CSC 257/457 — Computer Networks

Fall 2017
MW 4:50 pm — 6:05 pm
CSB 6o1

Announcement

Project 3 1s out

CSC 457 seminar/survey paper
Proposed topic write-up:

due on October 28th

Transport Layer

3-2

CHAPTER 3 (TRANSPORT LAYER)

A TOP-DOWN APPROACH

Transport Layer

KUROSE * ROSS

A note on the use of these Powerpoint slides:

We’ re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs. L
They obviously represent a /ot of work on our part. In return for use, we only

ask the following: CO

mputer
» If you use these slides (e.g., in a class) that you mention their source Networking: A TOp

(after all, we’ d like people to use our book!)

= |f you post any slides on a www site, that you note that they are adapted DO Wn Approach

from (or perhaps identical to) our slides, and note our copyright of this

material. .
7th edition
Thanks and enjoy! JFK/IKWR Jim Kurose. Keith Ross
14
All material copyright 1996-2016 Pearson/Addison Wesley
© J.F Kurose and K.W. Ross, All Rights Reserved April 2016

Transport Layer

TCP round trip time, timeout

Q: how to set TCP timeout value?

* longer than RT'T
e but RTT varies

* (00 short:
— premature timeoul, unnecessary retransmissions

* (00 long:
—slow reaction to segment loss

Transport Layer 3-5

TCP round trip time, timeout

Q: how to estimate RTT?

* SampleRTT: measured time from segment
transmission until ACK receipt

— 1gnore retransmissions

* SampleRTT will vary --- we want estimated
RTT “smoother”

— average several recent measurements, not just current
SampleRTT

Transport Layer 3-6

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

= exponential weighted moving average
" influence of past sample decreases exponentially fast
= typical value:a =0.125

RTT (milliseconds)

350 ~

300

250

200 -

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

& sampleRTT

EstimatedRTT

1

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

Ttime (seconds) 3-7

TCP round trip time, timeout

e timeout interval: EstimatedRTT +“$ﬁé@Hnaqﬁn"
— large variation in EstimatedRTT -> larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/inléaaspest Layer

3-8

TCP round trip time, timeout

* timeout interval: EstimatedRTT plus “safety margin"
— large variation in EstimatedRTT -> larger safety margin

* estimate SampleRTT deviation from Estimated RT'T:

DevRTT = (1-fB) *DevRTT +
f*| SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

| |

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/inléaaspest Layer

estimated RTT “safety margin”

3-9

Chapter 3 outline

3.1 transport-layer services 3.5 connection-oriented
3.2 multiplexing and transport: TCP
demultiplexing * segment structure

3.3 connectionless transport: * reliable data transfer
UDP * flow control

* connection management

3.4 principles of reliable data

transfer 3.6 principles of congestion

control

3.7 TCP congestion control

Transport Layer 3-10

TCP reliable data transfer

a

* TCP creates rdt service on
top of IP” s unreliable service

— pipelined segments let’ s initially consider
— cumulative acks simplified TCP sender:
— single retransmission timer — 1gnore duplicate acks

* retransmissions triggered by: — ignore flow control,

: congestion control
— bmeout events

— duplicate acks

Transport Layer 3-11

TCP sender events:

a

data revd from app:

* create segment with seq #

* seq # 1s byte-stream number of first data byte in segment
* start timer if not already running

e think of timer as for oldest unacked segment

 expiration interval: TimeOutInterval

Transport Layer 3-12

TCP sender events:

g

limeout:
* retransmit segment that caused timeout
* restart timer

ack revd:

* if ack acknowledges previously unacked segments
« update what is known to be ACKed

* start timer if there are still unacked segments

Transport Layer 3-13

TCP sender (simplified)

data received from application above
create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
A if (timer currently not running)

“a start timer
NextSegNum = InitialSeqNum
SendBase = InitialSegNum

timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 3-14

TCP: retransmission scenarios

Host A

g

Host B

\
Seq=92, 8 bytes of data

-
ACK=100
X

—— timeout —*

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

Host A Host B

SendBase=92 ~—
‘ Seq=92, 8 bytes of data
\

Seq=100, 20 byte§zz

ACK=100
ACK=120

—— timeout

Seq=92, 8
bytes of data -

/

ACK=120

SendBase=120 /

premature timeout

SendBase=100
SendBase=120

Transport Layer 3-15

TCP: retransmission scenarios

Host B

e

5

T
O
A
—
>
a

d

4

/

Seq=92, 8 bytes of data

\

Seq=100, 20 bytes@d{
ACK=100
X/ /

ACK=120

/

\

———— timeout —

Seq=120, 15 bytes of data

\,s

cumulative ACK

Transport Layer 3-16

TCP ACK generatiOn [RFC 1122, RFC 2581]

event at receiver

TCP receiver action

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

immediately send single cumulative
ACK, ACKing both in-order segments

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

immediately send duplicate ACK,
indicating seq. # of next expected byte

arrival of segment that
partially or completely fills gap

immediate send ACK, provided that
segment starts at lower end of gap

Transport Layer 3-17

TCP fast retransmit

if sender receives 3 ACKs for same data

(“triple duplicate ACKs"), resend unacked
segment with smallest (“triple duplicate ACKs”),

" |likely that unacked segment lost, so don’ t wait for
timeout

Transport Layer 3-18

TCP fast

Host A

timeout

A 4

fast retransmit after sender

receipt of triple duplicate ACK

retransmit

— Seq=92, 8 bytes of data

\Seq=100w
\X

|_ACK=100

\

ACK=100
v

TSeq=100, 20 bytes of data

Host B

e

v v

3-19

Chapter 3 outline

3.1 transport-layer services 3.5 connection-oriented
3.2 multiplexing and transport: TCP
demultiplexing * segment structure

3.3 connectionless transport: * reliable data transfer
UDP * {low control

* connection management

3.4 principles of reliable data

transfer 3.6 principles of congestion

control

3.7 TCP congestion control

Transport Layer 3-20

Let's go back to the origin!

_7| \Transmission
rate adjustment "

Flow control is for receivers
Congestion control is for the network

Internal
congestion

Transmission
network

Congestion
collapse was first
observed in 1986

by V. Jacobson.
Congestion control

Small-capacity Large-capacity was added to TCP
receiver —a receiver (TCP Reno) in
1988.

From Computer Networks, A. Tanenbaum

4
Beyond TCP http://cpham.perso.univ-pau.fr/Paper/TUTORIAL/HOTI-

06/HOTI-tutorial-Part2.pdf

TCP flow control

a

application may
remove data from
TCP socket buffers

... Slower than TCP

application
process

I_

"""

TCP socket

receiver buffers
N\

receiver is delivering ——

(sender is sending)

— flow control
receiver controls sender, so

sender won’ t overflow
receiver s buffer by transmitting
too much, too fast

TCP
code

IP
code

application

|
ftom sender

1 Vv
!

receiver protocol stack

Transport Layer

3-22

Flow control
prevents receiver's buffer overfow

Packet Sent Packet Received

Sequence Number

Acknowledgment
o i >

o (-
acknowledged to be sent outside window
5
Beyond TCP http://cpham.perso.univ-pau.fr/Paper/TUTORIAL/HOTI-

06/HOTI-tutorial-Part2.pdf

TCP flow control

to application process

S

RcvBuffer buffered data

T

r""“f free buffer space

1

TCP segment payloads

1€

receiver-side buffering

Transport Layer 3-24

Chapter 3 outline

3.1 transport-layer services 3.5 connection-oriented
3.2 multiplexing and transport: TCP
demultiplexing * segment structure

