Yuhao Zhu

<http://yuhaozhu.com> yzhu@rochester.edu

Lecture 3: Fourier Analysis

CSC 259/459, Fall 2024 Computer Imaging & Graphics

Logistics

- Written assignment 1 is up and is due Sept. 11 11:30 AM.
- You can work in groups of 2.
- Course schedule: [https://cs.rochester.edu/courses/259/fall2024/](https://cs.rochester.edu/courses/259/fall2024/schedule.html) [schedule.html.](https://cs.rochester.edu/courses/259/fall2024/schedule.html) You will find reading assignments and slides.
	- Some readings are on Blackboard
- Start thinking and talking to me about your final project idea.

Digital Camera Imaging

Color in Nature, Arts, & Tech (a.k.a., the birth, life, and death of light)

The Roadmap

Theoretical Preliminaries

Human Visual Systems

Modeling and Rendering

Applications

Geometric Transformations

Fourier Series & Transforms

Sampling & Reconstruction

Building Intuitions

(1D)

Sinusoldal Functi Sinusoidal Function

Repeating at an interval of 1, i.e., period $(T) = 1$ "Even" function

Repeating at an interval of 1, i.e., period $(T) = 1$ "Odd" function

Slide credit: Ren Ng 5

SINUSOIDAI FUREDRY E Sinusoidal Function Frequency

 $f =$ 1 *T*

 $\cos 4\pi x$

Slide credit: Ren Ng 6

Fourier Series: What It Says

7

Any periodic function can be represented as an infinite sum of weighted sines and cosines with increasing frequencies.

Joseph Fourier (1768 – 1830)

A hat function Period T = 2π Frequency is $1/2\pi$ Amplitude is 1

Two Examples to Build Intuition **…** A -a a **… …** 3a

A square function Period $T = 4a$ Frequency is 1/4a Amplitude is A

Amplitude is A A square function Period $T = 4a$ Frequency is 1/4a

Weights/Coefficients

f

 \hat{f}

Second Example

Weights/Coefficients

The first seven terms

$$
(3x) + \frac{4}{(5\pi)^2} \cos(5x) + \frac{4}{(7\pi)^2} \cos(7x) + \dots
$$

Building Intuitions

(2D)

2D Sinusoidal Functions

cos(u-v) cos(u-v) is constant where u-v is constant

2D Sinusoidal Functions

cos(u-2v) cos(u-2v) has the same value cos(u-2v) has the same value with u-2v is constant

cos(-2u+0v)

2D Frequency Intuitions

• 2D frequencies characterize the image spatial changes in horizontal and

- vertical directions
	- Smooth changes \longrightarrow low frequencies
	- Sharp changes —> high frequencies

Image = 2D Signal

Image = 2D Signal

- An image is nothing more than a (complicated) 2D function *f(x, y)*
- *f(x, y)* maps a pixel coordinates [x, y] to its pixel value
- Can a 2D signal be expressed as a weighted sum of a set of 2D sinusoidal functions?

Decomposing 2D Signals

=

https://www.theverge.com/2016/8/2/12351210/ferrari-488-spider-supercar-test-drive

…

Another Perspective

100

19

=

Plotting the 2D Weights*

* the weights are actually complex values, so we plot their magnitudes here. **Inthe State Artical Active** https://www.theverge.com/2016/8/2/12351210/ferrari-488-spider-supercar-test-drive

Original Image

Reconstruction with Terms within $cos[-1,1]$ and $cos[1,-1]$

Original Image

Reconstruction with Terms within $cos[-3,3]$ and $cos[3,-3]$

Original Image

Reconstruction with Terms within $cos[-5,5]$ and $cos[5,-5]$

Original Image

Reconstruction with Terms within $cos[-7,7]$ and $cos[7,-7]$

Original Image

Reconstruction with Terms within cos[-50,50] and cos[50,-50]

