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======================================== 
Static Analysis and Action Routines 
 
Static semantics are enforced at compile time, dynamic semantics at run time. 
In principle, we don’t need static semantics at all: everything could be figured out 
at run time.  From this perspective, static semantics is an optimization—a chance 
to get error messages sooner and to move work off the critical path of run-time 
execution.  Language theorists tend to define semantics as purely dynamic.  Then 
they write static semantic rules (the ones for the type system tend to be the most 
complex).  The static semantics is said to be sound if everything it deduces at 
compile time would always have come out the same way at run time. 
 
Some things have to be dynamic semantics because of late binding (discussed in 
Chap. 3): we lack the necessary info (e.g., input values) at compile time, or 
inferring what we want is uncomputable. 
 
A smart compiler may avoid run-time checks when it is able to verify compliance 
at compile time.  This makes programs run faster. 
 array bounds 
 variant record tags 
 dangling references 
 
Similarly, a conservative code improver will apply optimizations only when it 
knows they are both safe and beneficial.  A more aggressive compiler may use 
optimizations that are always safe and often beneficial, or generate multiple 
versions with a dynamic check to see if the optimized version is safe.  
 
Alternatively, the language designer may tighten rules 
 type checking in ML v. Lisp (cons: 'a * 'a list -> 'a list) 
 definite assignment in Java/C# v. C 
 ownership in Rust 
 
 
---------------------------------------- 



Semantic analysis can be interleaved with parsing in a variety of ways.  The most 
common approach today is to use action routines to build an AST, then perform 
semantic analysis on each class or subroutine as soon as it has been parsed. 
 
In a recursive descent parser, AST fragments can be returned from and, when 
needed, passed to RD routines: 
 
 AST_node expr(): 
  case input_token of 
   id, literal, ( : 
    T := term() 
    return term_tail(T) 
  else error 
 
 AST_node term_tail(T1): 
  case input_token of 
   +, - : 
    O := add_op() 
    T2 := term() 
    N := new Bin_op(O, T1, T2) // subclass of AST_node 
    return term_tail(N) 
   ), id, read, write, $$ : 
    return T1       // epsilon 
  else error 
 
Here code in black is the original RD parser; red has been added to build the AST. 
In the input to a parser generator, it’s conventional to specify this code as action 
routines embedded in the CFG.  .  The book presents this in Fig. 4.6.  Here’s a 
slightly different version more consistent with the notation of project 2: 

 
E  →  T  { TT.st := T.n }  TT  { E.n := TT.n } 
TT1  →  ao  T  { TT2.st := make_bin_op(ao.op, TT1.st, T.n) }  TT2  { TT1.n := TT2.n } 
TT  → ε  { TT.n := TT.st } 
T  →  F  { FT.st := F.n }  FT  { T.n := FT.n } 
FT1  →  mo  F  { FT2.st := make_bin_op(mo.op, FT1.st, F.n) }  FT2  { FT1.n := FT2.n } 
FT  → ε  { FT.n := FT.st } 
F  →  ( E )  { F.n := E.n } 
F  →  id  { F.n := id.n }   // id.n comes from scanner 
F  →  lit  { F.n := lit.n }   // as does lit.n 



Here the subscripts distinguish among instances of the same symbol in a given 
production.  The .n and and .st suffixes are attributes (fields) of symbols. 
I’ve elided the ao and mo productions. 
 
Where are these attributes stored?  The parse stack won’t do: it contains the 
future, not the past.  One appealing option is to maintain an “attribute stack” that 
holds everything that’s active: all the symbols of all the productions on the path 
from the root to the current top-of-parse-stack symbol. 

- maintain lhs and rhs indices into the attribute stack 
- when predicting production for nonterminal A, 

- push a marker underneath the RHS in the parse stack 
(indicates LHS symbol and RHS length) 

  - save lhs and rhs on a separate stack 
- push space for all symbols of RHS onto the attribute stack 
- point lhs at the attribute stack symbol for A 
- point rhs at the new attribute stack symbols 

 - update attribute stack symbols for tokens when matching them 
 - at end of production 

- pop attribute stack space used by RHS 
- restore lhs and rsh indices 

 
1:  E  →  T  TT 
2:  TT  →  ao  T  TT 
3:  T  →  F  FT 
4:  FT  →  mo  F  FT 
5:  F  →  ( E ) 
6:  F  →  id 
7:  F →  lit 
. . . 
 
(A − 1) * B 

 
 
A simplified version of this scheme can also be used to build an explicit parse tree 
completely automatically, in which case the AST can be built during a separate 
parse-tree traversal. 

