
CSC 257/457 – Computer Networks

Fall 2017
MW 4:50 pm – 6:05 pm

CSB 601

Transport Layer 3-2

Announcement

Project 3 is out

CSC 457 seminar/survey paper
Proposed topic write-up:
due on October 28th

CHAPTER 3 (TRANSPORT LAYER)

Computer
Networking: A Top
Down Approach

A note on the use of these Powerpoint slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we only
ask the following:

§ If you use these slides (e.g., in a class) that you mention their source
(after all, we’d like people to use our book!)

§ If you post any slides on a www site, that you note that they are adapted
from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved

7th edition
Jim Kurose, Keith Ross
Pearson/Addison Wesley
April 2016

Chapter 3
Transport Layer

Transport Layer 2-4

Transport Layer 3-5

TCP round trip time, timeout

Q: how to set TCP timeout value?

• longer than RTT
• but RTT varies

• too short:
– premature timeout, unnecessary retransmissions

• too long:
–slow reaction to segment loss

Transport Layer 3-6

TCP round trip time, timeout

Q: how to estimate RTT?

• SampleRTT: measured time from segment
transmission until ACK receipt
– ignore retransmissions

• SampleRTT will vary --- we want estimated
RTT “smoother”
– average several recent measurements, not just current
SampleRTT

Transport Layer 3-7

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
illi

se
co

nd
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

§ exponential weighted moving average
§ influence of past sample decreases exponentially fast
§ typical value: a = 0.125

TCP round trip time, timeout

RT
T

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)

Transport Layer 3-8

• timeout interval: EstimatedRTT +“safety margin”
– large variation in EstimatedRTT -> larger safety margin

TCP round trip time, timeout

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer 3-9

• timeout interval: EstimatedRTT plus “safety margin”
– large variation in EstimatedRTT -> larger safety margin

• estimate SampleRTT deviation from EstimatedRTT:
DevRTT = (1-b)*DevRTT +

b*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically, b = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer 3-10

Chapter 3 outline

3.1 transport-layer services
3.2 multiplexing and

demultiplexing
3.3 connectionless transport:

UDP
3.4 principles of reliable data

transfer

3.5 connection-oriented
transport: TCP

• segment structure
• reliable data transfer
• flow control
• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-11

TCP reliable data transfer

• TCP creates rdt service on
top of IP’s unreliable service
– pipelined segments
– cumulative acks
– single retransmission timer

• retransmissions triggered by:
– timeout events
– duplicate acks

let’s initially consider
simplified TCP sender:
– ignore duplicate acks
– ignore flow control,

congestion control

Transport Layer 3-12

TCP sender events:

data rcvd from app:
• create segment with seq #
• seq # is byte-stream number of first data byte in segment
• start timer if not already running

• think of timer as for oldest unacked segment
• expiration interval: TimeOutInterval

Transport Layer 3-13

TCP sender events:

timeout:
• retransmit segment that caused timeout
• restart timer
ack rcvd:

• if ack acknowledges previously unacked segments
• update what is known to be ACKed
• start timer if there are still unacked segments

Transport Layer 3-14

TCP sender (simplified)

wait
for

event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

L

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked segment
with smallest seq. #

start timer

timeout

if (y > SendBase) {
SendBase = y
/* SendBase–1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)

start timer
else stop timer

}

ACK received, with ACK field value y

Transport Layer 3-15

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

Xtim
eo

ut

ACK=100

premature timeout

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

tim
eo

ut

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

Transport Layer 3-16

TCP: retransmission scenarios

X

cumulative ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

tim
eo

ut

Seq=100, 20 bytes of data

ACK=120

Transport Layer 3-17

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

arrival of segment that
partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-18

TCP fast retransmit

if sender receives 3 ACKs for same data
(“triple duplicate ACKs”), resend unacked
segment with smallest seq #
§ likely that unacked segment lost, so don’t wait for

timeout

(“triple duplicate ACKs”),

Transport Layer 3-19

X

fast retransmit after sender
receipt of triple duplicate ACK

Host BHost A

Seq=92, 8 bytes of data

ACK=100

tim
eo

ut ACK=100

ACK=100
ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Transport Layer 3-20

Chapter 3 outline

3.1 transport-layer services
3.2 multiplexing and

demultiplexing
3.3 connectionless transport:

UDP
3.4 principles of reliable data

transfer

3.5 connection-oriented
transport: TCP

• segment structure
• reliable data transfer
• flow control
• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

http://cpham.perso.univ-pau.fr/Paper/TUTORIAL/HOTI-
06/HOTI-tutorial-Part2.pdf

Transport Layer 3-22

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application
OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so
sender won’t overflow
receiver’s buffer by transmitting
too much, too fast

flow control

http://cpham.perso.univ-pau.fr/Paper/TUTORIAL/HOTI-
06/HOTI-tutorial-Part2.pdf

Transport Layer 3-24

TCP flow control

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

receiver-side buffering

Transport Layer 3-25

Chapter 3 outline

3.1 transport-layer services
3.2 multiplexing and

demultiplexing
3.3 connectionless transport:

UDP
3.4 principles of reliable data

transfer

3.5 connection-oriented
transport: TCP

• segment structure
• reliable data transfer
• flow control
• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-26

TCP congestion control:
additive increase multiplicative decrease
§ approach: sender increases transmission rate (window

size), probing for usable bandwidth, until loss occurs
• additive increase: increase cwnd by 1 MSS every

RTT until loss detected
• multiplicative decrease: cut cwnd in half after loss
c
w
n
d
:

TC
P

se
nd

er

co
ng

es
tio

n
w

in
do

w
 s

iz
e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

Transport Layer 3-27

TCP Congestion Control: details

• sender limits transmission:

• cwnd is dynamic, function of
perceived network congestion

TCP sending rate:
• roughly: send cwnd bytes,

wait RTT for ACKS, then
send more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-
LastByteAcked

< cwnd

sender sequence number space

rate ~~
cwnd
RTT

bytes/sec

Transport Layer 3-28

TCP Slow Start

• when connection begins,
increase rate exponentially
until first loss event:
• initially cwnd = 1 MSS
• double cwnd every RTT
• done by incrementing cwnd for

every ACK received

• summary: initial rate is slow but
ramps up exponentially fast

Host A

R
TT

Host B

time

Transport Layer 3-29

TCP: detecting, reacting to loss

• loss indicated by timeout:
• cwnd set to 1 MSS;
• window then grows exponentially (as in slow start)

to threshold, then grows linearly
• loss indicated by 3 duplicate ACKs: TCP Reno

• dup ACKs indicate network capable of delivering
some segments

• cwnd is cut in half window then grows linearly
• TCP Tahoe always sets cwnd to 1 (timeout or 3

duplicate acks)

Transport Layer 3-30

Q: when should the
exponential increase
switch to linear?

A: when cwnd gets to
1/2 of its value before
timeout.

Implementation:

• variable ssthresh
• on loss event, ssthresh

is set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to CA

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer 3-31

Summary: TCP Congestion Control

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

L
cwnd > ssthresh

congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

L
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Transport Layer 3-32

TCP throughput

• avg. TCP thruput as function of window size,
RTT?
– ignore slow start, assume always data to send

• W: window size (measured in bytes) where loss occurs
– avg. window size (# in-flight bytes) is ¾ W

– avg. throughput is 3/4W per RTT

W

W/2

avg TCP thruput = 3
4

W
RTT bytes/sec

Transport Layer 3-33

TCP Futures: TCP over “long, fat pipes”

• example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

• requires W = 83,333 in-flight segments
• throughput in terms of segment loss probability,

L [Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L =
2·10-10 – a very small loss rate!

• new versions of TCP for high-speed (RFC 3649)

TCP throughput = 1.22 .MSS
RTT L

Transport Layer 3-34

fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP Fairness

TCP connection 2

Transport Layer 3-35

Why is TCP fair?

two competing sessions:

• additive increase gives slope of 1, as throughout increases
• multiplicative decrease decreases throughput

proportionally

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-36

Fairness (more)

Fairness and UDP
• multimedia apps often do

not use TCP
• do not want rate throttled by

congestion control

• instead use UDP:
• send audio/video at constant

rate, tolerate packet loss

Fairness, parallel TCP connections
• application can open

multiple parallel connections
between two hosts

• web browsers do this
• e.g., link of rate R with 9

existing connections:
• new app asks for 1 TCP, gets

rate R/10
• new app asks for 11 TCPs,

gets R/2

Transport Layer 3-37

network-assisted congestion control:
• two bits in IP header (ToS field) marked by network router

to indicate congestion
• congestion indication carried to receiving host
• receiver (seeing congestion indication in IP datagram))

sets ECE bit on receiver-to-sender ACK segment to
notify sender of congestion

Explicit Congestion Notification
(ECN)

source
application
transport
network

link
physical

destination
application
transport
network

link
physical

ECN=00 ECN=11

ECE=1

IP datagram

TCP ACK segment

Transport Layer 3-38

Chapter 3 outline

3.1 transport-layer services
3.2 multiplexing and

demultiplexing
3.3 connectionless transport:

UDP
3.4 principles of reliable data

transfer

3.5 connection-oriented
transport: TCP

• segment structure
• reliable data transfer
• flow control
• connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-39

TCP 3-way handshake: FSM

closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =
newSocket("hostname","port
number");

SYN(seq=x)

Socket connectionSocket =
welcomeSocket.accept();

SYN(x)
SYNACK(seq=y,ACKnum=x+1)

create new socket for
communication back to client

SYNACK(seq=y,ACKnum=x+1)
ACK(ACKnum=y+1)ACK(ACKnum=y+1)

L

Transport Layer 3-40

TCP: closing a connection

• client, server each close their side of
connection
• send TCP segment with FIN bit = 1

• respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own

FIN

• simultaneous FIN exchanges can be handled

Transport Layer 3-41

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB

Acknowledgement

• Most of the slides in this presentation are taken from the
slides provided by the authors of the textbook.

• Thanks to YouTube for providing many useful videos.

§ If you use these slides (e.g., in a class) that you mention their source
(after all, we’d like people to use our book!)

§ If you post any slides on a www site, that you note that they are adapted
from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved

