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Logistics

• Written assignment 1 is up and is due Sept. 11 11:30 AM.

• You can work in groups of 2.

• Final project due date is 12/16.

• Start thinking and talking to me about your final project idea.
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The Roadmap
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Theoretical Preliminaries

Human Visual Systems

Color in Nature, Arts, Tech

(a.k.a., the birth, life, and death of light)

Digital Camera Imaging

Modeling and Rendering

Applications

Geometric Transformations
Fourier Series & Transforms
Sampling & Reconstruction



Signal Sampling and Reconstruction

• Given just a few sparse samples, can we always reconstruct the underlying 
continuous signal?


• If not carefully sampled, reconstructed signals will be aliased: high 
frequencies signals masquerading as low-frequency signals.
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Aliasing

5https://svi.nl/AntiAliasing https://distance.ufhealth.org/preparing-for-lecture-capture/ https://www.youtube.com/watch?v=Neh2biiex1A



6

Fourier Theory of  
Sampling and 

Reconstruction



Problem Setup
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…… ……

s(t)

Sa(t)

Sa(t)Practically obtainable/observable part of

Part of s(t) we care to reconstruct



Problem Setup

• s(t) is an unknown, continuous function with an infinite support (i.e., 
amenable to Fourier transform). We uniformly sample it and the goal is to 
reconstruct s(t) from the samples.


• In practice we care only about reconstructing s(t) for a particular range and we could only 
obtain a finite number of samples (e.g., the world is infinite but a camera samples only a 
small region and we care about reconstructing the scene in that small region).


• Defining s(t) this way makes theoretical derivation easier.

8

(Uniform) Sampling

Reconstruction



Impulse and Impulse Train Function
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δ(t) = {
0, t ≠ 0,
something s.t. ∫ ∞

−∞
δ(t) = 1, t = 0.

Impuse/Delta/Dirac Delta Function

("cannot be expressed as a standard mathematical function, but 

instead is generally thought of as the limit of a unit area box 
function centered at the origin with width approaching 0.”)

Impulse Train/Dirac Comb/Shah Function

(with a period of T and frequency of 1/T)

III(t) =
∞

∑
i=−∞

δ(t − iT)

https://en.wikipedia.org/wiki/Dirac_comb



Mathematically Express Sampling
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Impulse Train

T 2T-T-2T

Sa(t) = IIIT(t)s(t) sa(t) is defined over a continuous domain; its 
value is 0 except at integer multiples of T.

Unknown continuous signal Discrete samples



Fourier Transform a Sampled Signal
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F(ω) = ℱ(s(t))

ω0

T-T 2T
-2T

ℱ(IIIT(t)s(t))

ω
1/T-1/T 0



Fourier Transform a Sampled Signal
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F(ω) = ℱ(s(t))

ℱ(IIIT(t)s(t)) =
∞

∑
i=−∞

F(ω − i
1
T

)
The Fourier Transform of the sampled signal is the 
sum of infinite copies of the Fourier Transform of 

the original signal, with spacing of 1/T.

ω0

ℱ(IIIT(t)s(t))

ω
1/T-1/T 0



Extracting the Original Spectrum
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ℱ(IIIT(t)s(t))

ω
0

1

Box Function

1/2T-1/2T

B(ω) = {1, |ω | < 1
2T ,

0, otherwise .

X

ℱ(IIIT(t)s(t))

ω
1/T-1/T 0-1/2T 1/2T

ω
0

ℱ(IIIT(t)s(t))B(ω) = F(ω)



Reconstructing the Original Signal

14

ω
0

1

Box Function

X

1/2T-1/2T

Inverse Fourier 
Transform

ℱ(IIIT(t)s(t))ℱ(IIIT(t)s(t))

ω
1/T-1/T 0-1/2T 1/2T

ω
0

ℱ(IIIT(t)s(t))B(ω) = F(ω)



Ideal Signal Reconstruction Summary
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s(t) = ℱ−1[ ℱ(Sa(t))B1/2T(ω) ]

The reconstruction equation

1/T-1/T 0
ω

-1/2T 1/2T



Aliasing
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ωs0

ωs is the maximum frequency 
of the spectrum.

F(ω) = 0 for all |ω| > ωs.