 
 
 
 
 
 
 
 
 
 

E 



Using the syntax of project A2, the E  →  T {2} TT {3} 
production would have action routines 
2 => { atv[r+2].set(atv[r].take()); } 
3 => { atv[l].set(atv[r+2].take()); } 
 
 
 
Try tracing AST construction 
for  (A + 1) * B : 
 
 
 
 
 
 
 
 
 
 
 
For a table-driven LL parser, the parser generator gives each action routine a 
number, pushes these into the parse stack along with other RHS symbols, and 
executes them as they are encountered, e.g., by calling a do_action(#) routine 
with a big switch inside. 
 
======================================== 
AST structure 
 
Inside the compiler, AST nodes are structs.  To facilitate formal semantics, these 
are  typically defined with an abstract grammar. 
Before we give an example, let’s extend the calculator grammar with types and 
declarations, so it has some static semantics worth checking: 

 program  →  stmt_list $$ 
 stmt_list  →  decl  stmt_list | stmt  stmt_list | ε 
 decl   →  int id | real id 
 stmt   →  id := expr | read id | write expr 



 expr   →  term  term_tail 
 term_tail  →  add_op  term  term_tail | ε 
 term   →  factor  factor_tail 
 factor_tail   →  mul_op  factor  factor_tail | ε 
 factor   →  ( expr ) | id | int_const | real_const 
         | float ( expr ) | trunc ( expr ) 
 add_op   →  + | – 
 mul_op   →  * | / 
 
 Now we can 
    - require declaration before use 
    - require type match on arithmetic ops, assignment, and float/trunc 
 
Each “production” of the abstract grammar has an AST node type (class) on the 
left-hand side and a set of variants (subclasses), separated by vertical bars, on the 
right-hand side.  Note that the abstract grammar is not for parsing; it's to 
describe the trees that should be built by the parser and checked/annotated by 
the semantic analyzer. 
 
For convenience, we also provide a linear form for trees, to facilitate writing down 
semantic rules.  We add parentheses when necessary to disambiguate. 
 
Example for the extended calculator language: 
 
 s →  int_decl (x, s)    int x ; s 
      |  real_decl (x, s)    real x ; s 
      |  assign (x, e, s)    x := e ; s 
      |  read (x, s)     read x ; s 
      |  write (e, s)     write e ; s 
      |  null      ε 
 e → var (x)      x 
      |  int_lit (n)     n 
      |  real_lit (r)     r 
      |  float (e)     float e 
      |  trunc (e)     trunc e 
      |  bin_op (e, o, e)    e  o  e 



Here's a syntax tree for a tiny program, 
generated by (handwritten) action 
routines according to structure given 
by the abstract grammar.   

 o ∈	{+, -, *, /}  
 x ∈		variables 
 n ∈		integers 
 r ∈		reals 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remember: abstract grammars are not CFGs. Language for a CFG is the set of 
possible fringes of parse trees.  Language for an abstract grammar is the set of 
possible whole abstract trees.  No comparable notion of parsing: structure of tree 
is self-evident. 
 
In addition to specifying AST structure, the abstract grammar provides a 
framework for specifying dynamic and static semantics, typically in the form of 
inference rules that describe relationships among the annotations of parent and 
children nodes in the AST.  Inference rules are sort of like action routines, but 
written in mathematical notation and without explicit specification of what is 
executed when. 
 



Automatic tools to convert inference rules into a semantic analyzer are a current 
topic of research.  In practice, semantic analyzers are still written by hand.  That 
said, a good set of inference rules 

• imposes discipline on our thinking as we define the language 
• provides a concise specification of semantics that is more readable than the 

code and more precise than English 
• defines a common standard—a formal characterization of the language 

that determines whether a hand-written implementation is correct or not 
 
Most languages don’t have formal definitions, but they’re clearly the wave of the 
future.  WebAssembly is a great example. 
 
Inference rules can be used to specify all aspects of program semantics.  The 
typical modern semantic framework specifies dynamic semantics of the (abstract) 
language as a set of inference rules that define the behavior of the language on 
an abstract machine, determining the output of a <program, input> pair. 
 
Compilers (and, to a lesser extent, interpreters) typically also specify static 
semantics to pre-compute whatever they can.  In particular, they perform static 
type checking in order to reduce overhead during eventual execution and to 
catch errors early.  This type checking typically involves more than the usual 
programmer thinks of as types: it includes things like 
 

• passing the right # of parameters to subroutines 
• using only disjoint constants as case statement labels 
• putting a return statement at the end of (every code path of) every 

function 
• putting a break statement only inside a loop 
• . . . 

