Lecture 4: Sampling and Convolution
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Logistics

 Written assignment 1 is up and is due Sept. 11 11:30 AM.

* You can work in groups of 2.

* Final project due date is 12/16.

e Start thinking and talking to me about your final project idea.



The Roadmap

Theoretical Preliminaries

Sampling & Reconstruction



Signal Sampling and Reconstruction

e Given just a few sparse samples, can we always reconstruct the underlying
continuous signal?

* If not carefully sampled, reconstructed signals will be aliased: high
frequencies signals masquerading as low-frequency signals.
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https://svi.nl/AntiAliasing https://distance.ufhealth.org/preparing-for-lecture-capture/ https://www.youtube.com/watch?v=Neh2biiex1A



Fourier Theory of
Sampling and
Reconstruction




Problem Setup

Practically obtainable/observable part ot Sa(t)

, —>

Part of s(t) we care to reconstruct




Problem Setup

S(t)

A (Uniform) Sampling

e = = = -
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S.(t)

¢ Reconstruction \l"l’\y
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* s(t) is an unknown, continuous function with an infinite support (i.e.,
amenable to Fourier transform). We uniformly sample it and the goal is to
reconstruct s(t) from the samples.

* |n practice we care only about reconstructing s(t) for a particular range and we could only

obtai

smal

n a finite number of samples (e.g., the world is infinite but a camera samples only a
region and we care about reconstructing the scene in that small region).

e Defining s(t) this way makes theoretical derivation easier.



Impulse and Impulse Train Function

Impuse/Delta/Dirac Delta Function

("cannot be expressed as a standard mathematical function, but

instead is generally thought of as the limit of a unit area box
function centered at the origin with width approaching 0.")
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https://en.wikipedia.org/wiki/Dirac_comb

Impulse Train/Dirac Comb/Shah Function
(with a period of T and frequency of 1/T)

1I(t) = i o(t —1iT)
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Mathematically Express Sampling

Unknown continuous signal Impulse Train Discrete samples
S(t) X LI (E) = S, (1)
A
> > T [ >
C 2T-T | T2t PRRZ I t

Sa(t) — IIIT(t)S(t) sa(t) is defined over a continuous domain; its

value is O except at integer multiples of T.
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Fourier Transform a Sampled Signal

Flw) = #(s(1)) F (HIT(t)S(t))

J\ AN /\ VAN




Fourier Transform a Sampled Signal

Flw) = Ow(S(l‘)) O”(IHT(t)S(l‘))

J\ VANVINVAN

The Fourier Transtform of the sampled signal is the

g(IIIT(t)S(t)) — Z F(a) — l?) sum of infinite copies ot the Fourier Transform of

i——00 the original signal, with spacing ot 1/T.
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Extracting the Original Spectrum

Box Function F(L1(t)s(2))
1
Fe==f ===
| | X : :
[] []
0, ),
-1/2T 0 1/2T -1/T -1/2T 0 1/2T 1/T

B(w) = {1’ @l <3r 1 FU()s®)B(w) = F(w)

0, otherwise. jk
0,

0
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Reconstructing the Original Signal

Box Function F(L1(t)s(2))
1

Fe==f ===
| | X : :

[] []

) Q)
-1/2T 0 1/2T -1/T -1/2T 0 1/2T 1/T
S(t) *
A

>

Inverse Fourier

FU(1)s(t))B(w) = F(w)

Transform
h
>
t 0,

0

14



Ideal Signal Reconstruction Summary

et
The reconstruction equation ? ¢
(1) = F7[ F(S,(0)Byp(w) ]

-1/T -1/2T 0 1/2T 1/T
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— 1
F©S,0)= ), Fl-iz)

. T
[=—00
4 Case 1: w; < 1/2T
The spectrum of S,(t) doesn’t look like the
ws is the maximum frequency sum of infinite copies of the original
of the spectrum. Case 2: ws >= 1/2T spectrum, which can never be extracted now!
F(w) = O for all lwl > ws. !
I\
1 1 >
A/T 0 @, /T

1/2T 10



Another Aliasing Example

L

No Aliasing

Aliased

https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Sampling_Theory




Reconstruction with Aliasing

Original Signal Reconstructed Signal
2\ n , n \
i ~ ~
] 4 I'I | '
V “ '" V v V v
1 2 3 4 | 2 3 4
(a) (b)

High-frequency information in the original signal is lost and shows up as low-frequency errors.

https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Sampling_Theory



How To Guarantee Alias-Free Reconstruction?

LU (t)

-2T -T -1/T W 1/2T 1/T

Sampling period: T 1 B fS
Sampling frequency fs: 1/T Wy < E — 5 fs > 2605

Nyquist frequency ~ Nyquist rate

https://en.wikipedia.org/wiki/Nyquist_frequency 19



Band-Limited Signal

A band-limited e N <t_Sh I th : |
cignal’s spectrum yquist-Shannon sampling theorem is only
useful if the original signal does have a

maximum frequency ws. Otherwise the

| " “ sampling rate would have to be infinite.
\)
A band-unlimited e Band-limited signal: a signal where there
(broadband) signal’s exists a frequency ws such that F(w) = O for
spectrum
\ all lool > oo,
____________ * Most real-world signals are “broad-band”
® signals; they are not band-limited.
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2D Sampling

“Brush” Function

SV VY

H

—_- -

https://www.di.univr.it/documenti/Occorrenzalns/matdid/matdid346761.pdf

/v

2D sampling theorem: if a signal contains no
horizontal frequency higher than w, and no
vertical frequency higher than w,, it can be
completely reconstructed from sampling it at
a horizontally rate higher than 2w, and a
vertical rate higher than 2¢w,.

The horizontal sampling distance H < 1/(2 o)
The vertical sampling distance V < 1/(2 w,)
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Anti-Aliasing
Techniques




Insufficient Sampling and Reconstruction

https://svi.nl/AntiAliasing

https://distance.ufhealth.org/preparing-for-lecture-capture/
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Anti-Aliasing By Pre-Filtering

* |f we can only sample at a rate of fsample, pre-filter the signal to remove the
frequency higher than fs;mpie/2.

* Then sample; won't see aliasing, but the reconstructed signal is blurred.

* Blur is more acceptable visually than aliasing.
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Recall: Low-Pass Filtering

25



1D Discrete Convolution

1D Discrete
s |31 ]2[1]8]4]1
Filter/Kernel n

Convolution 3x1 + 1x2 + 2x1

Filtered
Signal

26



1D Discrete Convolution

1D Discrete
s |31 ]2[1]8]4]1
Filter/Kernel nn

Convolution 1x1 + 2x2 + 1x1

Filtered
Signal
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1D Discrete Convolution

1D Discrete
co |31 ]2]1]3]4]1
Filter/Kernel n

Convolution 2x1 + 1x2 + 3x1

Filtered
: sle|7]| |
ignal
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1D Discrete Convolution

1D Discrete
s |31 ]2[1]8]4]1
Filter/Kernel nn

Convolution 1x1 + 3x2 + 4x1

Filtered
4 8|6 |7|1]
ignal

29



1D Discrete Convolution

1D Discrete
s |31 ]2[1]8]4]1
Filter/Kernel nn

Convolution 3x1 + 4x2 + 4x1

Filtered
Gow |86 [7[11]15
igna
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1D Discrete Convolution w/ Padding

1D Discrete
s | 23] 1[2]1]8]4]
Filter/Kernel n

Convolution 3x1 + 3x2 + 1x1

Filtered
Signal
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1D Discrete Convolution w/ Padding

1D Discrete
G s[1]2|1[3]4]1
Filter/Kernel nn

Convolution 3x1 + 1x2 + 2x1

Filtered
: o7 ]
ignal
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1D Discrete Convolution w/ Padding

1D Discrete
G s[1]2|1[3]4]1
Filter/Kernel nn

Convolution 4x1 + 1x2 + 1x1

Filtered
: 0] 7 [ || [ | 7
ignal
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1D Continuous Convolution Visualization