3.3 connectionless transport: * reliable data transfer
UDP * flow control

* connection management

3.4 principles of reliable data

transfer 3.6 principles of congestion

control

3.7 TCP congestion control

Transport Layer 3-25

TCP congestion control:

additive increase multiplicative decrease
" agpproach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

* additive increase: increase cwnd by | MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
L

time
Transport Layer 3-26

TCP Congestion Control: details

sender sequence number space .
—— cwnd ——s! TCP sending rate:

* roughly: send cwnd bytes,
wait RTT for ACKS, then

\ send more bytes

last byte last byte
ACKed sent, not- gent
yet ACKed
(“in-
flight”)
e sender limits transmission: rate = bytes/sec

LastByteSent- < cwnd
LastByteAcked

* cwnd is dynamic, function of
perceived network congestion

Transport Layer 3-27

TCP Slow Start

a

Host A Host B
* when connection begins,
increase rate exponentially e E
until first loss event: ' one s
* initially ewnd = 1 MSS E \gmen\t>
|

* double cwnd every RTT
* done by incrementing cwnd for w’
every ACK received

* summary: initial rate is slow but
ramps up exponentially fast Our segments

time

Transport Layer 3-28

TCP: detecting, reacting to loss

* loss indicated by timeout:
* cwnd set to 1 MSS;

* window then grows exponentially (as in slow start)
to threshold, then grows linearly

* loss indicated by 3 duplicate ACKs: tcp reno

* dup ACKs indicate network capable of delivering
some segments

* cwnd is cut in half window then grows linearly

* I'CP Tahoe always sets cwna to 1 (timeout or 3
duplicate acks)

Transport Layer 3-29

TCP: switching from slow start to CA

(): when should the

exponential increase

switch to linear? 14—
TCP Reno
A:when cwnd gets to 12
. <
1/2 of its value before 3 _ 104
. €Y
timeout. =g gssthresh 2 ____
c £
S o
h ¥ 6
L c ssthresh
& 4
) TCP Tahoe
2_
: 0
nentation: T T T T T T T T T T T T T 1
IInpleIetatO 0 1 2 3 4 5 6 7 8 910111213 14 15
] Variab]e ssthresh Transmission round

* on loss event, ssthresh
1s set to 1/2 of cwnd just
before loss event

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/inléaaspest Layer 3-30

Summary: TCP Congestion Control

duplicate ACK __new ACH Ii |; |i

cwnd = cwnd + MSS « (MSS/cwnd)

dupACKcount++ new ACK dupACKcount = 0
cwnd = cwnd+MSS transmit new segment(s), as allowed

dupACKcount =0

/>transmit new segment(s), as allowed
cwnd > ssthresh

A

()

A

cwnd =1 MSS
ssthresh = 64 KB
dupACKcount =0 >

<
A

ciQ timeout

{(X))"ssthresh = cwndi2
;Of\(\\ </ E sscwrﬁé = 1?\‘;@3 duplicate ACK
{2y timeout dupACKcount =0 dupACKcount++
4’ ssthresh = cwnd/2 4 retransmit missing segment A
cwnd = 1 MSS
dupACKcount =0 fQ"-\Q\
retransmit missing segment ((c A
timeout %, %))
ssthresh = cwnd/2
cwnd = 1 New ACK
dupACKcount = 0 “wnd = ssthresh
dupACKcount == retransmit missing segment dS\;,)VAnC}Zc%s[J n‘[e=so dupACKcount ==
ssthresh= cwnd/2 ssthresh= cwnd/2
cwnd = ssthresh + 3 cwnd = ssthresh + 3
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

3-31

Transport Layer

TCP throughput

* avg. I'CP thruput as function of window size,

RTT?

