Lecture 4: Sampling and Convolution

Yuhao Zhu

http://yuhaozhu.com yzhu@rochester.edu

CSC 259/459, Fall 2024 **Computer Imaging & Graphics**

Logistics

- Written assignment 1 is up and is due Sept. 11 11:30 AM.
- You can work in groups of 2.
- Final project due date is 12/16.
- Start thinking and talking to me about your final project idea.

The Roadmap

Theoretical Preliminaries

Human Visual Systems

Color in Nature, Arts, Tech (a.k.a., the birth, life, and death of light)

Digital Camera Imaging

Modeling and Rendering

Applications

Geometric Transformations Fourier Series & Transforms Sampling & Reconstruction

Signal Sampling and Reconstruction

- continuous signal?
- If not carefully sampled, reconstructed signals will be aliased: high frequencies signals masquerading as low-frequency signals.

• Given just a few sparse samples, can we always reconstruct the underlying

Fourier Theory of Sampling and Reconstruction

Problem Setup

- s(t) is an unknown, continuous function with an infinite support (i.e., amenable to Fourier transform). We uniformly sample it and the goal is to reconstruct s(t) from the samples.
 - In practice we care only about reconstructing s(t) for a particular range and we could only obtain a finite number of samples (e.g., the world is infinite but a camera samples only a small region and we care about reconstructing the scene in that small region).
 - Defining s(t) this way makes theoretical derivation easier.

Impulse and Impulse Train Function

Impuse/Delta/Dirac Delta Function

("cannot be expressed as a standard mathematical function, but instead is generally thought of as the limit of a unit area box function centered at the origin with width approaching 0.")

Impulse Train/Dirac Comb/Shah Function (with a period of T and frequency of 1/T)

$$III(t) = \sum_{i=-\infty}^{\infty} \delta(t - iT)$$

Mathematically Express Sampling

Impulse Train Unknown continuous signal

Discrete samples

$$\mathscr{F}(III_T(t)s(t)) = \sum_{i=-\infty}^{\infty} F(\omega - i\frac{1}{T})$$

The Fourier Transform of the sampled signal is the sum of infinite copies of the Fourier Transform of the original signal, with spacing of **1/T.**

Extracting the Original Spectrum

$$B(\omega) = \begin{cases} 1, & |\omega| < \frac{1}{2T}, \\ 0, & \text{otherwise} \end{cases}$$

Reconstructing the Original Signal

Box Function

Inverse Fourier Transform

https://pbr-book.org/3ed-2018/Sampling_and_Reconstruction/Sampling_Theory

Reconstruction with Aliasing

Original Signal

(a)

3

High-frequency information in the original signal is lost and shows up as low-frequency errors.

How To Guarantee Alias-Free Reconstruction?

Nyquist–Shannon sampling theorem: if a signal contains no frequency higher than ω_s , it can be perfectly reconstructed from sampling it at a rate higher than $2\omega_s$.

Band-Limited Signal

 Nyquist-Shannon sampling theorem is only useful if the original signal does have a maximum frequency ω_s . Otherwise the sampling rate would have to be infinite.

• Band-limited signal: a signal where there exists a frequency ω_s such that $F(\omega) = 0$ for all $|\omega| > \omega_s$.

 Most real-world signals are "broad-band" signals; they are **not** band-limited.

2D Sampling

"Brush" Function

2D sampling theorem: if a signal contains no horizontal frequency higher than ω_u and no vertical frequency higher than ω_v , it can be completely reconstructed from sampling it at a horizontally rate higher than $2\omega_u$ and a vertical rate higher than $2\omega_v$.

The horizontal sampling distance $H < 1/(2 \omega_u)$ The vertical sampling distance $V < 1/(2 \omega_v)$

0	1
2	

Anti-Aliasing Techniques

Insufficient Sampling and Reconstruction

https://svi.nl/AntiAliasing https://distance.ufhealth.org/preparing-for-lecture-capture/

Anti-Aliasing By Pre-Filtering

- If we can only sample at a rate of f_{sample}, pre-filter the signal to remove the frequency higher than $f_{sample}/2$.
- Then sample; won't see aliasing, but the reconstructed signal is blurred. • Blur is more acceptable visually than aliasing.

