Lecture 15: Color Sensing

Yuhao Zhu

http://yuhaozhu.com yzhu@rochester.edu

CSC 259/459, Fall 2024 **Computer Imaging & Graphics**

The Roadmap

Theoretical Preliminaries

Human Visual Systems

Digital Camera Imaging

Modeling and Rendering

Photographic Optics

Image Sensor

Image Signal Processing Image/Video Compression Immersive Content

Goal of Color Sensing

https://9to5mac.com/2017/12/07/iphone-flikr-most-used-camera/ https://www.eyeworld.org/research-finds-human-visual-cortex-continues-development-mid-30s

What if this is not true? Metamers in human vision would not be metamers in camera vision: colors appearing different to your eyes would look the same in photos and vise versa.

How to Sense Color?

- How do humans sensor color? We have three types of cones, each has a different **spectral sensitivity** to light.
 - Light spectrum gets transformed to three numbers (L, M, S cone responses, or equivalently the tristimulus values in a color space).

Cameras also need to somehow generate three numbers from light too.

The three values should ideally be the same as the LMS cone responses. • Or can be converted to tristumulus values in one of the known color spaces.

Principle of univariance: once a photon is converted to an electron, we lose wavelength/color information (there is no red electron vs. blue electron).

https://horizon-lab.org/colorvis/camcolor.html

Effectively we need to have three kinds of sensors, each has a unique **spectral** sensitivity function (SSF).

SSF(λ): generated electrical energy per unit incident light energy at a given λ .

https://horizon-lab.org/colorvis/camcolor.html

How should SSFs look like?

- Ideally: each sensor's SSF mimics LMS and XYZ, since CMFs in other color space usually involve negative values that are physically unrealizable.
- **Reality**: hard to be exact. SSF depends on lots of things (sensor quantum efficiency, microlens, filters, manufacturability, etc.).

https://horizon-lab.org/colorvis/camcolor.html

https://horizon-lab.org/colorvis/camcolor.html

Astrophysical Imaging Uses More Filters

Spectral transmittance of the five filters in the first SDSS camera

https://www.asahi-spectra.com/opticalfilters/sdss.html

An image from SDSS (False Colors)

https://www.iac.es/en/projects/sloan-digital-sky-survey-iii-sdss 10

Realizing "Three Kinds of Sensors"

11

Take Three Separate Shots and Combined Them

1906 by Dr. Adolf Miethe

<u>Sergey Prokudin-Gorsky</u> (1836 — 1944)

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15463-f11/www/proj1/www/machongm/

Use Three Sensors

Use three sensors

Figure 14.3 (a) Three-sensor camera. (b) Sequential colour camera.

Similar to "three shots" (previous slide)

The Manual of Photography and Digital Imaging 10ed, Allen and Triantaphillidou

Use Three Sensors

Use three sensors

Figure 14.3 (a) Three-sensor camera. (b) Sequential colour camera.

https://pro.sony/ue_US/products/handheld-camcorders/pxw-x180

Multi-Chip Sensing in Astrophysics

https://www.asahi-spectra.com/opticalfilters/sdss.asp

https://www.sdss.org/dr16/imaging/imaging_basics/

Vertical Stacking

Longer-wavelength light penetrates deeper into silicon.

Sensitivity(B) = Absorption(B)

Sensitivity(R) = Transmittance(B) x Transmittance(G) x Absorption(R)

- Sensitivity(G) = Transmittance(B) x Absorption(G)

https://www.dpreview.com/articles/1431165397/sigma-dp3-merrill-foveon-75mm-equivalent

Color Filtering Array

https://en.wikipedia.org/wiki/Bayer_filter

https://pixelcraft.photo.blog/2019/12/18/the-bayer-filter/

Color Filtering Array

the percentage of photons that can get through at each wavelength.

Each filter has a unique spectral transmittance function, which characterizes

Filters Dim Lights

Reading Sensor Specification: ONSemi NOII4SM6600A

Monochromatic sensor

ELECTRO OPTICAL SPECIFICATIONS

Parameter	Specification
FPN (local)	<0.20%, 2 LSB10
PRNU (local)	<1.5%
Conversion Gain	43 μV/e⁻
Output Signal Amplitude	0.6 V
Saturation Charge	21500 e⁻
Sensitivity (peak)	411 V.m ² /W.s 4.83 V/lux.s
Sensitivity (visible)	328 V.m ² /W.s 2.01 V/lux.s
Peak QE * FF Peak Spectral Response	25% 0.13 A/W
Fill Factor	35%
Dark Current	3.37 mV/s 78 e-/s
Dark Signal Non Uniformity	8.28 mV/s 191 e-/s
Temporal Noise	24 RMS e-
Signal/Noise Ratio	895:1 (40 dB)
Dynamic Range	59 dB
Spectral Sensitivity Range	400 - 1000 nm
Optical Cross Talk	15% 4%
Power Dissipation	225 mW

21

Reading Sensor Specification: ONSemi KAF-8300

1 Active (CTE Mc 3 Dark Dummy 4 Blue Pixel Buffe 16 Active Buffer

> V1 V2

2504

Act

LODT LODB

- H1 H2

16 Active Buff

4 Blue Pixel Bu

8 Dark Dumm

6 Dark Dumm

12 Dark

A RGB sensor

Figure 2. Block Diagram (Color)

Table 6. SPECIFICATIONS

Description	Symbol	Min.	Nom.	Max.	Unit
ALL DEVICES					1
Minimum Column	MinColumn	575	_	-	mV
Linear Saturation Signal	N _e - _{SAT}	25.5	-	-	ke⁻
Charge to Voltage Conversion	Q–V	22.5	23.0	-	μV/e
Linearity Error	LeLow10 LeLow33 LeHigh	-10 -10 -10	- - -	10 10 10	%
Dark Signal (Active Area Pixels)	AA_DarkSig	_	_	200	e⁻/s
Dark Sig		1		200	e⁻/s
Readou Dark curre	nt halves	as the	Э	15	mV/s
Flush C temperature	drons h	v 5 8°	C	90	mV/s
Dark Sig		y U.U		3.0	mV p-
	DSNU_Step DSNU_H		0.14 0.40	0.5 1.0	
Dark Signal Doubling Temperature	ΔΤ	-	5.8	_	°C
Dark Reference Difference, Active Area	DarkStep	-3.5	0.15	3.5	mV
Total Noise	Dfld_noi	-	-	1.08	mV
Total Sensor Noise	N	_	16	-	e⁻ rm
Linear Dynamic Range	DR	_	64.4	_	dB
Horizontal Charge Transfer Efficiency	HCTE	0.999990	0.999995	-	%
Vertical Charge Transfer Efficiency	VCTE	0.999997	0.999999	_	%
Blooming Protection	X_b	1,000	_	_	x E _{SA}
Vertical Bloom on Transfer	VBloomF	-20	_	20	mV
Horizontal Crosstalk	H_Xtalk	-20	-	20	mV
Horizontal Overclock Noise	Hoclk_noi	0	-	1.08	mV
Output Amplifier Bandwidth	f _{-3dB}	88	-	159	MHz
Output Impedance, Amplifier	R _{OUT}	100	-	180	Ω
Hclk Feedthru	V _{HFT}	-	-	70	mV
Reset Feedthru	V _{RFT}	500	710	1,000	mV
				1	1

Reading Sensor Specification: ONSemi KAF-8300

The two green filters have slightly different spectral sensitivities!

KAF-8300 Quantum Efficiency

Figure 7. Typical Quantum Efficiency (Color Version)

Having microlenses improves spectral sensitivities because the FF improves!

Figure 8. Typical Quantum Efficiency (All Monochrome Versions)

Reading Sensor Specification: Teledyne Prime-95B

Being a scientific image sensor, the

noise performance is much better

Specifications	Camera Performance			
Sensor	GPixel GSense 144 BSI CMOS Ge	GPixel GSense 144 BSI CMOS Gen IV, Grade 1 in imaging area		
Active Array Size	1200 x 1200 pixels (1.44 Megapi)	1200 x 1200 pixels (1.44 Megapixel)		
Pixel Area	11µm x 11µm (121µm²)			
Sensor Area	13.2mm x 13.2mm 18.7mm diagonal			
Peak QE%	>95%			
Read Noise	1.6e- (Median) 1.8e- (RMS)			
Full-Well Capacity	80,000e- (Combined Gain) 10,000e- (High Gain)			
Dynamic Range	50,000:1 (Combined Gain)			
Bit Depth	16-bit (Combined Gain) 12-bit (High Gain)			
Readout Mode	Rolling Shutter Effective Global Shutter			
Binning	2x2 (on FPGA)			
Linearity	>99.5%			
Cooling Performance	Sensor Temperature	Dark Current		
Air Cooled	-20ºC @ 25ºC Ambient	0.55e-/pixel/second		
Liquid Cooled	-25°C a 25°C Ambient	0.3e-/pixel/second		

