vertex Stream

Fragment Stream

Visibility/Blending

To display

92

Rasterization Pipeline Summary

Command/Data Streams

Vertex Processing

Vertex Stream

Rasterization

Fragment Stream

Visibility/Blending

To display

Calculating colors for each fragment. This is abstracted
as “fragment processing”, which, like vertex
processing, is programmable in rasterization pipeline.

93

Rasterization Pipeline Summary

Command/Data Streams

A fragment shader code that calculates fragment
color; the shader is applied to all fragments.

Vertex Processing Texture mapping is fragment processing too (later).

Vertex Stream uniform sampler2D myTexture;
uniform vec3 lightDir;

Rasterization varying vec2 uv;
varying vec3 norm;

Fragment Stream _ _
void diffuseShader () {

Fragment Pr in vec3 kd;
agme t Frocess 9 kd = texture2d (myTexture, uv);

*: — - = .
Shaded Fragments kd clamp (dot (-1lightDir, norm), 0.0, 1.0);

Visibility/Blending , S-Tragteter = veedlkd, 100/

To display

(a.k.a., Raster
Operation/ROP)

Command/Data Streams

Vertex Processing

Vertex Stream

Fragment Stream

Fragment Processing

Shaded Fragments

Framebuffer Operation

Rasterization

To display

Rasterization Pipeline Summary

Z-buffer
visibility test

Blending

Anti-aliasing
(averaging
samples in a pixel)

25%

50%

75%

100%

25%

50%

50%

95

Massively Parallel Processing

100’s of thousands to millions of triangles in a scene
Complex vertex and fragmenf shader computations
High resolution (3-5+ megapixel + supersampling)
30-60 frames per secogga@en higher for VR

" J ¢ * N . o e)
| - J “_— 4 . » > ¥ o T* \ . -
- - o .y f{‘ i ‘ L e o p > "\ / Lz
L5 S A it : : J o .. 7, S » L
- <X a_ < “LP ; g 4 - . 7 *‘ ~ : . - J -
a g e e 2% / g. s |
”P'.‘l" ' ‘. f ¥ - " 0y /- R, . - groth _—
R - » > >
il y o
v L e 7 T2 gh
£ . .7
”"f' ——— ’ ”
!,
g ’ y ”
/ P 2
- .
" / . e
. S o" /
f
B _ -
- o ~ -
e
T
: . < -
I.."' ?s- _—. -
we -~ 3 — b7
-~ -~ .. " & @ —~— (R
- N - - < — | - -
“h N ’G"‘"‘_:a~ | 2 ’
— I-’- - .'. . > | ~— - ° - ,
e - " 7 '6‘ . o ‘ . - -
o o e " 3 S
" . " - ‘ : -
Q‘ - p— ~ - ‘."-",
> - ~ — po ——— =
- > 0:&2, : > P _— e

