Evolving Image Sensor Architecture through Stacking Devices

Yusuke OikeSony Semiconductor Solutions

e-mail: yusuke.oike@sony.com

Short Biography

Yusuke Oike

joined Sony Corporation, after he received Ph.D. degree in electronic engineering from the University of Tokyo in 2005, where he has been involved in research and development of architectures, circuits and devices for image sensors. From 2010 to 2011, he was ^a visiting scholar at Stanford University. Currently, He is in charge of developing CMOS image sensors as Deputy Senior General Manager of Sony Semiconductor Solutions. He is also appointed as Distinguished Engineer of Sony Corporation. He is the Program Chair of VLSI Symposium on Circuits 2021.

- □ Introduction of stacked CMOS image sensor
- \Box Performance improvement accelerated using 3D configuration
- □ Advancing pixel circuitry by pixel-pitch Cu–Cu connections
- \Box Possible architectures of pixel-parallel digitization
- □ Hybrid Integration stacked on Si readout circuitry
- \Box Integrating more intelligent processor with sensor

Image Sensor Applications

 \Box Expanding to machine vision, network cameras and automotive applications

Back-illuminated CMOS Image Sensor

 \Box Back-illuminated (BI) CMOS image sensor (CIS) has overcome drawback of sensitivity

Stacked CMOS Image Sensor

□ Stacked CIS has become mainstream in mobile cameras

Back-illuminated CIS Stacked CIS

S. Sukegawa, ISSCC 2013

Cu-Cu Connections by Hybrid Bonding

□ Cu–Cu connections have been introduced under pixel arrays

Y. Kagawa, IEDM 2016

Trend of Cu-Cu Connection Pitch

Ш Cu-Cu connection pitch is further being reduced to enable pixelparallel architecture

Prospect of Imaging Device using 3D Technologies

 \Box Sensor architecture is evolving using 3D technologies

Stacked CMOS Image Sensor

 \Box Performance improvement accelerated using 3D configuration

Highly parallel ADCs & Optimized process technologies

- •Double parallel ADCs
- •Chip-on-chip stacked CIS
- •Three-layer stacked CIS

Trade-off Between Sensor and Logic Process

 \Box Optimal process technologies differ based on sensor and logic; therefore, 3D stacking technology can relax this constraint

Performance Improvement by 3D Stacking

 \Box Double column ADC integration achieves higher frame rates

Performance Improvement by 3D Stacking

Ш Double column ADC integration also contributes low noise

Chip-on-Chip 3D Integration

 \Box Increase in area efficiency with large optical-format sensor

Chip-on-Chip 3D Integration

□. 4K super slow motion realized in large optical format with CoC

Latest Achievement in Large Optical Format

□ 250 fps of 50M pixels in full 35-mm format achieved

Three-layer Stacked CIS with DRAM

 \Box DRAM buffer having wide data bandwidth for slow-motion capture

Three-layer Stacked CIS with DRAM

 \square Enables slow-motion capture overcoming I/F limitation

T. Haruta, ISSCC 2017

Three-layer Stacked CIS with DRAM

□ 960-fps slow-motion capture buffered in stacked DRAM

Expanding Sensing Functionalities

Advanced Architectures Using 3D Technologies

ш Sensor architecture is evolving using 3D technologies

More advanced pixel circuitry

- •Stacked pixel circuitry
- Event-based vision sensing
- Pixel-parallel ADC architecture
- •SPAD-based photon counting

Hybrid Integration on Si

• SWIR InGaAs photodetector

Integrating more intelligent processor with sensor

•Intelligent vision sensor

More Advanced Pixel Circuitry

 \Box Sensor architecture is evolving using 3D technologies

Dual Conversion Gain Pixel for HDR

 \Box Dual conversion gain (DCG) pixel is a technique to ensure both low noise and high dynamic range but requires additional circuitry

Dual Conversion Gain Pixel with Stacked Circuitry

 \Box Stacked pixel circuitry enables reducing DCG pixel with high FWC

Global Shutter Pixel with Stacked Circuitry

 \Box Stacked pixel circuitry enables low-voltage domain GS pixel

Event-based Vision Sensor (EVS)

 \Box Contrast change detector implemented in pixel-level circuitry

Event-based Vision Sensor (EVS)

 \Box Offers compressed data with low latency and low power

Back-illuminated Stacked EVS

 \Box Fine-pitch Cu–Cu connections enable implementation of pixelparallel functionality to realize practical applications

SPAD-based Direct ToF (dToF)

ш Requires high bias voltage at SPAD and high-speed logic circuits

SPAD with Cu-Cu Bonding

 \Box BI stack is promising breakthrough of SPAD technology to enter wider market fields