—ignore slow start, assume always data to send
* W: window si1ze (measured in bytes) Where loss occurs
—avg. window size (# in-flight bytes) is % W
avg TCP thruput = % % bytes/sec
—avg. throughput 1s 3/4W per R'T'T

N14%4%4%%

Transport Layer 3-32

TCP Futures: TCP over “long, fat pipes”

« example: 1500 byte segments, tooms R'1'l; want 10

Gbps throughput
* requires W = 33,333 in-tlight segments

* throughput in terms of segment loss probability,
L ‘Mathis 1997 192 -MSS
TCP throughput = = —

RTT./L

=» to achieve 10 Gbps throughput, need a loss rate of 1. =
2'10"° — a very small loss rate!

* new versions of TCP for high-speed (RIFC 3649)

Transport Layer 3-33

TCP Fairness

a

Jairness goal: if K'TCP sessions share same bottleneck link of

bandwidth R, each should have average rate of R/K

TCP connection 1

q bottleneck
router

\1’/ .
TCP connection 2 capacity R

Transport Layer 3-34

Why is TCP fair?

two competing sessions:
 additive increase gives slope of 1, as throughout increases

* multiplicative decrease decreases throughput
proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput 2o

Connection 1 throughput R

Transport Layer 3-35

Fairness (more)

g

Fairness and UDP Fairness, parallel TCP connections
* multimedia apps often do * application can open .
not use TCP multiple parallel connections

* do not want rate throttled by between two hosts

congestion control web browsers do this
e instead use UDP: * e.g., link of rate R with g
* send audio/video at constant existing connections:
rale, tolerate packet loss * new app asks for 1 TCP, gets
rate R/10
* new app asks for 1 TCPs,
gets R/2

Transport Layer 3-36

Explicit Congestion Notification
(ECN)

network-assisted congestion control:

* two bits in IP header (ToS field) marked by network router
to indicate congestion

* congestion indication carried to receiving host

* recelver (seging Congestion indication in 1P datagram) |
sets ECE bit on recelver:to-sender ACK segment to
notify sender of congestion

TCP ACK segment

source / destination
A
r * E
= =~
IP datagram

3-37

Chapter 3 outline

3.1 transport-layer services 3.5 connection-oriented
3.2 multiplexing and transport: TCP
demultiplexing * segment structure

3.3 connectionless transport: * reliable data transfer
UDP * flow control

¢ connection management

3.4 principles of reliable data

transfer 3.6 principles of congestion

control

3.7 TCP congestion control

Transport Layer 3-38

TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept() ;

SYN(x)

SYNACK(seg=y,ACKnum=x+1)
create new socket for
communication back to client

l

ACK(ACKnum=y+1)
A

v

A

Transport Layer

Socket clientSocket =
newSocket ("hostname" , "port
number") ;

SYN(seq=x)

‘ SYNACK(seg=y,ACKnum=x+1)

ACK(ACKnum=y-+1)

3-39

TCP: closing a connection

* client, server each close their side of
connection

* send TCP segment with FIN bit =1
* respond to received FIN with ACK

* on receiving FIN; ACK can be combined with own

FIN

* simultaneous FIN exchanges can be handled

Transport Layer 3-40

TCP: closing a connection

client state | V{ H
ESTAB e ——

clientSocket.close ()

FIN_ WAIT 1 can no longer
send but can
l receive data
FIN WAIT 2 wait for server
T - close
TIMED_ WAIT —.
timed wait
for 2*max
segment lifetime
CLOSED J,

T Fibit=1
it=1, Seq=X\‘
/
ACKbit=1; ACKnum=x+1
—

/
‘/FLNbit=1, seq=y
\

ACKbit=1; ACKnum=y+1
\

Transport Layer

can still
send data

can no longer
send data

server state

ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

3-41

Acknowledgement

* Most of the slides in this presentation are taken from the
slides provided by the authors of the textbook.

* Thanks to YoulTube for providing many useful videos.

= |f you use these slides (e.g., in a class) that you mention their source
(after all, we’ d like people to use our book!)

= |f you post any slides on a www site, that you note that they are adapted
from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/IKWR

© All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved

