Lecture 3: Fourier Analysis
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Logistics

 Written assignment 1 is up and is due Sept. 11 11:30 AM.

* You can work in groups of 2.

 Course schedule: https://cs.rochester.edu/courses/259/tall2024/
schedule.html. You will find reading assignments and slides.

e Some readings are on Blackboard

e Start thinking and talking to me about your final project idea.


https://cs.rochester.edu/courses/259/fall2024/schedule.html
https://cs.rochester.edu/courses/259/fall2024/schedule.html

The Roadmap

Theoretical Preliminaries

Fourier Series & Transforms



Building Intuitions
(1D)




Sinusoidal Function
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Sinusoidal Function Frequency
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Fourier Series: What It Says
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Two Examples to Build Intuition

A 1
" | | | I . nus - )
-a a 3a -t/2 T/2
A square function A hat function
Period T = 4a Period T = 2m
Frequency is 1/4a Frequency is 1/2n

Amplitude is A Amplitude is 1



First Example
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-a a 3a
A square function 4
Period T = 4a -
Frequency is 1/4a ;
Amplitude is A

Weights/Coefficients

The periodic square
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function to be represented
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\ / Add first 2 waves

la =3 33

2N

\ /|7 Add first 3 waves
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f(x) = cos —x) + cos(—x) cos(—x) +cos(—x) + .
T



Second Example
L —: The periodic hat function and the
)| /\ sum of the first seven terms

The first seven terms

0L S ,\(\«0 Zoom in so you see the
| 0 \- high-frequency part

—.00 [

0

Time

()—l hd (x) + : (3x) + ! (5x) + : (7x) +
f(x) = 517172 COS(x Gy cos(3x 57y cos(dx 777 cos(7x) + ...

Weights/Coefficients

https://math.stackexchange.com/questions/3111475/fourier-series-of-triangular-waveform DDSECh2. 10



Building Intuitions
(2D)




2D Sinusoidal Functions
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2D Sinusoidal Functions

cos(u-2v)
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cos(-2u+2v)

cos(-2u+0v)

cos(-2u-2v)
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2D Frequency Intuitions

e 2D frequencies characterize the image spatial changes in horizontal and
vertical directions

* Smooth changes —> low frequencies

e Sharp changes —> high frequencies
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cos(2u+0v) cos(Ou-v) cos(2u-2v)

15



Image = 2D Signal
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Image = 2D Signal

* An image is nothing more than a
(complicated) 2D function f(x, y)

e f(x, y) maps a pixel coordinates [x, y] to
its pixel value

 Can a 2D signal be expressed as a

weighted sum of a set of 2D sinusoidal
functions?
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W[2’ -2] X cos(2u-2v) W[2, —1] X cos(2u-v) W[21 O] X cos(2u-0v) W[ZI 1] X cos(2u+v) W[ZI 2] X cos(2u +2v)

Another Perspective
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Plotting the 2D Weights*
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* the weights are actually complex values, so we plot their magnitudes here.
https://www.theverge.com/2016/8/2/12351210/ferrari-488-spider-supercar-test-drive 20



Reconstruction By Adding Individual Terms

Reconstruction with Terms
Original Image within cos[-1,1] and cos[1,-1]

21



Reconstruction By Adding Individual Terms

Reconstruction with Terms
Original Image within cos[-3,3] and cos[3,-3]

-
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Reconstruction By Adding Individual Terms

Reconstruction with Terms
Original Image within cos[-5,5] and cos[5,-5]
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Reconstruction By Adding Individual Terms

Reconstruction with Terms
Original Image within cos[-7,7] and cos[7,-7]
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Reconstruction By Adding Individual Terms

Reconstruction with Terms
Original Image within cos[-50,50] and cos[50,-50]

—
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Manipulating the Weights
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Manipulating the Weights

Max signal freq =1/2
(Why 1/2 ?) l
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Slide credit: Ren Ng 27



Manipulating the Weights

Max signal freq =1/4
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Manipulating the Weights

Max signal freq =1/8
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Slide credit: Ren Ng 29



Manipulating the Weights

Max signal freq =1/16

L

LA .
Spatial Domain Frequency Domain

Slide credit: Ren Ng 30



Manipulating the Weights

Max signal freq =1/32
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Manipulating the Weights