 
(Theoreticians, in fact, consider type checking a purely static activity.  They don’t 
use the term “type checking” for what happens at run time in a dynamically typed 
language like Python—they call that “safety” instead.) 
 
Static semantics is said to be sound if every judgment it reaches matches what 
dynamic semantics would have concluded at run time.  (It is generally not 
complete—it does not reach all the judgments that can be reached at run time.) 



An inference rule is typically written with a long horizontal line, with predicates 
above the line and a conclusion below the line.  Both predicates and conclusions 
are referred to as judgments; they often (though not always) describe properties 
of nodes in a parent-and-children neighborhood of an AST.  As an example, in an 
AST subtree comprising a constant expression, we might write 
 

  
 
The ev-add-n rule specifies that if e1 evaluates to n1, e2 evaluates to n2, and n1 + n2 
= n3, then e1 + e2 (i.e., bin_op(e1, +, e2)) evaluates to n3. 
 
If we flesh out formal semantics for the calculator language with variables, types, 
and multiple operators it has a more sophisticated version of this rule: 
 

 
 
This introduces the notion of an environment (a mapping from names to values, 
where values have types—not the same as a referencing environment).  It then 
generalizes across types and operators.  We say: “If e1 evaluates to v1 in 
environment E, e2 evaluates to v2 in environment E, v1 and v1 have the same type, 
and v1 ⊕ v2 = v3, then e1 ⊕ e2 (i.e., bin_op(e1, ⊕, e2)) evaluates to v3 in 
environment E.  The ⊢ symbol is called a “turnstile.”  In the last premise, ⊕	is a 
math operator; in the conclusion the corresponding syntactic operator. 
 
Remember that this is a dynamic semantic rule: we only know values at run time. 
 
Other inference rules change the environment (note the left-pointing turnstile): 
 

 
 

  



 
An integer declaration introduces a new name into the environment (with, here, 
an initial value of 0).  An assignment updates the value in the environment.  In 
both cases, the new environment is used for subsequent statements. 
 
Inference rules do not specify the order in which they should be evaluated.  There 
exist tools to figure that out, but in practice (in a real compiler) we typically figure 
out the order by hand and write recursive routines that walk the AST and 
compute the values of fields. 
 
The book gives inference rules and recursive routines to type-check programs in 
the extended calculator grammar.  The recursive routines tag nodes with essential 
information (e.g., type, scope).  We could pass  the symbol table and error 
messages among nodes, too, but it’s more common to make these globals: 

 insert errors, as found, into a list or tree, sorted by source location 
 for symtab, label each construct with list of active scopes 
  look up <name, scope> pairs, starting with closest scope 
 
To avoid cascading errors, it's common to have an “error” value for an 
attribute that means “I already complained about this.”  So in the following we 
label the ‘+’ node with type “error” to avoid a message for the “:=” node: 
 
 int a 
 real b 
 int c 
 a := b + c 
 
Type checking (with error list and symtab as globals) for expressions: 
 
  
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
We’ve assumed here that variables have names (and numbers, values), initialized 
by the scanner.  We’ve also assumed that the code in the parser that builds the 
AST labels all constructs with their location. 
For statements: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



The calculator grammar is simple enough that we can interpret the entire 
program in a single left-to-right pass over the tree.  In more realistic languages, 
we might need to do multiple traversals—e.g., one to identify all the names and 
insert them in the symbol table, another to make sure the names have all been 
used consistently (think of calls to mutually-recursive methods, which may appear 
before the corresponding method declaration), and a third to actually “execute.” 
 
If we were building a compiler instead of an interpreter, the final pass wouldn’t 
“execute” the program but rather spit out a translated version. 
 
For reference, here’s the complete dynamic semantics for the calculator language 
with types: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Static semantics introduce rules with a “typing context” Γ.  This context functions 
a lot like the environment E of the dynamic semantics, but instead of mapping 
names to values (which have self-evident types), it maps names to types.  It 
supports judgments like Γ ⊢	e : τ, meaning “in typing context Γ, expression e has 
type τ. 
 
The basic soundness theorem then asserts that if Γ ⊢	e : τ, Γ ⊢	E, and E ⊢	e ⇓	v, 
then Γ ⊢	v : τ.  That is, if e has type τ at compile time, E is well formed in Γ, and e 
evaluates to v at run time, then v will have type τ.  By “E is well formed in Γ,” we 
mean 
 

	
 
That is, E is well formed in Γ if it’s always the case that when x has type τ in Γ we 
know that the value of x in E has type τ.  (Note here that x is a variable, while e is 
an (arbitrarily complex) expression.	