Back-illuminated Stacked dToF Sensor

 Optimized process technologies applicable to SPAD and logic Ш 90nm SPAD 40nm logic6.9mm **Row Driver** Ѵво⊏ ,,,,,,,,,,,,,,,,,,,, **TCSPC-based Digital Signal Processing (DSP** VEx口 **Reflected RowDriver** VDDHO Laser 189×600 **FIR filter** pulse VDDLO **Passive** $10 \mu m$ **TDCs MIPI** signal Coincidence MIPI-Echo quenching and **VDDIOD Detection** 凸Serial Histogram **Trans** echarge front-Peak [time] **Circuit** mitter Acquisition Dead Time = 6ns Output end circuit $[V]$ detector licro lens array $0.1M \times$ $384 \times$ 7.8 mm 10µm **SPAD** array **Avalanch** front-**TDCs** $3.3V$ $189(H) \times 600(V)$ Vca region end **DSP** $V_{th}=90$ SPAD control **Read-out signal** circuits generation **VEX** | 2C
|Control $\frac{1}{12C}$ Reference Temperature $1.1V$ Communication Voltage **Sensor** PLL _Input
ClockL CLK yld k **PLL** POR $x2$]Ġen **OUT** Emitter Emitter **Emitter trigger** Trigger
| Input] Trigger **Emitter control** 0^{\prime} 5 10 [ns] **Bottom layer Top layer** Output **Photon arrivals** $\begin{array}{c}\n 81 \\
 199 \overline{) 81} \\
 198 \overline{) 81} \\
 198 \overline{) 81} \\
 197 \overline{) 81} \\
 \end{array}$ 2 2 2 2 2 2 闷 مم إمم ចា ចា **SPAD Chip** front-end circuit $\begin{array}{r}\n\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\hline\n\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\hline\n\cdot & \cdot & \cdot \\
\hline$ **VREF 0.1M SPAD Pixels** $\begin{array}{r} 81.189 \\ \hline 14.189 \\ \hline 14.002 \\ \hline 14.1001 \\ \hline 14.000 \\ \hline \end{array}$ OUTI80:0 81 $\begin{matrix} 002 \ 81 \ 001 \ 81 \ 000 \end{matrix}$ 0.1M Front-end **Pixel front-end block ENCENE Circuits** $Cu-Cu$ dToF Chip **Connection** To be presented by O. Kumagai, ISSCC 2021

Back-illuminated Stacked dToF Sensor

 \Box Highly integrated on-chip signal processor with optimized SPAD device process and TDCs yields superior LiDAR solution

To be presented by O. Kumagai, ISSCC 2021

Possibilities of Architectural Change

 \Box Pixel parallel architecture is becoming reality.

Image Sensor with Pixel-parallel ADC

\Box Over 1 million ADCs have been mounted in pixel-parallel arrangement 2 interconnections in 6.9-μ^m pitch pixel.

Pixel-parallel ADC Implementation

 \Box Single-slope ADC is directly connected to pixel amp transistors

Pixel-parallel ADC Features

 \Box Allows band limitation with ~300 μV_{rms} readout noise at 100-nAcomparator operation for high-speed global-shutter imaging

Rough estimation of

power consumption at 100 fps

600

Photon Counting Image Sensor

 \Box 3D integration provides possibility of practical photon count imaging **Top tier : SPAD pixel array Bottom tier : Readout circuit**

Photon Counting Image Sensor

 \Box Pixel-parallel instant digitization can extend functionality

Conventional multiple exposure Sub-frame extrapolating architecture

To be presented by J. Ogi, ISSCC 2021

Photon Counting Image Sensor

 \Box Pixel-parallel instant digitization has potential of GS and HDR

Hybrid Integration on Si

 \Box Sensor architecture is evolving using 3D technologies

More advanced pixel circuitry

- Stacked pixel circuitry
- Event-based vision sensing
- Pixel-parallel ADC architecture
- SPAD-based photon counting

• SWIR InGaAs photodetector

Integrating more intelligent processor with sensor

Intelligent vision sensor

Compound Semiconductor Photodetector

 \Box Promising for future automated inspection and secured society

Hybrid III/V on Si Integration

Ш Compound semiconductor photodetector bonded on Si ROIC

Trend of Contact Pitch for III-V Photodetector

□ Advanced bonding process evolving III-V detector integration

Organic Photoconductive Film Stacked on Si

 \Box OPF stacked on Si provides more freedom to use of Si layer

Integrating More Intelligent Processor with Sensor

 \Box Sensor architecture is evolving using 3D technologies

More advanced pixel circuitry

- •Stacked pixel circuitry
- Event-based vision sensing
- Pixel-parallel ADC architecture
- •SPAD-based photon counting