The spectrum of Sa(t) doesn’t look like the 
sum of infinite copies of the original 

spectrum, which can never be extracted now!

ℱ(Sa(t)) =
∞

∑
i=−∞

F(ω − i
1
T

)

ω ω
1/T-1/T 0

Case 1: ωs < 1/2T

ωs 1/2T

Case 2: ωs >= 1/2T

ω
1/T-1/T 0 ωs

1/2T



Another Aliasing Example
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No Aliasing

Aliased

https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Sampling_Theory



Reconstruction with Aliasing

18https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Sampling_Theory

Original Signal Reconstructed Signal

High-frequency information in the original signal is lost and shows up as low-frequency errors.



How To Guarantee Alias-Free Reconstruction?
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Nyquist–Shannon sampling theorem: if a signal contains no frequency higher than ωs, it 
can be perfectly reconstructed from sampling it at a rate higher than 2ωs.

ωs <
1

2T
=

fs
2

T 2T-T-2T

Sampling period: T

Sampling frequency fs: 1/T fs > 2ωs

Nyquist frequency Nyquist rate

https://en.wikipedia.org/wiki/Nyquist_frequency

ω
1/T-1/T 0 ωs 1/2T



Band-Limited Signal

• Nyquist-Shannon sampling theorem is only 
useful if the original signal does have a 
maximum frequency ωs. Otherwise the 
sampling rate would have to be infinite.


• Band-limited signal: a signal where there 
exists a frequency ωs such that F(ω) = 0 for 
all |ω| > ωs.


• Most real-world signals are “broad-band” 
signals; they are not band-limited.

20

A band-limited 
signal’s spectrum

A band-unlimited  
(broadband) signal’s 

spectrum

ωs0
ω

0 ω
…………



2D Sampling
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* =

Sampling Theorem in 2D

* =

frequency domain

1/Y F(u,v)
1/X

“Brush” Function
2D sampling theorem: if a signal contains no 
horizontal frequency higher than ωu and no 
vertical frequency higher than ωv, it can be 
completely reconstructed from sampling it at 
a horizontally rate higher than 2ωu and a 
vertical rate higher than 2ωv.


The horizontal sampling distance H < 1/(2 ωu)

The vertical sampling distance V < 1/(2 ωv)

H
V

https://www.di.univr.it/documenti/OccorrenzaIns/matdid/matdid346761.pdf
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Anti-Aliasing 
Techniques



Insufficient Sampling and Reconstruction

23https://svi.nl/AntiAliasing https://distance.ufhealth.org/preparing-for-lecture-capture/



Anti-Aliasing By Pre-Filtering

• If we can only sample at a rate of fsample, pre-filter the signal to remove the 
frequency higher than fsample/2.


• Then sample; won’t see aliasing, but the reconstructed signal is blurred.

• Blur is more acceptable visually than aliasing.

24\



Recall: Low-Pass Filtering

25\



1D Discrete Convolution
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31D Discrete

Signal 1 2 1 3 4 1

Filter/Kernel 1 2 1

Filtered

Signal 8

Convolution 3x1 + 1x2 + 2x1



1D Discrete Convolution
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31D Discrete

Signal 1 2 1 3 4 1

Filter/Kernel 1 2 1

Filtered

Signal 8 6

Convolution 1x1 + 2x2 + 1x1



1D Discrete Convolution
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31D Discrete

Signal 1 2 1 3 4 1

Filter/Kernel 1 2 1

Filtered

Signal 8 6 7

Convolution 2x1 + 1x2 + 3x1



1D Discrete Convolution
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31D Discrete

Signal 1 2 1 3 4 1

Filter/Kernel 1 2 1

Filtered

Signal 8 6 7 11

Convolution 1x1 + 3x2 + 4x1



1D Discrete Convolution
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31D Discrete

Signal 1 2 1 3 4 1

Filter/Kernel 1 2 1

Filtered

Signal 8 6 7 11 15

Convolution 3x1 + 4x2 + 4x1



1D Discrete Convolution w/ Padding
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31D Discrete