Spatial Domain Frequency Domain

Slide credit: Ren Ng 26

Slide credit: Ren Ng 27 CS184/284A Ren Ng

Manipulating the Weights

Spatial Domain Frequency Domain

CS184/284A Ren Ng Slide credit: Ren Ng ²⁸

Manipulating the Weights

Spatial Domain Frequency Domain

CS184/284A Ren Ng Slide credit: Ren Ng ²⁹

Manipulating the Weights

Spatial Domain Frequency Domain

Spatial Domain Frequency Domain

CS184/284A Ren Ng Slide credit: Ren Ng 30

Spatial Domain Frequency Domain

CS184/284A Ren Ng Slide credit: Ren Ng 31

Spatial Domain Frequency Domain

CS184/284A Ren Ng Slide credit: Ren Ng 32

A Typical Photo

https://www.theverge.com/2016/8/2/12351210/ferrari-488-spider-supercar-test-drive

A Photo With Many High-Frequency Components

Original Photo

High-Pass Filter (Removing Low-Freq Components)

Low-Pass Filter (Removing High-Freq Components)

• Steps:

- Calculate the "weight" or coefficient matrix.
- Zero-out small coefficients
- Then reconstruct the image using the remaining coefficients
- JPEG uses something very similar.

Full Image Fourier Coefficients

An Application: Image Compression and white image, there are 2⁴⁰⁰ distinct possible images, which is larger than the ably more staggering for higher resolution images with greater color depth.

Compressed Image

An Application: Image Compression

• Steps:

- Calculate the "weight" or coefficient matrix.
- Zero-out small coefficients
- Then reconstruct the image using the remaining coefficients
- JPEG uses something very similar.

1.0% of FFT 0.2% of FFT

Full image 5.0% of FFT

How Does It Work?

Vector Norm

Vector norm $\|\textbf{X}\| = \sqrt{\textbf{X} \cdot \textbf{X}}$ Unit vector $\hat{\mathbf{X}} =$ ̂ **x** ∥**x**∥

x

Inner/Dot Product

Algebraic definition

• Inner product of two vectors tells us how "similar" two vectors are.

$\textbf{Geometric}$ $\textbf{X} \cdot \textbf{y} = ||\textbf{x}|| ||\textbf{y}|| cos \theta$ definition $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}_1 \mathbf{y}_1 + \mathbf{x}_2 \mathbf{y}_2$ $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2]$ $\mathbf{y} = [\mathbf{y}_1, \mathbf{y}_2]$ **Length (norm) of x** These two definitions are equivalent. Prove it in WA2.

- 0 if they are orthogonal;
- Maximal if they have the same direction.

Vector Projection

$$
\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| \cos \theta
$$

Magnitude of projection of vector A in the direction of B $A_B = ||A||cos\theta =$ **A** ⋅ **B** ∥**B**∥

The projected vector ̂ = **A** ⋅ **B** ∥**B**∥ **B** ∥**B**∥ = **A** ⋅ **B** ∥**B**∥²

Projecting a Vector to Two Orthogonal Vectors $T_x =$ **T** ⋅ **x** $\overline{\|\mathbf{x}\|}$, $T_y =$ **T** ⋅ **y** $\frac{1}{\|\mathbf{y}\|}, \quad \mathbf{T} = [T_x, T_y]$ **y T** $T = T_x \hat{\mathbf{x}} + T_y \hat{\mathbf{y}} =$ ̂ **T** ⋅ **x** ∥**x**∥² **x** + **T** ⋅ **y** [∥]**y**∥² **^y** T_{y}

-
-

• What's happened here? We can express an arbitrary vector T using two orthogonal "basis" vectors by projecting the vector to the two basis vectors.

Change of Coordinates **x y T uv** T_{r} T_{y} T_{u} T_{v}

 $[T_{x}, T_{y}]$ and $[T_{u}, T_{v}]$ are related by a geometric transformation. WA1 asks you to come up with the transformation.