Max signal freq =1/64
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A Typical Photo

Mostly low
frequency
components.

https://www.theverge.com/2016/8/2/12351210/ferrari-488-spider-supercar-test-drive 33



A Photo With Many High-Frequency Components

https://waldo.fandom.com/wiki/The_Gobbling_Gluttons 34




Original Photo
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High-Pass Filter (Removing Low-Freq Components)




Low-Pass Filter (Removing High-Freq Components)




An Application: Image Compression

Full Image Fourier Coefficients

& W
& )
£,
HN
e |
‘&

e Steps:
e Calculate the "weight” or coefficient matrix.
e Zero-out small coefficients

 Then reconstruct the image using the

remaining coefficients

Truncate
(keep 5 %)

e JPEG uses something very similar.

DDSE Ch 3. 38



An Application: Image Compression

Full image

e Steps:
e Calculate the "weight” or coefficient matrix.
e Zero-out small coefficients

 Then reconstruct the image using the
remaining coefficients

e JPEG uses something very similar.

5.0% of FFT

DDSE Ch 2.

39



How Does It Work?



Vector Norm

X

e

Vector norm HX” =V XX

n X

(3|

Unit vector
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Inner/Dot Product

X = [Xq, X>]

These two deftinitions are
Yy = [yl, y2] equivalent. Prove it in WAZ.

Geometric
definition

X -y = |IX]{]lyllcost

\ Length (norm) of x
Algebraic X Yy = le1 + X2y2

definition

0 = arccos(x-y/1x11y!)

Y

* |nner product of two vectors tells us how “similar" two vectors are.
e (O if they are orthogonal;

e Maximal it they have the same direction.

42



Vector Projection

A-B = |AlllIBllcos6

Magnitude of

projection of vector A AB — HAHCOS@ _
in the direction of B ” BH

. A-B B A-B
B

The projected vector A B=-—

Bl |IBll 1B

43



Projecting a Vector to Two Orthogonal Vectors

v T_TVx

T.
X ’ T__y
1|

"yl

T-X T-
X + y

X127 lyll2

T=I[T,T,]

T=TXx+Ty= y

* What's happened here? We can express an
arbitrary vector T using two orthogonal
"basis” vectors by projecting the vector to
the two basis vectors.
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Change of Coordinates

T-Xx T-
X T,=——r0H Ty=—y,
X[} Yl
T T-u T-v
. Tu — 5 TV — ?
(L v
T-uU T-v
u T = U + ~V
[u] v

[Tx, Tyl and [Ty, T,] are related by a
geometric transtormation. WA1 asks you to
come up with the transformation.

T=I[T,T,]

T=(T,T,

45



Functions are Vectors

e Assume functions f and g are
defined as N discrete points

e fand g are nothing more than
two N-dimensional vectors.

J= Ut hl
g=181.8,---,8l

Inner product of two N-
dimensional vectors

46



Continuous Function = Infinite-Dimensional Vector

e When t and g are continuous
functions, they can be seen as
two infinite-dimensional vectors.

e The inner product of two g(x)
continuous functions is the
J(x)

integration of the product.

e Use complex conjugate of g it they are )‘c Ly
complex-valued. 1

Inner product of two f g = J n f(x)g(X)dX

continuous functions
X1

47



Function Inner Product

xn
Inner product of two continuous functions f g = J f(x)g(x)dx

X1

xl’l

Function f and g are orthogonal if: f g = J f(x)g(x)dx = ()

X1

An , 1/2
Norm of a function g is: HgH — (J' g(x) dX)

X1

* An infinite-dimensional space that also defines vector operations (e.g., dot
product) is called a Hilbert space.

48



Vector vs. Function Projection

Vector A projected to
vector B

Function f projected to
function g

_ /-8
2|7

I g

49



Recall: Expressing a Vector Using Basis Vectors

* We can express a 2D vector as a sum of two orthogonal basis vectors.

* By projecting T to the two basis vectors

T. T.
T=—— > Y

= X + y
Ix[]= lyll>

50



Expressing a Function as Basis Functions

e Similarly, we can express a function using “basis functions”.

e How many basis functions do we need?

* Expressing a continuous function requires infinitely many basis functions.

e Basis functions must be orthogonal.