Signal 1 2 1 3 4 1

Filter/Kernel 1 2 1

Filtered

Signal 10

Convolution 3x1 + 3x2 + 1x1

3 1



1D Discrete Convolution w/ Padding

32

31D Discrete

Signal 1 2 1 3 4 1

Filter/Kernel 1 2 1

Filtered

Signal 10

Convolution 3x1 + 1x2 + 2x1

3 1

7



1D Discrete Convolution w/ Padding

33

31D Discrete

Signal 1 2 1 3 4 1

Filter/Kernel 1 2 1

Filtered

Signal 10

Convolution 4x1 + 1x2 + 1x1

3 1

7 … … … … 7



1D Continuous Convolution Visualization

34https://en.wikipedia.org/wiki/Convolution

https://en.wikipedia.org/wiki/Convolution


2D Discrete Convolution

35

3 1 2 1 3 4 1
2 4 0 1 10 2 0
0 2 4 21 9 1 14
34 5 4 7 8 90 34
54 6 8 9 13 36 4
6 8 14 2 4 8 52
32 14 54 3 6 8 0

2D Discrete Signal 2D Filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Filtered Signal



2D Discrete Convolution

36

1 3 4 1
1 10 2 0
21 9 1 14

34 5 4 7 8 90 34
54 6 8 9 13 36 4
6 8 14 2 4 8 52
32 14 54 3 6 8 0

2D Discrete Signal

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Filtered Signal

2
3 1 2
2 4 0
0 2 4

2D Filter



2D Discrete Convolution

37

3 3 4 1
2 10 2 0
0 9 1 14
34 5 4 7 8 90 34
54 6 8 9 13 36 4
6 8 14 2 4 8 52
32 14 54 3 6 8 0

2D Discrete Signal

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Filtered Signal

1 2 1
4 0 1
2 4 21

2D Filter

2 4



Box (Mean/Moving Average) Filter
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3 3 4 1
2 10 2 0
0 9 1 14
34 5 4 7 8 90 34
54 6 8 9 13 36 4
6 8 14 2 4 8 52
32 14 54 3 6 8 0

2D Discrete Signal Box Filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

1 2 1
4 0 1
2 4 21 A box filter makes 

pixels more similar to 
its neighbors, i.e., blur.



Visualization
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1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

2D Box 
Filter

* Output size is smaller than 
input size without padding.

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1



Gaussian Filter
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2D Gaussian distribution A sample 2D Gaussian kernel 
with mean [0, 0] and σ=1 

A Gaussian filter also averages neighboring pixels, but gives more 
weight to closer neighbors. It’s still a low-pass filter.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm


Convolution
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f[x] ⋆ g[x] =
k=∞

∑
k=−∞

f[k]g[x − k]1D Discrete 
Convolution

1D Continuous 
Convolution

f(x) ⋆ g(x) = ∫
∞

−∞
f(τ)g(x − τ)dτ

f[x, y] ⋆ g[x, y] =
i=∞

∑
i=−∞

j=∞

∑
j=−∞

f[i, j]g[x − i, y − j]2D Discrete 
Convolution

f(x) ⋆ g(x) = ∫
∞

−∞ ∫
∞

−∞
f(τ, η)g(x − τ, y − η)dτdη2D Continuous 

Convolution



Convolution Theorem

• Spatial domain convolution is equivalent to frequency domain 
multiplication, and vice versa.


• Why useful in signal sampling and reconstruction?

• All we observe are a finite number of samples over a small domain in f, so 

42

ℱ( f ⋆ g) = ℱ( f )ℱ(g) f ⋆ g = ℱ−1(ℱ( f )ℱ(g))



Convolution Theorem

43

Spatial Domain

Frequency 
Domain

Fourier 
Transform

Inv. Fourier 
Transform

⋆ =

X =



Box Filter in Spatial and Frequency Domains

44

Multiplying with this spectrum 
attenuates high-frequency components.

Spatial Domain Frequency Domain



Box Filter in Spatial and Frequency Domains

45

Wider box attenuates high frequencies even 
more (averaging over a larger window)

Spatial Domain Frequency Domain



Revisiting Ideal Signal Reconstruction

46

The reconstruction equation

1/T-1/T 0
ω

-1/2T 1/2T

s(t) = ℱ−1[ ℱ(Sa(t))B1/2T(ω) ]



Signal Reconstruction == Convolution

47

Sampled

signal

Reconstructed

signal f ⋆ g = ℱ−1(ℱ( f )ℱ(g))

= Sa(t) ⋆ sinc(t)

https://web.cs.ucdavis.edu/~okreylos/PhDStudies/Winter2000/SamplingTheory.html

s(t) = ℱ−1[ ℱ(Sa(t))B(ω) ]

s(t) = ℱ−1[ ℱ(Sa(t))ℱ(sinc(t)) ]

IFFT

FFT



A Few Practical Notes
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Sampled

signal

Reconstructed

signal

= Sa(t) ⋆ sinc(t)
• Is it a bit surprising that we can do this even without knowing the full Sa(t)?


• Answer: we can just assume the missing part of Sa(t), e.g., all 0s or Sa(t) being periodic.  
Each will give a different reconstructed signal.


• Even if we know Sa(t), ideal reconstruction is computationally inefficient

• Sa(t) usually doesn’t have an analytical form so its Fourier transform needs to be 

calculated numerically using all the samples in Sa(t)


• sinc(t) has infinite support so we again must use all Sa(t) samples if we use convolution

s(t) = ℱ−1[ ℱ(Sa(t))B(ω) ]



Practically We Prefer Filters with a Finite Support

49

…… ……

s(t)

Sa(t)

Sa(t)Practically obtainable/observable part of

Part of s(t) we care to reconstruct

* Gaussian filter still has infinite support, but it decays exponentially so we can cut it off



Filter

Reconstruction by Convoluting with a Box Filter

50

Samples 3 0 0 2 0 0 5 0 0 6 0 0 4

1 1 1

3 2 2 2 5 5 5 6 6 6 4Reconstructed

Signal



== Nearest Neighbor Interpolation
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Samples 3 0 0 2 0 0 5 0 0 6 0 0 4

3 2 2 2 5 5 5 6 6 6 4Reconstructed

Signal



Reconstruction by Convoluting with a Hat Filter
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Samples 3 0 2 0 5 0 5

Filter

Reconstructed

Signal

0 1 0 6 0 4

0 0.5

2 3.5 5 5 5 3 1 3.5 6 5

1 0.5 0

0

2.5

0



== Linear Interpolation

53

Samples 3 0 2 0 5 0 5

Reconstructed

Signal

0 1 0 6 0 4

2 3.5 5 5 5 3 1 3.5 6 5

0

2.5

0



Box vs. Hat vs. Gaussian Filter

54



Common Filters (in 2D and 3D)

55https://en.wikipedia.org/wiki/Bilinear_interpolation



Anti-Aliased Signal Reconstruction
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s(t) = Sa(t) ⋆ F1(t) ⋆ F2(t)

Anti-aliasing filter 
(e.g., a box filter)

Reconstruction filter 
(e.g., a sinc filter)

• Convolving with multiple filters is equivalent to convolving with one 
composite filter.


• Most real-world signals are not band-limited, so perfect reconstruction is 
impossible.  So the name of the game is to design the composite filter so 
that the perceptual quality of the reconstructed signal is acceptable.



Beating Nyquist-Shannon Sampling Theorem (1)

• Nyquist-Shannon sampling theorem applies to generic signals

• If signals have strong patterns (e.g., mostly sparse in the Fourier domain), 

we can sample at a much lower rate than the Nyquist rate but still obtain a 
good reconstruction


• The technique is called compressive sensing

• Goal: solving for the most sparse frequency domain representation that, after IFFT, is 

consistent with the few samples


• “Single-pixel” camera, CT imaging, etc.


• Must do random sampling

57



Beating Nyquist-Shannon Sampling Theorem (2)

• Nyquist-Shannon sampling theorem applies to reconstruction from 
samples of a single signal without help from prior information


• We could also learn from prior data to reconstruct signals

• Through machine/deep learning


• Image inpainting, super-resolution

58\



Beating Nyquist-Shannon Sampling Theorem (2)

59https://www.slashgear.com/google-pixel-4-camera-review-brilliant-and-frustrating-21596272/ https://pythonawesome.com/aot-gan-for-high-resolution-image-inpainting/

https://www.slashgear.com/google-pixel-4-camera-review-brilliant-and-frustrating-21596272/


60

Signal Sampling and 
Reconstruction in 

Camera and Display



Optical Signal on the Sensor Plane is 2D Continuous

61

Lights in the 
physical scene (3D 
continuous signal)