 $T_u =$ **T** ⋅ **u** $\frac{1}{\|u\|}, \quad T_{\nu} =$ **T** ⋅ **v** $\frac{1}{\|\mathbf{V}\|}, \quad \mathbf{T} = [T_u, T_v]$ $T =$ **T** ⋅ **u** [∥]**u**∥² **^u** ⁺ **T** ⋅ **v** ∥**v**∥² **v** $T_x =$ **T** ⋅ **x** $\overline{\|\mathbf{x}\|}$, $T_y =$ **T** ⋅ **y** $\frac{1}{\|\mathbf{y}\|}, \quad \mathbf{T} = [T_x, T_y]$

Functions are Vectors

- Assume functions f and g are defined as N discrete points
- f and g are nothing more than two N-dimensional vectors.

Inner product of two Ndimensional vectors

$$
f = [f_1, f_2, \dots, f_n]
$$

$$
g = [g_1, g_2, \dots, g_n]
$$

Continuous Function = Infinite-Dimensional Vector

- When f and g are continuous functions, they can be seen as two infinite-dimensional vectors.
- The inner product of two continuous functions is the integration of the product.
	- Use complex conjugate of g if they are complex-valued.

continuous functions

Function Inner Product

Inner product of two continuous functions

Function *f* and *g* are orthogonal if:

$$
f \cdot g = \int_{x_1}^{x_n} f(x)g(x)dx
$$

$$
f \cdot g = \int_{x_1}^{x_n} f(x)g(x)dx = 0
$$

$$
||g|| = \left(\int_{x_1}^{x_n} g(x)^2 dx\right)^{1/2}
$$

Norm of a function *g* is:

• An infinite-dimensional space that also defines vector operations (e.g., dot product) is called a *Hilbert space*.

Vector vs. Function Projection

Vector A projected to vector B

Function *f* projected to function *g*

Recall: Expressing a Vector Using Basis Vectors

• We can express a 2D vector as a sum of two orthogonal basis vectors.

- - By projecting T to the two basis vectors

T = **T** ⋅ **x** ∥**x**∥² **x** + **T** ⋅ **y** [∥]**y**∥² **^y**

y

Ty

Expressing a Function as Basis Functions

- Similarly, we can express a function using "basis functions".
	- How many basis functions do we need?
- Expressing a continuous function requires infinitely many basis functions.
	- Basis functions must be orthogonal.

$T = \frac{1}{\|\mathbf{x}\|^2} \mathbf{x} + \frac{1}{\|\mathbf{y}\|^2} \mathbf{y}$ $f = \sum_{i=1}^{\infty} \frac{1}{\|v_i\|^2} v_i$ **T** ⋅ **x** ∥**x**∥² **x** + **T** ⋅ **y** [∥]**y**∥² **^y**

$$
f = \sum_{i=1}^{\infty} \frac{f \cdot v_i}{\|\nu_i\|^2} v_i
$$

v1, v2, … are orthogonal functions

Problem Setup

- Now assuming we have a continuous function f defined over [t, t+L) • How do we represent *f* as a sum of a set of basis functions? • The basis functions need to be defined over [t, t+L) too.
-
-

$T = \frac{1}{\|\mathbf{x}\|^2} \mathbf{x} + \frac{1}{\|\mathbf{y}\|^2} \mathbf{y}$ $f = \sum_{i=1}^{\infty} \frac{1}{\|v_i\|^2} v_i$ **T** ⋅ **x** ∥**x**∥² **x** + **T** ⋅ **y** [∥]**y**∥² **^y**

$$
f = \sum_{i=1}^{\infty} \frac{f \cdot v_i}{\|\nu_i\|^2} v_i
$$

v1, v2, … are orthogonal functions

A Special Set of Orthogonal Basis Functions

$$
\left\{ \cos\left(\frac{2\pi kx}{L}\right) \right\}_{k=0}^{\infty}, \quad \left\{ \sin\left(\frac{2\pi kx}{L}\right) \right\}_{k=1}^{\infty}, \quad k \in \mathbb{Z} \qquad \text{mutually orthogonal functions} \tag{t, t+L interval}
$$

$$
cos\left(\frac{0\pi x}{L}\right), cos\left(\frac{2\pi x}{L}\right), cos\left(\frac{4\pi x}{L}\right), cos\left(\frac{6\pi x}{L}\right), ..., sin\left(\frac{2\pi x}{L}\right), sin\left(\frac{4\pi x}{L}\right), sin\left(\frac{6\pi x}{L}\right), ...
$$

k=0 leads to a function that's 0 everywhere, i.e. a 0-norm vector.

For instance:
$$
\int_{t}^{t+L} cos\left(\frac{2\pi x}{L}\right) sin\left(\frac{6\pi x}{L}\right) dx = 0
$$

The sine series starts from k=1, since
k=0 leads to a function that's 0
everywhere, i.e. a 0-norm vector.

t

Fourier Series

$$
f = \sum_{i=1}^{\infty} \frac{f \cdot v_i}{\|v_i\|^2} v_i \qquad v_i \in \left\{ \left\{ \cos\left(\frac{2\pi kx}{L}\right) \right\}_{k=0}^{\infty}, \left\{ \sin\left(\frac{2\pi kx}{L}\right) \right\}_{k=1}^{\infty}, x \in [t, t+L) \right\}
$$

$$
f(x) = \sum_{k=0}^{\infty} \left(a_k \cos\left(\frac{2\pi kx}{L}\right) \right) + \sum_{k=1}^{\infty} \left(b_k \sin\left(\frac{2\pi kx}{L}\right) \right), x \in [t, t+L)
$$

$$
a_k = \frac{f(x) \cdot \left(\cos\left(\frac{2\pi kx}{L}\right) \right)}{\left| \left| \cos\left(\frac{2\pi kx}{L}\right) \right| \right|^2} = \frac{2}{L} \int_{t}^{t+L} f(x) \cos\left(\frac{2\pi kx}{L}\right) dx, \quad \text{if} \quad k \neq 0 \quad b_k = \frac{f(x) \cdot \left(\sin\left(\frac{2\pi kx}{L}\right) \right)}{\left| \left| \sin\left(\frac{2\pi kx}{L}\right) \right| \right|^2} = \frac{2}{L} \int_{t}^{t+L} f(x) \sin\left(\frac{2\pi kx}{L}\right) dx
$$

$$
= \frac{1}{L} \int_{t}^{t+L} f(x) \cos\left(\frac{2\pi kx}{L}\right) dx, \quad \text{if} \quad k = 0
$$

Fourier Coefficients

- Rearrange terms to get a more compact equation.
- a_k and b_k are called the **Fourier coefficients** of $f(x)$.

$$
f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2\pi kx}{L}\right) + b_k \sin\left(\frac{2\pi kx}{L}\right) \right), \, x \in [t, t + L), \, k \in \mathbb{Z}^+
$$

$$
a_k = \frac{2}{L} \int_t^{t+L} f(x) \cos\left(\frac{2\pi kx}{L}\right) dx \qquad b_k =
$$

$$
b_k = \frac{2}{L} \int_t^{t+L} f(x) \sin\left(\frac{2\pi kx}{L}\right) dx
$$

Fourier Coefficients

- Rearrange terms to get a more compact equation.
- a_k and b_k are called the Fourier coefficients of $f(x)$.

2 *L* ∫ *L* 0 $f(x)sin(\omega_k x)dx$

 $\omega_k =$ 2*kπ L*

$$
f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k cos(\omega_k x))
$$

$$
a_k = \frac{2}{L} \int_0^L f(x) \cos(\omega_k x) dx \qquad b_k =
$$

 $+ b_k sin(\omega_k x))$

Frequency

• As k increases, the frequency of the basis functions increase.