Recall: Low-Pass Filtering

Filter/Kernel

|--|

8

Convolution 3x1 + 1x2 + 2x1

Filtered Signal

1	3	4	1
---	---	---	---

1D Discrete Signal

Filter/Kernel

Convolution 1x1 + 2x2 + 1x1

Filtered Signal

1	3	4	1
---	---	---	---

1D Discrete Signal

3	1	2	1	3	4	1
---	---	---	---	---	---	---

Filter/Kernel

Convolution

2x1

1

Filtered Signal

2 1

2x1 + 1x2 + 3x1

7		
---	--	--

1D Discrete Signal

Filter/Kernel

Convolution

Filtered Signal

1	3	4	1
---	---	---	---

1	2	1
---	---	---

1x1 + 3x2 + 4x1

7 11	
------	--

1D Discrete Signal

Filter/Kernel

Convolution

Filtered Signal

1 3	4	1
-----	---	---

1	2	1
---	---	---

3x1 + 4x2 + 4x1

7	11	15
---	----	----

1D Discrete Convolution w/ Padding

Convolution 3x1 + 3x2 + 1x1

Filtered Signal

2	1	3	4	1	1
---	---	---	---	---	---

	4 7	4	4 1	4 1

1D Discrete Convolution w/ Padding

1D Discrete Signal

Filter/Kernel

Convolution 3x1 + 1x2 + 2x1

Filtered Signal

2	1	3	4	1	1
---	---	---	---	---	---

1D Discrete Convolution w/ Padding

1D Discrete Signal

Filter/Kernel

Convolution

Filtered Signal

2	1	3	4	1	1
---	---	---	---	---	---

1 2	1
-----	---

4x1 + 1x2 + 1x1

 	 	7

1D Continuous Convolution Visualization

2D Discrete Signal 2D Filter

3	1	2	1	3	4	1
2	4	0	1	10	2	0
0	2	4	21	9	1	14
34	5	4	7	8	90	34
54	6	8	9	13	36	4
6	8	14	2	4	8	52
32	14	54	3	6	8	0

1/9 1/9 1/9

Filtered Signal

)	1/9	1/9
)	1/9	1/9
)	1/9	1/9

2D Discrete Signal 2D Filter

Filtered Signal

)	1/9	1/9
)	1/9	1/9
)	1/9	1/9

2D Discrete Convolution

2D Discrete Signal 2D Filter

1/9 1/9 1/9

Filtered Signal

)	1/9	1/9
)	1/9	1/9
)	1/9	1/9

Box (Mean/Moving Average) Filter

2D Discrete Signal Box Filter

3	1	2	1	3	4	1
2	4	0	1	10	2	0
0	2	4	21	9	1	14
34	5	4	7	8	90	34
54	6	8	9	13	36	4
6	8	14	2	4	8	52
32	14	54	3	6	8	0

)	1/9	1/9
)	1/9	1/9
)	1/9	1/9

A box filter makes pixels more similar to its neighbors, i.e., blur.

Visualization

2D Box Filter

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

* Output size is smaller than input size without padding.

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

Gaussian Filter

2D Gaussian distribution

<u>1</u> 273	1	4	7	4	1
	4	16	26	16	4
	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

A sample 2D Gaussian kernel with mean [0, 0] and $\sigma=1$

A Gaussian filter also averages neighboring pixels, but gives more weight to closer neighbors. It's still a low-pass filter.