Lights on the sensor plane 
(2D continuous signal)



Optical Signal on the Sensor Plane is 2D Continuous

62

Sensor Plane

At any position [x, y] on the sensor 
plane, we can calculate the amount of 

photons that hit the position (irradiance)

x

y



https://www.researchgate.net/publication/243717128_Optical_imaging_and_spectroscopy_of_superficial_tissue

Sensor Filters and Samples the 2D Continuous Signal

63

Lights in the 
physical scene (3D 
continuous signal)

Pixels on the image sensor filter 
and then sample the continuous 

2D signal



What Do Camera Pixels Do?
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Pixel Array
x

y

integrates signal within each pixel (“counting photons”)

== filtering the continuous signal with a box filter and then samples at the pixel positions!

== convolving the continuous signal with a box filter at the pixel positions



Continuous Box Filtering + 2D Sampling

65

Pixel Array
x

y

1
1

1

1



An Image Pixel is a Sample

What is an image?

• Each pixel value is a single sample of the 

filtered 2D continuous signal, 
representing the integrated optical 
power over the pixel area.


• A camera sensor pixel has an area, but 
an image pixel has no area!


Any image post-processing should 
keep this in mind.


66

Image
x

y

220

23

127

130

128

242

139

110

89

120

92

41

45

90

24

241

120

130

125

38



Display Reconst. Continuous Signal w/ a Box Filter

67https://www.pinterest.com/pin/86694361554535525/iPhone 11iPhone 6

Displays reconstruct continuous 2D 
signal from 2D samples (pixel values)



Sampling and Reconstruction in Camera and Display

68

Camera Lens Sensor Pixels Display

3D continuous 
signal

2D continuous 
signal (on the 
sensor plane)

2D sampled signal 
(i.e., image)

Reconstructed 3D 
continuous signal

Geometric 
transformation

Box filtering + 
sampling

Signal reconstruction 
using box filter



69

Upsampling and 
Downsampling



Linear Interpolation (Hat Filter)

70



Sample and Hold (Box Filter)

71

Nearest neighbor is similar



Theoretically Optimal Upsampling

72

• First reconstruct the underlying continuous signal through a filter

• With potential anti-aliasing


• And then resample at a desired, higher rate

• Mathematically that’s equivalent to computing the convolution only at the 

desired re-sampled points.  Filter choice is usually empirical.



Upscaling = Reduce Frequency + Upsampling 

73

• Theoretically:

• First “stretch” the underlying signal 

into a wider domain, which reduces 
the signal frequency


• Then we sample that lower 
frequency signal with more samples!


• This makes later reconstruction (e.g., 
by a display) easier in theory.


• If you want to capture details, 
take photo closer to an object 
or use a telephoto lens. 

https://pixabay.com/photos/bird-blue-clouds-weather-pen-8788491/



74https://en.wikipedia.org/wiki/Bicubic_interpolation

Bilinear

Bicubic

Nearest

Neighbor

https://pixabay.com/photos/bird-blue-clouds-weather-pen-8788491/



Downsampling

• Simply dropping samples/pixels? Why is that bad?

• Dropping pixels is equivalent to sampling the original continuous signal 

using a lower rate. It would make later reconstruction harder!

75

Downsampling by 
dropping pixels

Upsampling by nearest 
neighbor/box filter



Downscaling = Increase Frequency + Downsampling

76

• In theory:

• First “squeeze” the underlying signal 

into a narrower domain, which 
increases the signal frequency


• Then we sample that higher 
frequency signal with fewer samples!


• Now displaying the image at 
the downsampled resolution


• Very hard: reconstructing a higher 
frequency signal from fewer samples.



Key Things to Take Away

• Nyquite-Shannon Sampling Theorem

• Sample at 2f if f is the maximum frequency in a signal


• Otherwise aliasing occurs.


• Anti-Aliasing

• Pre-filter high-frequency components


• Pre-filtering could be done either in the frequency domain or in the spatial domain 
(convolution); they are equivalent according to the Convolution Theorem


• Real-world examples:

• Camera (box filter + sampling) → Image Pixels → Display (box filter reconstruction)


• Downsampling/upsampling are resampling problems

77