T-X T‘y > f’ Vi
TETTE Zl E

v1, v2, ... are orthogonal functions

51



Problem Setup

e Now assuming we have a continuous function f defined over [t, t+L)

* How do we represent f as a sum of a set of basis functions?

e The basis functions need to be defined over [t, t+L) too.

T-X T‘y > f’ Vi
TETTE Zl E

v1, v2, ... are orthogonal functions

52



A Special Set of Orthogonal Basis Functions

27k X = 27k x = mutuall |
: y orthogonal functions
{COS( L ) }k—O’ {Sln( L ) }k—l, K A on any [t, t+L) interval

(O?Z'X) (27rx> (47zx) (67zx> , <27zx> , (47rx> , (672')6)
COS , COS , COS , COS ,...,8n , Sin , SIN
L L L L L L L

+L

2nx\ [ 6mx
For instance: J cos< )sm( )dx = ()
t L L

The sine series starts from k=1, since
ol k=0 leads to a function that’s O
27x Omx everywhere, i.e. a 0-norm vector.
COS COS dx =0

L L

[

https://tutorial.math.lamar.edu/classes/de/PeriodicOrthogonal.aspx 53



Fourier Series

) )
/- e {3 )
K _

f(x) = Z Os(zjzcx)) +gin(2i€x>),x€ 7,1+ L)

o (on(22)

Ay
2rkx 9
Jcos( 22 )|

. : 2rwkx .
= %JHL f(x)cos< AT )dx, if k#0 b, = " <Sm( - >> = - J Lf(x)sin< 27Z<x )dx

L . 2rkx o) z
Isin( 22 )|

1r+Lf() <2ﬂkx>d £ k=0
— X)COS X, l —
L), L

https://math.stackexchange.com/questions/1161147/why-does-a-fourier-series-have-a-1-2-in-front-of-the-a-0-coefficient 54



Fourier Coefficients

* Rearrange terms to get a more compact equation.

e 3, and by are called the Fourier coefficients of f(x).

£ “Mi( (Z”kx)m ' (Z”kx)) e [t1+1L), ke Z*
X)) =m — a,CoS Sin 9-x ° y
R e ) VL

. % Lt+L frcos ( 2rkx )dx b, = 3 Lt+L fsin ( 27k Xx ) I

L L L
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Fourier Coefficients

* Rearrange terms to get a more compact equation.

e 3, and by are called the Fourier coefficients of f(x).

f(x) = % + g (a,cos(wx) + by sin(w, x))

2 [~ 2 [~
a, = ZJ' f(x)cos(w,x)dx b, = ZJ fx)sin(w,x)dx
0 0

2k

C()kz_

56



Frequency

e As k increases, the frequency of the basis functions increase.

f(x) = ? + Z (a,cos(wx) + by sin(w, x)) W, = z_kﬂ
k=1

2 [~ 2 [~
a, = ZJ' f(x)cos(w,x)dx b, = ZJ fx)sin(w,x)dx
0 0

57



Frequency-Domain Representation of a Function

* \We have converted a function f(x) into an infinite sequence of ax and by

 The (infinite) coefticient sequence is called the frequency-domain
representation, or the spectrum, of the function f.

f(x) = ? + Z (a,cos(wx) + by sin(w, x)) W, = z_kﬂ
k=1

2 [~ 2 [~
a, = ZJ' f(x)cos(w,x)dx b, = ZJ fx)sin(w,x)dx
0 0

58



Applies to Only Periodic Functions

e \We assumed f and the basis functions are
defined only over a fixed internal [t, t+L)

e But sinusoidal functions have infinite span;
they are not limited to a fixed interval

e What it we just add the Fourier series over
the entire span?

e We will generate a L-periodic function!

>

t t+L

=<,

59



Fourier Series: What It Says
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Back To the First Example Dk

) =
A L
A d - .
f(x) = > + Z (a,cos(w,x) + b sin(w; x))
. | | | I k=1
-a a 3a 2 A
a, = T f(x)cos(w,x)dx
A square function /
Period L = 4a o ks |
Frequency is 1/4a b = ZJ Jx)sin(ax)dx
Amplitude is A t
~
) A+2A (1 )+—2A (3 )_I_ZA (5 )+—2A (7 4
X) = — 4+ —cos(—x coS(—x) + — cos(—x cos(—x) + ...
2 T 4a R/ 4a Sr 4a In 4a




Back To the First Example

AA A = kr . kr
-a d 3a _ LJ'Ba ( ) (E )d
ak_Za _anCOS 2ax X
b _nga (x) '(E )d
L= _afxsm 2ax X
~
A 2A 1 —2A 3 2A S —2A 7
f(x) =— +—cos(—x) + cos(—x) + — cos(—x) + cos(—x) + ...