Convolution

1D Discrete Convolution

 $f[x] \star g$

1D Continuous Convolution

 $f(x) \star g$

2D Discrete Convolution

 $f[x, y] \star$

2D Continuous Convolution

 $f(x) \star g$

$$g[x] = \sum_{k=-\infty}^{k=\infty} f[k]g[x-k]$$

$$k=-\infty$$

$$g(x) = \int_{-\infty}^{\infty} f(\tau)g(x-\tau)d\tau$$

$$\star g[x, y] = \sum_{i=-\infty}^{i=\infty} \sum_{j=-\infty}^{j=\infty} f[i, j]g[x - i, y - j]$$

$$g(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau, \eta) g(x - \tau, y - \eta) d\tau d\eta$$

Convolution Theorem

$\mathcal{F}(f \star g) = \mathcal{F}(f)\mathcal{F}(g)$

- Spatial domain convolution is equivalent to frequency domain multiplication, and vice versa.
- Why useful in signal sampling and reconstruction?
 - All we observe are a finite number of samples over a small domain in f, so

 $f \star g = \mathcal{F}^{-1}(\mathcal{F}(f)\mathcal{F}(g))$

Convolution Theorem

Spatial Domain

Fourier Transform

Frequency Domain

Box Filter in Spatial and Frequency Domains

Spatial Domain

Multiplying with this spectrum attenuates high-frequency components.

Frequency Domain

Box Filter in Spatial and Frequency Domains

Spatial Domain

Wider box attenuates high frequencies even more (averaging over a larger window)

Frequency Domain

Signal Reconstruction == Convolution

 $f \star g = \mathcal{F}^{-1}(\mathcal{F}(f)\mathcal{F}(g))$

https://web.cs.ucdavis.edu/~okreylos/PhDStudies/Winter2000/SamplingTheory.html

A Few Practical Notes

Sampled Reconstructed signal signal

 $s(t) = \mathcal{F}^{-1}[\mathcal{F}(S_a(t))B(\omega)] = S_a(t) \star sinc(t)$

- - Each will give a different reconstructed signal.
- - $S_a(t)$ usually doesn't have an analytical form so its Fourier transform needs to be calculated numerically using all the samples in $S_a(t)$

• Is it a bit surprising that we can do this even without knowing the full S_a(t)?

• Answer: we can just assume the missing part of $S_a(t)$, e.g., all 0s or $S_a(t)$ being periodic.

• Even if we know S_a(t), ideal reconstruction is computationally inefficient

• *sinc*(t) has infinite support so we again must use all S_a(t) samples if we use convolution

Practically We Prefer Filters with a Finite Support

* Gaussian filter still has infinite support, but it decays exponentially so we can cut it off

Reconstruction by Convoluting with a Box Filter

 Samples
 3
 0
 0
 2

Reconstructed Signal

0 0 5 0 0 6 0 4

2 5 5 6 6 4

== Nearest Neighbor Interpolation

Reconstructed Signal

Reconstruction by Convoluting with a Hat Filter

Reconstructed Signal

2.5 2 3.5

5 0 5 0 1 0 6 0 4 0

5	5	5	3	1	3.5	6	5
---	---	---	---	---	-----	---	---

Signal

3.5 2 2.5

	5	5	5	3	1	3.5	6	5
--	---	---	---	---	---	-----	---	---

Box vs. Hat vs. Gaussian Filter

Common Filters (in 2D and 3D) 1D nearestneighbour

2D nearestneighbour

Bilinear

Bicubic

https://en.wikipedia.org/wiki/Bilinear_interpolation

Anti-Aliased Signal Reconstruction

Reconstruction filter Anti-aliasing filter (e.g., a box filter) (e.g., a sinc filter)

$$s(t) = S_a(t) \star F$$

- Convolving with multiple filters is equivalent to convolving with one composite filter.

 $F_1(t) \star F_2(t)$

 Most real-world signals are not band-limited, so perfect reconstruction is impossible. So the name of the game is to design the composite filter so that the perceptual quality of the reconstructed signal is acceptable.

Beating Nyquist-Shannon Sampling Theorem (1)

- Nyquist-Shannon sampling theorem applies to generic signals
- If signals have strong patterns (e.g., mostly <u>sparse</u> in the Fourier domain), we can sample at a much lower rate than the Nyquist rate but still obtain a good reconstruction
- The technique is called compressive sensing
 - Goal: solving for the most sparse frequency domain representation that, after IFFT, is consistent with the few samples
 - "Single-pixel" camera, CT imaging, etc.
 - Must do random sampling

Beating Nyquist-Shannon Sampling Theorem (2)

- Nyquist-Shannon sampling theorem applies to reconstruction from samples of a single signal without help from prior information
- We could also learn from prior data to reconstruct signals
 - Through machine/deep learning
 - Image inpainting, super-resolution

Beating Nyquist-Shannon Sampling Theorem (2)

(b) Object Removal

(a) Face Editing

Signal Sampling and Reconstruction in **Camera and Display**

Optical Signal on the Sensor Plane is 2D Continuous

Optical Signal on the Sensor Plane is 2D Continuous

Sensor Plane

At any position [x, y] on the sensor plane, we can calculate the amount of photons that hit the position (irradiance)

Χ

Sensor Filters and Samples the 2D Continuous Signal

What Do Camera Pixels Do?

integrates signal within each pixel ("counting photons")

== convolving the continuous signal with a box filter at the pixel positions

Pixel Array

- == **filtering** the continuous signal with a **box filter** and then **samples** at the pixel positions!

Continuous Box Filtering + 2D Sampling

Pixel Array

An Image Pixel is a Sample

У						
	220	128	89	45	120	
	23	242	120	90	130	
	127	139	92	24	125	
	130	110	41	241	38	

Image

What is an image?

X

- Each pixel value is a single sample of the filtered 2D continuous signal, representing the integrated optical power over the pixel area.
- A camera sensor pixel has an area, but an image pixel has no area!

Any image post-processing should keep this in mind.

Display Reconst. Continuous Signal w/ a Box Filter

Displays reconstruct continuous 2D signal from 2D samples (pixel values)

iPhone 6

iPhone 11

https://www.pinterest.com/pin/86694361554535525/

Sampling and Reconstruction in Camera and Display

3D continuous signal

2D continuous signal (on the sensor plane)

2D sampled signal (i.e., image) Reconstructed 3D continuous signal

Upsampling and Downsampling

Linear Interpolation (Hat Filter) 0

Sample and Hold (Box Filter) 0 00

Nearest neighbor is similar 0

- First reconstruct the underlying continuous signal through a filter
 - With potential anti-aliasing
- And then resample at a desired, higher rate
- Mathematically that's equivalent to computing the convolution only at the desired re-sampled points. Filter choice is usually empirical.

Upscaling = Reduce Frequency + Upsampling

• Theoretically:

- First "stretch" the underlying signal into a wider domain, which **reduces** the signal frequency
- Then we sample that lower frequency signal with **more** samples!
- This makes later reconstruction (e.g., by a display) easier in theory.
- If you want to capture details, take photo closer to an object or use a telephoto lens.

Downsampling

- Simply dropping samples/pixels? Why is that bad?
- using a lower rate. It would make later reconstruction harder!

Downsampling by dropping pixels

Dropping pixels is equivalent to sampling the original continuous signal

Upsampling by nearest neighbor/box filter

Downscaling = Increase Frequency + Downsampling

•	In	theory:
---	----	---------

- First "squeeze" the underlying signal into a narrower domain, which increases the signal frequency
- Then we sample that higher frequency signal with **fewer** samples!
- Now displaying the image at the downsampled resolution
 - Very hard: reconstructing a higher frequency signal from fewer samples.

Key Things to Take Away

- Nyquite-Shannon Sampling Theorem
 - Sample at 2f if f is the maximum frequency in a signal
 - Otherwise aliasing occurs.
- Anti-Aliasing
 - Pre-filter high-frequency components
 - (convolution); they are equivalent according to the Convolution Theorem
- Real-world examples:

 - Downsampling/upsampling are resampling problems

• Pre-filtering could be done either in the frequency domain or in the spatial domain

• Camera (box filter + sampling) \rightarrow Image Pixels \rightarrow Display (box filter reconstruction)

