Lecture 13: Image Sensor Basics

Yuhao Zhu

http://yuhaozhu.com yzhu@rochester.edu

CSC 259/459, Fall 2024 **Computer Imaging & Graphics**

The Roadmap

Theoretical Preliminaries

Human Visual Systems

Digital Camera Imaging

Modeling and Rendering

Photographic Optics

Image Sensor

Image Signal Processing Image/Video Compression Immersive Content

Digital Cameras

Light –

https://ph.priceprice.com/Google-Pixel-XL-18713/news/Google-Pixel-XL-Repair-1939/

Image Signal Processing

Image Sensor in Digital Cameras

https://www.dummies.com/photography/digital-photography/resolution/the-components-of-a-digital-cameras-image-sensor/ 5

The Big Picture

A number of photons ...

... hitting the **pixel area** during exposure time ...

... creating a number of electrons ...

being amplified ...

... and **digitized** ...

... resulting in the digital gray value. 42 input

https://www.emva.org/wp-content/uploads/EMVA1288General_4.0Release.pdf 6

Pixel: From Photons to Charges

Photoelectric Effect

When a photon strikes material, an electron may be emitted.

- Cameras use silicon
- Quantum nature of light matter interaction.

https://circuitdigest.com/microcontroller-projects/arduino-flame-sensor-interfacing https://www.extremetech.com/extreme/213596-canons-250-megapixel-sensor-can-read-the-side-of-a-plane-from-11-miles-away

Quantum Efficiency

Electron emission from photon is probabilistic, which depends on the quantum efficiency (QE) of the material. QE is wavelength-dependent (just like about everything in optics).

Human QE vs. Camera QE

- Human QE is much lower than camera sensor QE.
- Human eyes are not sensitive to IR and UV light, but camera sensors are.

 \boldsymbol{X}^{i}

http://www.ysctech.com/digital-microscope-CCD-camera-info.html

Other Uses/Forms of Light-Matter Interactions

Solar panels

https://newatlas.com/bacteria-solar-cell/55339/ https://www.npr.org/sections/13.7/2017/06/02/531262435/the-extended-beauty-of-photosynthesis https://askabiologist.asu.edu/rods-and-cones 10

Photosynthesis

Photoreceptor cells

Pixel Well

Think of a pixel in a sensor as a well that holds the emitted electrons.

What determines the number of electrons going into the well:

- light power (dictates the number of photons per unit time) and
- exposure time (integration time).

https://www.flir.com/discover/iis/machine-vision/emva-1288-overview-imaging-performance/ 11

Full Well Capacity

The **full-well capacity**, the max amount of electrons that can be held, depends on pixel size.

More electrons than the capacity saturates the well.

A saturated well doesn't store more electrons.

Quadratic. Why?

https://clarkvision.com/articles/digital.sensor.performance.summary/

Dynamic Range (Informal Treatment)

A larger well capacity leads to a higher sensor dynamic range, which can capture/accommodate larger differences in scene luminance.

Indistinguishable light luminance

Noise floor (later)

Photons

https://iphonephotographyschool.com/hdr-iphone/

Dynamic Range (Informal Treatment)

Need an HDR sensor or HDR algorithm.

https://iphonephotographyschool.com/hdr-iphone/

Optics in Sensor

Near IR/UV Filters

Remove IR/UV light. Low transmittance in IR/UV ranges.

https://www.mdpi.com/1424-8220/19/8/1750 http://www.astrosurf.com/luxorion/photo-ir-uv.htm https://kolarivision.com/articles/internal-cut-filter-transmission/

Nikon D200

	2. 2. 2.
	<u></u>
	<u> </u>
	<u>5. 8.</u>
	2 8
	<u> </u>
	<u>4. 32</u>
950	
000	

Near IR/UV Filters

Not all cameras do. What happens if you remove the NIR filter?

- See light that human eyes can't see. NIR photography (false color!).

Pointing a TV controller to the front and back cameras of iPhone 4.

• Thermographic cameras intentionally sense IR radiations to measure temperature.

https://www.instructables.com/id/See-Infrared-LED-Light-with-an-iPhone-4/ 17

PINC PHOTOGRPAHY ©

https://9to5mac.com/2018/01/19/hands-on-flir-one-pro-handy-thermal-imaging-camera-connects-to-iphone-video/

IR Sensor: Proximity and Depth (Later)

https://www.intelrealsense.com/depth-camera-d435/

Depth from stereo (one depth cue of human eyes) projector

Fill Factor (FF)

Fill factor is the percentage of the photosensitive area (i.e., photodiode) inside a pixel.

Much of the pixel area is occupied by circuitries other than the photodiodes, e.g., analog to digital conversion, read-out, wires, etc.

Image Sensor and Signal Processing for Digital Still Cameras, 2006. Junichi Nakamura

Fill Factor (FF) and Microlenses

Fill factor affects the sensor dynamic range (higher FF leads to "larger" pixels).

Per-pixel microlenses help significantly increase the FF.

Organic PDs can reach almost 100% FF.

Image Sensor and Signal Processing for Digital Still Cameras, 2006. Junichi Nakamura

Anti-Aliasing by Micro-lenses and Pixels

Anatomy of the Active Pixel Sensor Photodiode Recall: pixels perform spatial sampling, introducing aliasing. Reset **Microlens** Transistor

Row Select Bus

The micro-lenses (and the pixels under) inherently perform a spatial 2D box convolution (which is a low-pass filtering, acting as an anti-aliasing filter)

 followed by a 2D sampling, where a sample is taken at each pixel center.

Anti-Aliasing Filter

Anti-aliasing by micro-lenses and pixels is not enough to combat aliasing.

Use anti-aliasing filters (low-pass filter) to remove high spatial-frequency component in light, effectively **blurring** the image.

Removing AA filter increases sharpness at the cost of aliasing.

https://www.extremetech.com/extreme/117627-new-36mp-nikon-d800e-is-it-too-sharp-for-you 24

Anti-Aliasing Filter

Two layers of birefringent material separating one point into four pixels.

One birefringent layer

Combining two birefringent layers

Functions of low-pass filter (OLPF)

With the same image sensor

Iight direction

Low-pass filter 1 Low-pass filter 2 Separates subject image in Separates subject image in Optical parts Image sensor horizontal direction vertical direction Prevents moiré and Ordinary OLPF false color by separating light in four segments

https://www.dpreview.com/reviews/nikon-d800-d800e/3 https://en.wikipedia.org/wiki/Birefringence 25

From Charges to Digital Values

From Electrons to Pixel Values

- Ideally, a pixel's value should reflect the incident light intensity (luminance). So we need to count the number of photons striking each pixel.
- Pixel wells accumulate electrons. The number of electrons is proportional to the number of incident photons.
- So counting photons is equivalent to counting electrons.
- Count electrons in two steps (implementations differ):
 - Convert electron charges to voltage potentials
 - Convert voltage potentials to digital values

UiO **Department of Informatics** University of Oslo

NP photodiode

P-doped silicon substrate

Charge to Voltage Conversion

* The source follower acts as a voltage buffer that allows the

Electronic Shutter

lights. Mechanical shutters do so by physically blocking lights.

when are ready to capture we "reset" the photodiodes.

and so prepares it for the actual exposure.

• Change the photodiodes reset time to control actual exposure time.

- Ideally when we are not capturing the photodiodes should not be exposed to
- With electronic shutters, we expose photodiodes to lights all the time, and
- Reset drains (depletes) the charges accumulated by the photodiode thus far

Electronic Shutter: Two Resets

Transfer Gate Reset Gate

Before exposure, open TG and RST together to reset the PD to Vdd

• FD will naturally be reset too but it's of no functional use.

After exposure and before read-out, open RST to reset FD.

• Then PD to FD transfer.

- With Correlated Double Sampling (CDS; next lecture), both V_{transfer} and V_{reset} are read, and the difference ΔV is quantized by ADCs. CDS reduces noises.
- Without CDS, V_{transfer} directly enters the ADC, whose design needs to, effectively (by properly setting its reference voltage), subtract V_{reset}.