2 T da RY/1 da Sr da T da

62



Back To the First Example

] |_| [ f(x) ﬂ+ 2 (akcas(—x) + bksm(k—x))

ki
— J f(x)cos(—x)dx
2a

U= 2a
1 raﬂ) X ydx = - Jgaﬂ )x = —2aA = A
Ay = — xX)cos(—x)dx = — xX)dx = —2a
07 24 . 2a 2a )_, 2a
~
Al 24 1 —2A 3 2A 5 —2A 7
f(x) =|— H —cos(—x) + cos(—x) + — cos(—x) + cos(—x) + ...

2 T da RY/1 da Sr da T da
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Why No Sine Term?

1 — 4 2 (akcas(—x) + bksm(k—x))
2a

) a 3 y A L 3 hhidd
=5 J a f(x)sm( > x)dx

* The period of the sine functions are 4a/k, i.e., 4a, 2a, a, a/2, ...

64



Why No Sine Term?

AA A — kr - kn
1 X) > kzzl (a,cos( > x) + bsin( > X))
\ [/ 4/ : _lra()'(kﬂ)d

= _afx sin _Zax X

* The period of the sine functions are 4a/k, i.e., 4a, 2a, a, a/2, ...

e Since sine is an odd function, by always becomes 0

~
) A+2A (1 )+—2A (3 )_I_ZA (5 )+—2A (7 4
x) = — 4+ —cos(—x coS(—x) + — cos(—x cos(—x) + ...
2 T da RY/ da Sr da I da

65



Even Functions Need only Cosine Terms

1 4 1 4
f0) = 7+ 5 005() 75 008(3) + -5 oS5 +

cos(7x)+ ...

-a a 3a
) A_I_ZA (1 )+—2A (3 )+2A (5 )+—2A : 4
X) = — 4+ —cos(—x coS(—x) + — cos(—x cos(—x) + ...
2 T da RY/1 da Sr da T da
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Gibbs Phenomena (Ringing)

1.5 ! !
1.0} S 5
05F /- \ ...........................
0.0 |

—0.5

—1.0

130 0.5 1.0

Sudden change of value in a signal
requires extremely high-frequency
signals to represent.

We say the signal “contains high-
frequency components.”

https://en.wikipedia.org/wiki/Gibbs_phenomenon

5 basis functions

25 basis functions

125 basis functions

67



Complex Basis
Functions




Complex Basis Functions

: =co
ikmx —inx —inx 107x i1 7x
{eL} , XE€|-L,L), ke 7 {,.,,eL,eL,eL,eL,...}

_ ik[’fx ¢ , ¢ _ O’ If i #]9 Mutually orthogonal vectors over |-
¢k — ¢ LT ZL, if ; :j. L, L) with a norm of sgrt(2L)



Complex Fourier Series

e Can prove equivalence using Euler’s formula: eikx =cos(kx)+ i sin(kx)

e More general and concise

ikmx

¢k — e L
=) o
k=—o00
_f(x)'¢k_i - — _L L —ifzx
TR T 2L [_Lf P =7 J_Lf et dx

70



Geometric Interpretation

* {c}is a Hilbert-space vector transformed from f, another Hilbert-space
vector.

e \What kind of transtormation is this?

. P P G [ X G| =S

/1



Discrete Fourier
Transform (DFT)



Recall: Fourier Series

N

[ t+ L

<N\ N\
AVAVAVAVAV




Recall: Fourier Series

NV

¥ t+ L

* Fourier series applies to:

e Finite interval (say L) + Continuous function

* Or equivalently: an L-periodic function with an infinite span

 We need infinitely many basis functions, since a continuous function is an
infinitely-dimensional vector

74



Real-World Scenarios Impose Restrictions

Ao X1 X2 An—1

* |n real-world applications, the signals we obtain are discrete samples over
a finite interval

e Forinstance, audio files are usually 44.1 kHz, i.e., 44,100 samples per second
e \We need a discrete form of Fourier series

e Given a sequence of n points, express it as a sum of other sequences

e This time, we need n other sequences

75



Discrete Complex Basis Functions

127jk .
{g 7 }, ] € [O, 1, N (e 1] are n mutually orthogonal n-dimensional vectors

10k 12tk 14k 167tk
{ [ ] { (] ’ e n ’ e n , e n , e n , { L { }

kelO, 1,...,n—1]

n—1
2nk idrk
For instance: E e nen = O

k=0

/6



Discrete Fourier Transform (Series)

n—1 R
A 12mjk A —i27jk
f=—Yf e fe= ) fier kel01,....n—1]
Jj=0 )

e This is called Discrete Fourier Transform

e But it's a misnomer; should really be called Discrete Fourier Series

e Fast Fourier Transtform (FFT) is a fast way to calculate DFT

* Project to the basis vectors and calculate the DFT coefticients

e Note that these basis functions are not a subset of the those used in the

continuous casel

a4



DFT Matrix

/8



DFT Interpretation

* { now is a N-dimensional vector; it can be represented by projecting to N
mutually orthogonal vectors.

e DFT transforms a N-dimensional vector to another N-D vector.

fi Jo
1 1 1 1 .,
2 n—1 fl fl
1l o, w;, w,
1 a),% a),ff a),f(”_l) X =
1 o' ! @D w1 Jn=2 12
Jn-1 )

79



Discrete Fourier Transform

Jr = Ji
S G e S DFT . >CWW

0. 1 k\ "' b|' f \ r”“"l ,'A
\ | ll W ;" "' /\ a_ /
0' | ‘¢ \ /‘\.' | .‘ |. | . "v
0 o .I'u.“ “} l‘ l\/ |' " I'\/\ .t' '/ l| "/\||II| / \..l 'l‘ 1 0
',. l' "‘v“l 'l [ | |'-v."'

\ /

] - V V ‘
02 50 100 150 200 250 < ' I nverse D FT < | ST o 0 50 100
- —————

https://www.math.ucdavis.edu/~strohmer/research/sampling/irsampl.html 80



Another Application: Signal Denoising

‘, x‘ﬂ

|

|

““ "‘ '

|

Clean
Noisy

I
| 1\ VAN
o\ M A AT TR
’ ' \ ' 1 ‘ ’ '
0.05 01 0.15 0.2 0.25
Time [s]
|
— Noisy
Filtered
A TS . AI._AAA. Ao PO L i ' B S oA A A BV AR M AN AN AN AWTNPLY A A AR N LW W, RAAA 2 SRA N = o A
0 20 100 150 200 250 300 350 400 450 500
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f(t) = sin(2xft) + sin(2xf,t) + noise

fi=50 f,=120
flw) = DFT(f(t))

l

Remove low-magnitude

A\

frequency components f/(a))

l

f(?) = IDFT(f(w))

DDSE Ch 2.

81



2D DFT



Function value is constant

2D Basis Functions where x+2y is constant
“image” of cos(x + 2y)

Real Bases ‘

{sin(ux + vy), cos(ux + vy) }, (u,v) € 7

Complex Bases

Y (y,v) € 7
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2D Discrete Fourier Transform

1D DFT 2D DFT
1 o A 127jk 1 217z(ux+vy)
fi=—2 e flxy] = — ZZF[uv]
J=0 u=0 v=0

Flu,v] = Z Zf[x yle i

x=0 y=0
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2D DFT

fooy) s 33l Fu, v)

x=0 y=0
f(),O fO,n—l FO,O FO,n—l
fl,O fl,n—l | :> <D DFT | :> FI,O Fl,n—l
Ja20 " Jn-2a < Inverse 2D DFT < e
Jom10 F,io - F

n—1,n—1
f[x, y] _ 1 S Z 2 Flu.v] e 217z(ux+vy)

u=0 v=0

https://www.math.ucdavis.edu/~strohmer/research/sampling/irsampl.html 85



2D DFT Coefficients of a Typical Image

Mostly low frequency
components

https://www.theverge.com/2016/8/2/12351210/ferrari-488-spider-supercar-test-drive 86



DFT Coefficients Are Periodic

Object
f(m,n)

—
0

N-1

m Q

N

N-1

i DFT

Non-Centred

DFT F(k,L)

N-1 LN N

Extended DFT Calculated at all k.1

n—1 n—1

—2in(ux + vy)

- —~ | T | T —

ARy Pt A Flu,v] = flx,y] e
/"J( ,l""/——--/' \( \‘]L'\ j}/ ,.""/—-- ’ ~\(\\ \‘i‘\ ,/':I/ ,-""/—-‘/ / \z\ ‘i:‘\
\,\ \ J /; ':\ L / / ‘:\ N\ r / — () — O
2NN x=0 y=

L __5/ S ,-)/ b ,_,':-/

N/2

e | -1 ——— —

P2kt Pant A Flk,ky| = Fln+ ky,n + k,|
{ ~ 1 ) C A~ U
/ ! N\ \ /! e l'\‘*-. / /[ ' \
\\\ \2- /‘:. f// -N/D \'\, \.L ( ) / N/2-1 \\I . .

P\\ ~/ — y ) |\\\ J‘ yand ’/} -:\\ z,\ //__,' )

v S S | ¢ —

Flk,,k,| = Fln — k{,n — k,]

1 ™ Y

P S N 1™

f/ I~ N // b K / | \
S U j R {1
U R RPN

. Ay .

v . ( ¢

http://fy.chalmers.se/~romeo/RRY025/notes/E1.pdf 87



What are “Negative” Frequencies?

y * |n this example:

e Counterclockwise rotation has an angular
frequency of 1/8 Hz (cycles/second)

e Clockwise rotation has a frequency of 7/8 Hz

* |f we sample the position of the wheel every 1s,
both rotations have the same observable effect

e |f clockwise rotation has a positive frequency,
counterclockwise rotation has a negative freq.

e Aliasing: when we are sampling not
frequently enough, high freq. info.
masquerades as low freq. info.

88



DFT Coefficients are Symmetric in Magnitude

v

‘F[_kla _ kZ]‘ — |F[k19k2]|
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Fourier Transform




What About Non-Periodic Functions?

* Fourier series is concerned with L-periodic functions.

 What about a general, potentially non-periodic function? Does the Fourier
theory still apply to it?

* |dea: let L approach infinity and see how the Fourier series change!
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As L Approaches Infinity

: kr N - 1 - \
W), = - J(x) = 2 Cp €% Cp, = —J f(x)e " dx
0 k=—00 2L —L )

Frequency Coefft.

Wy_» /\/\/\ Cr—2 = ’
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As L Approaches Infinity

-
k N i 1 (- |

W, = Tﬂ J(x) = 2 Cr €7F Cp = ZJ f(x)e " dx

0 k=—00 —L

~

W

* As L approaches «, the infinite
sequence of Fourier coefficients

becomes a continuous function F(w).
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As L Approaches Infinity

J(x) = Z ¢ €'

o0

k=—o0

Cr

Y

1 (L
J f(x)e ™" dx
—L

~

W,

()—L
fx_Z]t

v L— o0

J OoF (w)e' " dw Flw) = [

I1im

I1im

v L— o0

+ 00

— OO0

f(x)e_iwxdx
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Fourier Transform

Flw) = J ) f(x)e " dx

J(x) o Fw)

Time/Spatial Domain/

Domain
<} | Inverse Transform <} | Spectrum
g W, \_ W,

f(x) = i[ ) F(w)e'*dw
2m ) _

https://www.math.ucdavis.edu/~strohmer/research/sampling/irsampl.html 95



Key Things to Take Away

e Signals
e Audio waves are discrete 1D signals (in the time domain)

* |Images are discrete 2D signals (in the spatial domain)

* Any time/spatial domain signals can be converted to frequency domain

e Frequency domain representation of signal is called spectrum

* Fourier series applies to continuous L-period signals
* Discrete Fourier Transform applies to discrete L-period signals

* Fourier Transform applies to non-periodic continuous signals
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Key Things to Take Away

e How to tell frequency from images?

e “Busy” areas or sudden changes (e.g., edge) correspond to high frequency components

* Smooth areas are generally of lower frequency

* Removing low/high frequency components from the spectrum
corresponds to sharpening/blurring images in spatial domain
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