[ ] Aeea under f(xa(t-
f(x)

ait-c)
(f+git)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
&t

https://en.wikipedia.org/wiki/Convolution 34



https://en.wikipedia.org/wiki/Convolution

2D Discrete Convolution

2D Discrete Signal 2D Filter Filtered Signal

3[1]2(1]3[4]1
2(4]of1]10[2]0
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2D Discrete Convolution

2D Discrete Signal 2D Filter Filtered Signal




2D Discrete Convolution

2D Discrete Signal 2D Filter Filtered Signal




Box (Mean/Moving Average) Filter

2D Discrete Signal Box Filter

3|1]2[1[3[4af1
2[4]o0f1[10[2]0
nnﬂ A box filter makes

pixels more similar to

its neighbors, i.e., blur.

34/5]4(7]8[90]34
54/6]89]13[36] 4
6[8]14[2]4[8]52
32[14]54[3]6 (8]0




Visualization

2D Box
Filter

* Qutput size is smaller than
input size without padding.

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42face1 39



Gaussian Filter

2D Gaussian distribution

16

26

16

26

41

26

16

26

16

A sample 2D Gaussian kernel

with mean [0, 0] and o=1

A Gaussian filter also averages neighboring pixels, but gives more
weight to closer neighbors. It's still a low-pass filter.

https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

40


https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

Convolution

1D Discrete
Convolution

1D Continuous
Convolution

2D Discrete
Convolution

2D Continuous
Convolution

k=00
flxl * glx] = ) fTklglx — ]
k=—00

J(x) * g(x) = J f()g(x — 1)dr

(=00 J=00

fleyl % gleyl= ). ) flijlglx — i,y — ]

[=—00 J=—00

Jx) * g(x) = [ [

— OO0

o0

ft,n)gx — 7,y — n)drdn
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Convolution Theorem

F(f*g) =F(f)F(Q) fxg=F (F(NHF@¥)

e Spatial domain convolution is equivalent to frequency domain
multiplication, and vice versa.

e Why usetul in signal sampling and reconstruction?

e All we observe are a finite number of samples over a small domain in 1, so

42



Convolution Theorem

Spatial Domain

Fourier i
Transform

Frequency
Domain

T

Inv. Fourier
Transform
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Box Filter in Spatial and Frequency Domains

Multiplying with this spectrum
attenuates high-frequency components.

Spatial Domain Frequency Domain
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Box Filter in Spatial and Frequency Domains

Wider box attenuates high frequencies even
more (averaging over a larger window)

Spatial Domain Frequency Domain

45



Revisiting Ideal Signal Reconstruction

et
The reconstruction equation ? ¢
(1) = F7[ F(S,(0)Byp(w) ]

-1/T -1/2T 0 1/2T 1/T
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Signal Reconstruction == Convolution

Reconstructed
signal

Sampled

signal

s() = F7'[ F(S,(1))B(w) ]

Srg= 9‘1(9(1‘)9(@))

s(f) = FU F (S (O)F (sinc(t)) | = S, () * sinc(?)

1D Box Filter
1.0
0.5
0.0 | |
-5 0 5

IFFT

>

<

FFT

1D Sinc Function

1.01

0.5

0.0;

~10 0 10

https://web.cs.ucdavis.edu/~okreylos/PhDStudies/Winter2000/SamplingTheory.html 47



A Few Practical Notes

Reconstructed Sampled
signal signal

() = F[ F(S.(1)B(w) ] = S, (&) * sinc(t)

* |s it a bit surprising that we can do this even without knowing the full S,(t)?

* Answer: we can just assume the missing part of S4(t), e.g., all Os or S,(t) being periodic.
Each will give a different reconstructed signal.

e Even if we know S,(t), ideal reconstruction is computationally inefficient

e S.(t) usually doesn’t have an analytical form so its Fourier transtorm needs to be
calculated numerically using all the samples in S,(t)

* sinc(t) has infinite support so we again must use all S,(t) samples if we use convolution

48



Practically obtainable/observable part of Sa(f)

,  —ely

Part of s(t) we care to reconstruct

* Gaussian filter still has infinite support, but it decays exponentially so we can cut it oft

Practically We Prefer Filters with a Finite Support

1D Box Filter

1.0-

0.5-

0.0 | |
-5 0 5
1D Triangular/Hat Filter

1.0

0.51 /\

0.0t | |
-5 0 5

1D Gaussian Filter

0.4

0.2

0.0+
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Reconstruction by Convoluting with a Box Filter

Samples ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
Filter

o [312]2[2]5]55]6e[6]4



== Nearest Neighbor Interpolation

Samples ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

o [312]2[2]5]55]6e[6]4



Reconstruction by Convoluting with a Hat Filter

samples | 0/3(0[2[0{5[0]5|0[1[0[6[0[{4]0
Filter nnn

Recc;r;;::rted nn




== Linear Interpolation

samples | 0[3]|0[2]|0[5]{0|5]{0[1]0|6[0]|4[0
O

Recc;?j‘r:rted nn




Box vs. Hat vs. Gaussian Filter

Box Filter
Hat Filter
Sighal Reconstruction Gaussian Filter
1.5- : :
Orignal Signal
1.0 -
0.5 - :
> 0.0+ ‘
\
_05 -
Box Filter
—10- Hat Filter
—— (Gaussian Filter
—— Orignal Signal
-1.51+ ' | | .
0 100 200 300 400
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Common Filters (in 2D and 3D)

1D nearest- Linear Cubic
neighbour

2D nearest-

neighbour Bilinear Bicubic

https://en.wikipedia.org/wiki/Bilinear_interpolation 55



Anti-Aliased Signal Reconstruction

Anti-aliasing filter Reconstruction filter
(e.g., a box filter) (e.g., a sinc filter)

AN /
s(1) = 5,(1) % F (1) % F5(1)

e Convolving with multiple filters is equivalent to convolving with one
composite filter.

* Most real-world signals are not band-limited, so pertect reconstruction is
impossible. So the name of the game is to design the composite filter so
that the perceptual quality of the reconstructed signal is acceptable.

56



Beating Nyquist-Shannon Sampling Theorem (1)

* Nyquist-Shannon sampling theorem applies to generic signals

* |f signals have strong patterns (e.g., mostly sparse in the Fourier domain),
we can sample at a much lower rate than the Nyquist rate but still obtain a

good reconstruction

* The technique is called compressive sensing

* Goal: solving for the most sparse frequency domain representation that, after IFFT, is
consistent with the few samples

 “Single-pixel” camera, CT imaging, etc.

* Must do random sampling

S7



Beating Nyquist-Shannon Sampling Theorem (2)

* Nyquist-Shannon sampling theorem applies to reconstruction from
samples of a single signal without help from prior information

 We could also learn from prior data to reconstruct signals

* Through machine/deep learning

* |Image inpainting, super-resolution

58



Beating Nyq

AR Y

A

SRR\
~ 0 \\
' N

/ & A

-

\\\
, N1\
N

>

uist-Shannon Sampling Theorem (2)

(a) Face Editing (b) Object Removal

https://www.slashgear.com/google-pixel-4-camera-review-brilliant-and-frustrating-21596272/ https://pythonawesome.com/aot-gan-for-high-resolution-image-inpainting/
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Signal Sampling and
Reconstruction in
Camera and Display



Optical Signal on the Sensor Plane is 2D Continuous

Lights in the
physical scene (3D

continuous signal)

Lights on the sensor plane

(2D continuous signal)

Perspective projection (P)

61



Optical Signal on the Sensor Plane is 2D Continuous

At any position [x, y] on the sensor
y plane, we can calculate the amount of
photons that hit the position (irradiance)

7~

)

Sensor Plane

62



Sensor Filters and Samples the 2D Continuous Signal

Lights in the

/DM

physical R
continud 32x32

pixel array “ A
Row
decoder
966 um
Pixels on the image sensor filter
and then sample the continuous
2D signal
v

s e ey L€ NEt/pUblication/243717128_Optical_imaging_and_spectroscopy_of_superficial_tissue 63



What Do Camera Pixels Do?

integrates signal within each pixel (“counting photons”)
== convolving the continuous signal with a box filter at the pixel positions

== filtering the continuous signal with a box filter and then samples at the pixel positions!
\

Y A / T\ VDY,

[ AN AL I/

A Y 4. A, A R\ N\ Y A Y A W

D Y AR F N L/

r'_' VA (R / B, N

Pixel Array



Continuous Box Filtering + 2D Sampling

y

(=~ [ ) )

[ ) )/
[ L) [/

Pixel Array



An Image Pixel is a Sample

H
n

Image

What is an image?

e Each pixel value is a single sample of the

filtered 2

D continuous signal,

representing the integrated optical
power over the pixel area.

* A camera sensor pixel has an area, but
an image pixel has no areal

Any iImage

post-processing should

keep this in mind.
X

66



Display Reconst. Continuous Signal w/ a Box Filter

Displays reconstruct continuous 2D

signal from 2D samples (pixel values)

iPhone 6 iPhone 11

https://www.pinterest.com/pin/86694361554535525/ 67



Sampling and Reconstruction in Camera and Display

Geometric Box filtering + Signal reconstruction
transformation sampling using box tilter

&

O

O

O
| R R e S T Y

2D ti
3D continuous , cONUNUOUS 2D sampled signal Reconstructed 3D
signal (on the

signal (i.e., image) continuous signal

sensor plane)

68



Upsampling and
Downsampling



Linear Interpolation (Hat Filter)

O
o o

0 000°0Qo0g

oo © ©
0 0



Sample and Hold (Box Filter)

Nearest neighbor is similar

O O
O o 00000000
0o OO©°

O o O



Theoretically Optimal Upsampling

e First reconstruct the underlying continuous signal through a filter
e With potential anti-aliasing

* And then resample at a desired, higher rate

* Mathematically that's equivalent to computing the convolution only at the
desired re-sampled points. Filter choice is usually empirical.

(2



Upscaling = Reduce Frequency + Upsampling

* Theoretically:

* First “stretch” the underlying signal
R/R/R/AR into a wider domain, which reduces
the signal frequency

* Then we sample that lower
frequency signal with more samples!

* This makes later reconstruction (e.g.,
by a display) easier in theory.

* |f you want to capture details,
I take photo closer to an object
or use a telephoto lens.

https://pixabay.com/photos/bird-blue-clouds-weather-pen-8788491/ 73



https://pixabay.com/photos/bird-blue-clouds-weather-pen-8788491/

https://en.wikipedia.org/wiki/Bicubic_interpolation

Bilinear

Bicubic

74



Downsampling

* Simply dropping samples/pixels? Why is that bad?

* Dropping pixels is equivalent to sampling the original continuous signal
using a lower rate. It would make later reconstruction harder!

—> - >

Downsampling by Upsampling by nearest
dropping pixels neighbor/box filter



Downscaling = Increase Frequency + Downsampling

* In theory:

e First “squeeze"” the underlying signal

VUV VU into a narrower domain, which
increases the signal frequency

* Then we sample that higher
frequency signal with fewer samples!

* Now displaying the image at
the downsampled resolution

e \ery hard: reconstructing a higher

J\ frequency signal from fewer samples.

/6



Key Things to Take Away

* Nyquite-Shannon Sampling Theorem

e Sample at 2f if f is the maximum frequency in a signal

e Otherwise aliasing occurs.

e Anti-Aliasing
e Pre-filter high-frequency components

e Pre-filtering could be done either in the frequency domain or in the spatial domain
(convolution); they are equivalent according to the Convolution Theorem

e Real-world examples:
e Camera (box filter + sampling) = Image Pixels = Display (box filter reconstruction)

* Downsampling/upsampling are resampling problems

a4