Hybrid Integration on Si

• SWIR InGaAs photodetector

Integrating more intelligent processor with sensor

•Intelligent vision sensor

Integrated Edge AI

 \Box Application of image sensors expanding by AI

Integrated Edge AI

Ш Opportunities of edge AI integration with image sensor

Cloud AI

- •Big data capability
- •Unified performance

Edge AI

- •Low latency/low bandwidth
- •**Privacy**
- •Low cloud cost

Always-on Monitoring Sensor

Ш Low-power always-on monitoring required at edge camera

Moving Object Detection Flow

□ Moving object detection and wakeup process conducted on sensor

Demonstration of Always-on Monitoring

\Box Low power always-on detection integrated in stacked sensor

Passenger detection experiment = 100%

Edge AI System

 \Box Satisfies compact, low-power, and low-latency requirements

Intelligent Vision Sensor

 \Box Eliminates requirement of high-performance processors or external memory, making it ideal for edge AI systems

Concept of Intelligent Vision Sensor

 \Box AI processing capability on edge device solves edge AI issues

Larger, higher power and more costly

All functions are implemented on chip

To be presented by R. Eki, ISSCC 2021

Functions of Intelligent Vision Sensor

 \Box Equipped with DSP dedicated to AI signal processing, and memory for AI model

Performance Example (MobileNet v1)

 \Box CNN inference conducted on sensor

Possible Applications of Intelligent Vision Sensor

\Box Offering low-cost edge AI using flexible AI model

Prospect of Imaging Device using 3D Technologies

 \Box Sensor architecture is further evolving using 3D technologies

Thank you for your attention

References

- \Box S. Iwabuchi, et al., "A back-illuminated high-sensitivity small-pixel color CMOS image sensor with flexible layout of metal wiring," ISSCC 2006.
- \Box S. Sukegawa, et al., "A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor," ISSCC 2013.
- \Box Y. Kagawa, et al., "Novel stacked CMOS image sensor with advanced Cu2Cu hybrid bonding," IEDM 2016.
- \Box Y. Kagawa, et al., "The Scaling of Cu-Cu Hybrid Bonding For High Density 3D Chip Stacking," EDTM 2019.
- \Box A. Suzuki, et al., "A 1/1.7-inch 20Mpixel Back-illuminated stacked CMOS image sensor for new imaging applications," ISSCC 2015.
- \Box Y. Oike, et al., "An 8.3 M-pixel 480fps global-shutter CMOS image sensor with gain-adaptive column ADCs and 2-on-1 stacked device structure," VLSI Symp. 2016.
- \Box C. Okada, et al., "A high speed back-illuminated stacked CMOS image sensor with column-parallel kT/Ccancelling S/H and ΔΣADC," ISSCC 2021.
- \Box T. Haruta, et al., "A 1/2.3 inch 20Mpixel 3-layer stacked CMOS Image Sensor with DRAM," ISSCC 2017.
- \Box H. Tsugawa, et al., "Pixel/DRAM/logic 3-layer stacked CMOS image sensor technology," IEDM 2017.
- \Box V. Venezia, et al., "1.5µm dual conversion gain, backside illuminated image sensor using stacked pixel level connections with 13ke- full-well capacitance and 0.8e- noise," IEDM 2018.
- \Box G. Park, et al., "A 2.2 μ^m stacked back side illuminated voltage domain global shutter CMOS image sensor," IEDM 2019.
- \Box T. Finateu, et al., "A 1280x720 back-illuminated stacked temporal contrast event-based vision sensor with 4.86µm pixels, 1.066GEPS readout, programmable event-rate controller and compressive data-formatting pipeline," ISSCC 2020.

References

- \Box K. Ito, et al., "A BSI 10um SPAD pixel array comprising full trench isolation and Cu-Cu bonding with over 14% PDE at 940nm," IEDM 2020.
- \Box O. Kumagai, et al., "A 189 x 600 back-illuminated stacked SPAD direct Time-of-Flight depth sensor for automotive LiDAR systems," ISSCC 2021.
- \Box M. Sakakibara, et al., "A back-illuminated global-shutter CMOS image sensor with pixel-parallel 14b subthreshold ADC," ISSCC 2018.
- \Box J. Ogi, et al., "A 250-fps 124-dB dynamic-range SPAD image sensor stacked with pixel-parallel photon counter employing sub-frame extrapolating architecture for motion artifact suppression," ISSCC 2021.
- \Box S. Manda, et al., "High-definition visible-SWIR InGaAs image sensor using Cu-Cu bonding of III-V to Silicon wafer," IEDM 2019.
- \Box H. Togashi, et al., "Three-layer stacked color image sensor With 2.0-μm pixel size using organic photoconductive film," IEDM 2019.
- \Box K. Nishimura, et al., "An 8K4K-resolution 60fps 450ke- -saturation-signal organic-photoconductive-film global shutter CMOS image sensor with in-pixel noise canceller," ISSCC 2018.
- \Box O. Kumagai, et al., "A 1/4-inch 3.9 Mpixel low-power event-driven back-illuminated stacked CMOS image sensor," ISSCC 2018.
- \Box R. Eki, et al., "A 1/2.3 inch 12.3Mpixel with on-chip 4.97 TOPS/W CNN processor back-illuminated stacked CMOS image sensor," ISSCC 2021.