2 *L* ∫ *L* 0 $f(x)sin(\omega_k x)dx$

$$
f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k cos(\omega_k x))
$$

 $\omega_k =$ 2*kπ L*

$$
a_k = \frac{2}{L} \int_0^L f(x) \cos(\omega_k x) dx \qquad b_k =
$$

 $+ b_k sin(\omega_k x))$

Frequency-Domain Representation of a Function

- We have converted a function $f(x)$ into an infinite sequence of a_k and b_k .
- The (infinite) coefficient sequence is called the frequency-domain representation, or the spectrum, of the function *f*.

$$
f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k cos(\omega_k x))
$$

$$
(a_k cos(\omega_k x) + b_k sin(\omega_k x))
$$

$$
a_k = \frac{2}{L} \int_0^L f(x) \cos(\omega_k x) dx \qquad b_k = \frac{2}{L} \int_0^L f(x) \sin(\omega_k x) dx
$$

$$
\omega_k = \frac{2k\pi}{L}
$$

Applies to Only Periodic Functions

- We assumed *f* and the basis functions are defined only over a fixed internal [t, t+L)
- But sinusoidal functions have infinite span; they are not limited to a fixed interval
- What if we just add the Fourier series over the entire span?
- We will generate a L-periodic function!

Fourier Series: What It Says

Fourier coefficients **Basis functions**

Any periodic function can be represented as an infinite sum of weighted sines and cosines with increasing frequencies.

Joseph Fourier (1768 – 1830)

2 *L* ∫ *t*+*L t* $f(x)sin(\omega_k x)dx$ $\omega_k =$ 2*kπ L*

$f(x) =$ *a*0 2 + ∞ ∑ *k*=1 $(a_k cos(\omega_k x) + b_k sin(\omega_k x))$

3 4*a x*) + 2*A* 5*π* cos(5 4*a* $(x) + \frac{-2A}{7}$ 7*π* cos(7 4*a* $x) + \ldots$

$$
= \frac{2}{L} \int_{t}^{t+L} f(x) cos(\omega_{k} x) dx
$$

Back To the First Example A -a a **… …** 3a $f(x) =$ *a*0 2 + ∞ ∑ *k*=1 (*akcos*(*kπ* 2*a* $(x) + b_k sin(x)$ *kπ* 2*a* $a_k =$ 1 2*a* ∫ 3*a* −*a f*(*x*)*cos*(*kπ* 2*a x*)*dx* b_k = 1 2*a* ∫ 3*a* −*a f*(*x*)*sin*(*kπ* 2*a x*)*dx* $f(x) =$ *A* 2 + 2*A π* cos(1 4*a* $(x) + \frac{-2A}{2}$ 3*π* cos(3 4*a x*) + 2*A* 5*π* cos(5 4*a* $(x) + \frac{-2A}{7}$ 7*π* cos(7 4*a* $x) + \ldots$

$$
= \frac{1}{2a} \int_{-a}^{3a} f(x) cos(\frac{k\pi}{2a}x) dx
$$

$$
= \frac{1}{2a} \int_{-a}^{3a} f(x) sin(\frac{k\pi}{2a}x) dx
$$

$$
\frac{3}{4a}x) + \frac{2A}{5\pi} \cos(\frac{5}{4a}x) + \frac{-2A}{7\pi} \cos(\frac{7}{4a}x) + \dots
$$

Back To the First Example

 $f(x) =$ *a*0 2 + ∞ ∑ *k*=1 (*akcos*(*kπ* 2*a* $(x) + b_k sin(x)$ *kπ* 2*a*

1 2*a* ∫ 3*a* −*a f*(*x*)*cos*(*kπ* 2*a x*)*dx*

$$
a_0 = \frac{1}{2a} \int_{-a}^{3a} f(x) \cos(\frac{0\pi}{2a}x) dx = \frac{1}{2a} \int_{-a}^{3a} f(x) dx = \frac{1}{2a} 2aA = A
$$

$$
f(x) = \frac{A}{2} + \frac{2A}{\pi} \cos(\frac{1}{4a}x) + \frac{-2A}{3\pi} \cos(\frac{3}{4a}x) + \frac{2A}{5\pi} \cos(\frac{5}{4a}x) + \frac{-2A}{7\pi} \cos(\frac{7}{4a}x) + \dots
$$