Conceptually, ΔV is used to generate raw pixel values; implementations vary:

Analog to Digital Conversion (ADC)

Transfer Function

Ideal Transfer Function of a 3-bit ADC

Another (more common) Transfer Function

https://www.ele.uva.es/~lourdes/docencia/Sensores/Tema2/ADC/AD_Converters.pdf 34

Analytical Model

Ideal Transfer Function of a 3-bit ADC

Output
digital value
$$n = \left[\frac{V_{in} - V_{min}}{FSR}(2^N - 1)\right]$$

https://en.wikipedia.org/wiki/Analog-to-digital_converter 35

Contouring From Aggressive Quantization

Lower ADC resolution; smaller image size (in theory)

Higher ADC resolution; larger image size

A Monochromatic, Noise-Free Sensor Model

$$Q(x, y) = \int_{t} \int_{\lambda} \int_{y}^{y+\nu} \int_{x}^{x+\mu} Y$$

$$\Delta V(x, y) = \frac{Q(x, y)}{C}g$$

$$n(x, y) = \lfloor \frac{\Delta V(x, y)}{V_{max}} (2^N - \frac{V_{max}}{V_{max}}) \rfloor$$
Raw pixel value

of incident photons at pixel (x, y); varies with λ and t.

 $Y(x, y, \lambda, t) QE(\lambda) q dxdyd\lambda dt$ Charge of an electron (elementary charge)

1)]

ax voltage corresponding to x = 0

Different Sensor Designs

CCD Sensor

Exposure all pixels simultaneously.

Shifting charges row by row. When shifting, naturally no pixel can be exposed, a.k.a., global shutter.

A good introduction of CCD <u>here</u>.

Convert charges to voltage and then to digital values in the end.

Control

Readou Amplifier

CMOS Sensor

Charge to voltage conversion takes place within the pixel. Instead of shifting charges, directly read the voltages.

• but still row by row.

Pixels are now exposed row by row, a.k.a., rolling shutter.

- because voltages in each row must be read out immediately (no buffer).
- an artifact; not something we want.

https://www.edmundoptics.com/knowledge-center/application-notes/imaging/understanding-camera-sensors-for-machine-vision-applications/ 40

Rolling Shutter Operation

Rolling Shutter Artifact

https://en.wikipedia.org/wiki/Rolling_shutter

https://www.reddit.com/r/interestingasfuck/comments/en3lap/rolling_shutter_effect_of_chopper_blades/ https://www.bhphotovideo.com/explora/video/tips-and-solutions/rolling-shutter-versus-global-shutter

Global Shutter

CCD naturally uses global shutter, since no pixel can be exposed during read-out.

To implement global shutter for CMOS sensors, each pixel needs to have a temporary storage space (analog voltage buffer).

https://thinklucid.com/tech-briefs/sony-pregius/

CMOS Global Shutter Read-Out

Expose all pixels at the same time, but readout is still line by line.

Why not read all the pixels at the same time?

- Lots of wires.
- Unless you stack the read-out circuit with the pixel array in different layers!

Therefore, need analog memory to store charges before read-out.

• A "solution" that avoids analog memory in global shutter is to expose later lines longer and still read line by line, but spatially non-uniform exposure is clearly undesirable.

Does global shutter avoid motion blur?

• No

Digital Pixel Sensors

- Each pixel contains an ADC and digital memory
- Pixel data is stored in digital memory and readout as digital bits
- ADC circuit has to be small enough to keep pixel size reasonable
- Now you can treat the pixel array as your <u>frame</u> <u>buffer memory</u>!
- DPS opens new possibilities, we will demonstrate one example in next section

Usually the ADC and digital memory is on a separate layer different from the pixel array layer (later)

Slide credit: Chiao Liu (Meta)

CCD vs. CMOS

CCD Sensors

- Higher quality (FF higher), expensive
- Slower, higher power (circuitry needs precise timing control)
- Astrophysical imaging (e.g., telescopes) still prefers CCD sensors

CMOS Sensors

- Dominate the consumer photography market now, cheaper
- Faster and lower-power (can easily read just a small window of pixels)
- More noisy (e.g., each pixel has amplifier and/or ADC), but getting better

• Same fabrication technology as digital microprocessors, enabling "camera on a chip"

Over-Exposure, Blooming, Smearing

Blooming: electrons "spill over" to nearby pixels after saturation; can happen to both CCD and CMOS.

Pixels "smearing" each other during vertical shift/read-out; a **CCD-only artifact.**

Over-exposure; both CCD and CMOS

https://commons.wikimedia.org/wiki/File:Blooming_example.jpg 47

Time Delay Integration (TDI) CCD Sensor

- CCD uses global shutter, but still doesn't avoid motion blur.
- Long exposure introduces motion blur, but many application scenarios require a long exposure time, e.g., astrophysical imaging.
- TDI is a clever sensor design that mitigates motion blur under long exposure.
- Conventional CCD sensor: shift pixel rows after exposure.
- **TDI CCD**: shift rows **during** exposure and **accumulate** charges for each shift.

TDI Operation

The shift is in sync with object movement. Effectively capture a moving object N times, once per row, increasing the effective exposure time. Object movement within a pixel doesn't matter (pixels integrate anyways).

https://www.circuitinsight.com/pdf/tdi_imaging_ipc.pdf 49

https://www.planetary.org/space-images/sloan-foundation-telescope

Sloan Foundation 2.5m Telescope

TDI in Astrophysics

Can estimate the TDI camera shift rate, since the star's movement speed is known.

SDSS CAMERA Object movement

Read simultaneously

5 color filters 6 CCDs per filter Scan vertically

https://www.sdss.org/instruments/

https://www.sdss.org/dr16/imaging/imaging_basics/

TDI Used in Sloan Digital Sky Survey

Images of objects move along the columns of the CCDs at the same rate the CCDs are being read.

The camera produces five images of a given object, all from the same column of CCDs, one from each CCD in that column.

It takes an object 54 seconds to move from the beginning of a CCD to the end, so the effective exposure time in each filter is 54 seconds.

https://www.sdss.org/instruments/

https://www.sdss.org/dr16/imaging/imaging_basics/

Stacked Sensor

Why Stacking?

Enable in-sensor computing to reduce data transmission overhead

Save area:

- Pixels have become more complicated, taking more area.
- Grow vertically rather than horizontally to reduce sensor footprint.

Can even stack memory (e.g., DRAM/SRAM) and processors with the pixel array in one sensor.

- Enable ultra-high frame rate
- Better support in-sensor processing (imaging you have a cache in sensor!)

Data Transmission Bottleneck **MIPI CSI Interface**

Image Sensor

Optics

Vision System Design

Scene

Energy

Normalized Energy

Slide credit: Chiao Liu (Meta)

Moving Computation Into Sensor

Stacked CMOS Image Sensor

Yusuke Oike

Performance improvement accelerated using 3D configuration

Highly parallel ADCs & Optimized process technologies

- Double parallel ADCs \bullet
- Chip-on-chip stacked CIS
- Three-layer stacked CIS

Three-layer Stacked CIS with DRAM

DRAM buffer having wide data bandwidth for slow-motion capture

Pixel Area

Peripheral Area

T. Haruta, ISSCC 2017 H. Tsugawa, IEDM 2017

ISSCC Forum, Feb. 2021

17 of 57

Sony Develops the Industry's First^{*1} 3-Layer Stacked CMOS Image Sensor with DRAM for Smartphones

High-Speed Data Readout Minimizes Distortion^{*2} in Still Images, and Enables Super Slow Motion Movie Shooting

Data read-out is slow, limiting the frame rate to be ~ 100 FPS max.

In-sensor DRAM stores high-speed captures to enable high speed capture (~1,000 FPS)

upuuu

T. Haruta, ISSCC 2017

Sony to Release World's First Intelligent Vision Sensors with AI Processing **Functionality**^{*1}

Enabling High-Speed Edge AI Processing and Contributing to Building of Optimal Systems Linked with the Cloud

Conventional Configuration

Larger, higher power and more costly

Yusuke Oike

Intelligent Vision Sensor

Image Sensor

CNN Processor

- ISP
- DSP for CNN
- Memory

All functions are implemented on chip To be presented by R. Eki, ISSCC 2021

4056(H) x 3040(V)

Column ADd

ISSCC Forum, Feb. 2021