Why No *Sine* Term? A a a a **… …** 3a

• The period of the *sine* functions are 4a/k, i.e., 4a, 2a, a, a/2, …

Why No *Sine* Term?

$$
x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(\frac{k\pi}{2a}x) + b_k \sin(\frac{k\pi}{2a}))
$$

- The period of the *sine* functions are 4a/k, i.e., 4a, 2a, a, a/2, …
- Since *sine* is an odd function, b_k always becomes 0

$$
= \frac{1}{2a} \int_{-a}^{3a} f(x) sin(\frac{k\pi}{2a}x) dx
$$

$$
f(x) = \frac{A}{2} + \frac{2A}{\pi} \cos(\frac{1}{4a}x) + \frac{-2A}{3\pi} \cos(\frac{3}{4a}x) + \frac{2A}{5\pi} \cos(\frac{5}{4a}x) + \frac{-2A}{7\pi} \cos(\frac{7}{4a}x) + \dots
$$

Even Functions Need only Cosine Terms A $f(x) =$ 1 2 + 4 *π*2 $\cos(x)$ + 4 $(3\pi)^2$ $cos(3x) +$ 4 $(5\pi)^2$ $cos(5x) +$ 4 $(7\pi)^2$ $cos(7x) + ...$ 1 - $-\pi/2$ $\pi/2$ **… …**

We say the signal "contains highfrequency components."

Sudden change of value in a signal requires extremely high-frequency

Complex Basis Functions

Complex Basis Functions

2 L , if $i = j$. Mutually orthogonal vectors over [- L, L) with a norm of sqrt(2L)

{ . . . , *e* −2*iπx L* , *e* −*iπx L* , *e i*0*πx L* , *e i*1*πx L* , . . . }

Complex Fourier Series

- Can prove equivalence using Euler's formula: *eikx =cos(kx)+ i sin(kx)*
- More general and concise

$$
f(x) = \sum_{k=-\infty}^{\infty} c_k \phi_k
$$

1 2*L* ∫ *L* −*L f*(*x*)*e* −*ikπx* $\frac{1}{L}dx$

$$
c_k = \frac{f(x) \cdot \phi_k}{\|\phi_k\|^2} = \frac{1}{2L} \int_{-L}^{L} f(x) \overline{\phi}_k dx =
$$

$$
\phi_k = e^{\frac{ik\pi x}{L}}
$$

Geometric Interpretation

- vector.
- What kind of transformation is this?

$$
\phi_k = e^{\frac{ik\pi x}{L}}
$$

$$
f(x) = \sum_{k=-\infty}^{\infty} c_k \phi_k
$$

• $\{c_k\}$ is a Hilbert-space vector transformed from f, another Hilbert-space

Discrete Fourier Transform (DFT)
Recall: Fourier Series

- Fourier series applies to:
	- Finite interval (say L) + Continuous function
	- Or equivalently: an L-periodic function with an infinite span
- infinitely-dimensional vector

• We need infinitely many basis functions, since a continuous function is an

- In real-world applications, the signals we obtain are discrete samples over a finite interval
	- For instance, audio files are usually 44.1 kHz, i.e., 44,100 samples per second
- We need a discrete form of Fourier series
- Given a sequence of *n* points, express it as a sum of other sequences
	- This time, we need *n* other sequences

Discrete Complex Basis Functions

$$
\left\{e^{\frac{i2\pi jk}{n}}\right\},\quad j\in[0,\,1,\,\ldots,\,n-1]
$$

$$
\left\{\ldots,e^{\frac{i0k}{n}},e^{\frac{i2\pi k}{n}},e^{\frac{i4\pi k}{n}},e^{\frac{i6\pi k}{n}},\ldots\right\}
$$

For instance:

$$
\sum_{k=0}^{n-1} e^{\frac{i2\pi k}{n}} e^{\frac{i4\pi k}{n}} = 0
$$

are **n** mutually orthogonal n-dimensional vectors

$k \in [0, 1, \ldots, n-1]$

Discrete Fourier Transform (Series)

• This is called Discrete Fourier Transform

- But it's a misnomer; should really be called Discrete Fourier Series
- Fast Fourier Transform (FFT) is a fast way to calculate DFT
- Project to the basis vectors and calculate the DFT coefficients
- Note that these basis functions are not a subset of the those used in the continuous case!

$$
f_k = \frac{1}{n} \sum_{j=0}^{n-1} \hat{f}_k e^{\frac{i2\pi jk}{n}} \hat{f}_k = \sum_{j=0}^{n}
$$

DFT Matrix

$$
\begin{bmatrix}\n1 & 1 & 1 & \cdots \\
1 & \omega_n & \omega_n^2 & \cdots & \omega_n \\
1 & \omega_n^2 & \omega_n^4 & \cdots & \omega_n^2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \cdots & \omega_n^{2(n-1)}\n\end{bmatrix}
$$

 $f_k =$ 1*n n*−1 ∑*j*=0 \hat{f}_k *ω* −*j k* \hat{f}_k *f*_k =

The DFT Matrix

DFT Interpretation

• f now is a N-dimensional vector; it can be represented by projecting to N

- mutually orthogonal vectors.
- DFT transforms a N-dimensional vector to another N-D vector.

$$
\begin{bmatrix}\n1 & 1 & 1 & \cdots & 1 \\
1 & \omega_n & \omega_n^2 & \cdots & \omega_n^{n-1} \\
1 & \omega_n^2 & \omega_n^4 & \cdots & \omega_n^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \cdots & \omega_n^{(n-1)^2}\n\end{bmatrix}\n\times\n\begin{bmatrix}\nf_0 \\
f_1 \\
\vdots \\
f_{n-2} \\
f_{n-1}\n\end{bmatrix} =\n\begin{bmatrix}\n\hat{f}_0 \\
\hat{f}_1 \\
\vdots \\
\hat{f}_{n-2} \\
f_{n-1}\n\end{bmatrix}
$$

80 https://www.math.ucdavis.edu/~strohmer/research/sampling/irsampl.html

 $f_k =$ *n*

 $\overline{j=0}$

Another Application: Signal Denoising *f*(*t*) = sin(2⇡*f*1*t*) + sin(2⇡*f*2*t*) (2.32)

 $f(t) = sin(2\pi f_1 t) + sin(2\pi f_2 t) + noise$ $f_1 = 50$ $f_2 = 120$ ̂ $\hat{f}(\omega) = DFT(f(t))$ Remove low-magnitude frequency components *f*′(*ω*) ̂ $f'(t) = IDFT(f'(\omega))$ ̂

2D DFT

$(i, j) \subset \mathbb{Z}$ $, \forall u, v' \subseteq \mathbb{Z}$ $\left\{ \sin(ux + vy), \cos(ux + vy) \right\}, (u, v) \in \mathbb{Z}$ Real Bases

"image" of $cos(x + 2y)$ Function value is constant where x+2y is constant

y

2D Basis Functions

Complex Bases

 $e^{i(ux+vy)}, (u, v) \in \mathbb{Z}$

2D Discrete Fourier Transform

$$
\hat{f}_k = \sum_{j=0}^{n-1} f_j e^{\frac{-i2\pi jk}{n}}
$$

$f[x, y] =$ 1 *n*2 *n*−1 ∑ *u*=0 *n*−1 ∑ *v*=0 *F*[*u*, *v*] *e* $2i\pi(ux + vy)$ *n* **1D DFT 2D DFT**

$$
F[u, v] = \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} f[x, y] e^{\frac{-2i\pi(ux + vy)}{n}}
$$

2D DFT

$$
f(x, y) \qquad F[u, v] = \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} f[x, y] e^{\frac{-2i\pi(ux+vy)}{n}} F(u, v)
$$
\n
$$
\begin{array}{c}\n\therefore \quad f_{0,n-1} \\
\therefore \quad \vdots \\
\cdots \quad f_{n-2,n-1} \\
\vdots \quad \vdots \\
\vd
$$

85 https://www.math.ucdavis.edu/~strohmer/research/sampling/irsampl.html

2D DFT Coefficients of a Typical Image

v

https://www.theverge.com/2016/8/2/12351210/ferrari-488-spider-supercar-test-drive

87 http://fy.chalmers.se/~romeo/RRY025/notes/E1.pdf

DFT Coefficients Are Periodic

$$
F[u, v] = \sum_{x=0}^{n-1} \sum_{y=0}^{n-1} f[x, y] e^{\frac{-2i\pi(ux + \pi)}{n}}
$$

$$
F[k_1, k_2] = F[n + k_1, n + k_2]
$$

 $F[k_1, k_2] = \bar{F}[n - k_1, n - k_2]$

What are "Negative" Frequencies?

• In this example:

- Counterclockwise rotation has an angular frequency of 1/8 Hz (cycles/second)
- Clockwise rotation has a frequency of 7/8 Hz
- If we sample the position of the wheel every 1s, both rotations have the same observable effect
- If clockwise rotation has a positive frequency, counterclockwise rotation has a negative freq.

• Aliasing: when we are sampling not frequently enough, high freq. info. masquerades as low freq. info.

DFT Coefficients are Symmetric in Magnitude **v**

u

 $F[k_1, k_2] = \bar{F}[n - k_1, n - k_2]$ $F[k_1, k_2] = F[n + k_1, n + k_2]$ $F[-k_1, -k_2] = F[n - k_1, n - k_2]$ $F[-k_1, -k_2] = \overline{F}[k_1, k_2]$ $|F[-k_1, -k_2]| = |F[k_1, k_2]|$

Fourier Transform

What About Non-Periodic Functions?

- Fourier series is concerned with L-periodic functions.
- What about a general, potentially non-periodic function? Does the Fourier theory still apply to it?
- Idea: let L approach infinity and see how the Fourier series change!

As L Approaches Infinity

As L Approaches Infinity

• As L approaches ∞, the infinite sequence of Fourier coefficients becomes a continuous function F(**ω**).

$$
\omega_k = \frac{k\pi}{L} \qquad \qquad f(x) = \sum_{k=-\infty}^{\infty} c_k e^{i\omega}
$$

As L Approaches Infinity $f(x) =$ ∞ ∑ *k*=−∞ $c_k e^{i\omega_k x}$ $\omega_k =$ *kπ L* $f(x) =$ 1 2*π* ∫ $+\infty$ −∞ *F*(*ω*)*eiω^x* lim *L*→∞

$$
c_k = \frac{1}{2L} \int_{-L}^{L} f(x)e^{-i\omega_k x} dx
$$

$$
\lim_{L \to \infty} \int_{L \to \infty} \lim_{L \to \infty} f(x)e^{-i\omega x} dx
$$

Fourier Transform

 $f(x) =$ 1 2*π* ∫

$$
\int_{-\infty}^{+\infty} F(\omega)e^{i\omega x} d\omega
$$

95 https://www.math.ucdavis.edu/~strohmer/research/sampling/irsampl.html

Key Things to Take Away

- Signals
	- Audio waves are discrete 1D signals (in the time domain)
	- Images are discrete 2D signals (in the spatial domain)
- Any time/spatial domain signals can be converted to frequency domain • Frequency domain representation of signal is called spectrum
	-
- Fourier series applies to continuous L-period signals
- Discrete Fourier Transform applies to discrete L-period signals
- Fourier Transform applies to non-periodic continuous signals

Key Things to Take Away

- How to tell frequency from images?
	- "Busy" areas or sudden changes (e.g., edge) correspond to high frequency components
	- Smooth areas are generally of lower frequency
- Removing low/high frequency components from the spectrum corresponds to sharpening/blurring images in spatial domain

