(*************************************************************************** General-purpose LL(1) parser generator and parse tree generator, with syntax tree builder and interpreter for an extended calculator language. (c) Michael L. Scott, 2025 For use by students in CSC 2/454 at the University of Rochester, during the spring 2025 term. All other use requires written permission of the author. If compiled and run, will execute "main()". Alternatively, can be "#use"-ed (or compiled and then "#load"-ed) into the top-level interpreter. Note: some libraries are pre-loaded by OCaml; some are not. If you are using the ocaml top-level interpreter, you need to say #load "str.cma";; before you say #use "interpreter.ml";; If you are using utop, say #require "str";; instead. If you are generating an executable from the shell, you have to include the library name on the command line: ocamlc -o interpret -I +str str.cma interpret.ml (This is for ocaml 5; the "-I +str" part can be left out for ocaml 4.) ***************************************************************************) open List (* The List library includes a large collection of useful functions. I'm using assoc, filter, find, find_opt, fold_left, hd, length, map, mem, rev, and sort. *) open Str (* The Str library provides a few extra string-processing routines. I'm using for regexp and split.This library is not automatically available; it needs to be "load"ed or "require"d. *) (*************************************************************************** Preliminaries. ***************************************************************************) (* Surprisingly, compose isn't built in. It's included in various widely used commercial packages, but not in the core libraries. *) let compose f g x = f (g x) (* Leave only one of any consecutive identical elements in list. *) let rec unique l = match l with | [] -> l | [h] -> l | a :: b :: rest -> if a = b (* deep eq *) then unique (b :: rest) else a :: unique (b :: rest) let unique_sort l = unique (List.sort String.compare l) (*************************************************************************** Grammars, Parser Generator, Scanner. For this course we are using a single grammar -- for the extended calcular language. It was easiest for me to build the project, however, if I could experiment with changes to the language without having to change the parser by hand. So we have here a complete parser generator. It's the same one that formed the guts of the table_gen tool for project 2. ***************************************************************************) type symbol_productions = string * string list list type grammar = symbol_productions list type parse_table = (string * (string list * string list) list) list (* nt predict_set rhs *) let (calc_gram : grammar) = (* original calculator grammar *) [ "P", [["SL"; "$$"]] ; "SL", [["S"; "SL"]; []] ; "S", [["id"; ":="; "E"]; ["read"; "id"]; ["write"; "E"]] ; "E", [["T"; "TT"]] ; "T", [["F"; "FT"]] ; "TT", [["AO"; "T"; "TT"]; []] ; "FT", [["MO"; "F"; "FT"]; []] ; "AO", [["+"]; ["-"]] ; "MO", [["*"]; ["/"]] ; "F", [["id"]; ["num"]; ["("; "E"; ")"]] ] let (ecg : grammar) = (* extended calculator grammar *) [ "P", [ ["SL"; "$$"] ] ; "SL", [ ["S"; "SL"]; [] ] ; "S", [ ["TP"; "id"; ":="; "E"] ; ["read"; "TP"; "id"] ; ["write"; "E"] ; ["if"; "C"; "then"; "SL"; "EL"; "end"] ; ["while"; "C"; "do"; "SL"; "end"] ] ; "TP", [ ["int"]; ["real"]; [] ] ; "EL", [ ["elsif"; "C"; "then"; "SL"; "EL"]; ["else"; "SL"]; [] ] ; "C", [ ["E"; "RO"; "E"]]; "E", [["T"; "TT"] ] ; "TT", [ ["AO"; "T"; "TT"]; [] ] ; "T", [ ["F"; "FT"]]; "FT", [["MO"; "F"; "FT"]; [] ] ; "F", [ ["("; "E"; ")"] ; ["id"] ; ["i_lit"] ; ["r_lit"] ; ["trunc"; "("; "E"; ")"] ; ["float"; "("; "E"; ")"] ] ; "RO", [ ["=="]; ["<>"]; ["<"]; [">"]; ["<="]; [">="]]; "AO", [["+"]; ["-"] ] ; "MO", [ ["*"]; ["/"] ] ] (* Return all individual productions in grammar. *) let productions gram : (string * string list) list = let prods (lhs, rhss) = map (fun rhs -> lhs, rhs) rhss in fold_left (@) [] (map prods gram) (* Return all symbols in grammar. *) let gsymbols gram : string list = unique_sort (fold_left (@) [] (map (compose (fold_left (@) []) snd) gram)) (* Return all elements of l that are not in to_exclude. Assume that both lists are sorted. *) let list_minus l to_exclude = let rec helper rest te rtn = match rest with | [] -> rtn | h :: t -> match te with | [] -> rev rest @ rtn | h2 :: t2 -> match Stdlib.compare h h2 with | (-1) -> helper t te (h :: rtn) | 0 -> helper t t2 rtn | _ -> helper rest t2 rtn in rev (helper l to_exclude []) (* Return just the nonterminals. *) let nonterminals gram : string list = map fst gram (* Return just the terminals. *) let terminals gram : string list = list_minus (gsymbols gram) (unique_sort (nonterminals gram)) (* Return the start symbol. Raise exception if grammar is empty. *) let start_symbol gram : string = fst (hd gram) let is_nonterminal e gram = mem e (nonterminals gram) let is_terminal e gram = mem e (terminals gram) let union s1 s2 = unique_sort (s1 @ s2) (* Return suffix of lst that begins with first occurrence of sym (or [] if there is no such occurrence). *) let rec suffix sym lst = match lst with | [] -> [] | h :: t -> if h = sym (* deep eq *) then lst else suffix sym t (* Return a list of pairs. Each pair consists of a symbol A and a list of symbols beta such that for some alpha, A -> alpha B beta. *) type right_context = (string * string list) list let get_right_context (b : string) gram : right_context = fold_left (@) [] (map (fun prod -> let a = fst prod in let rec helper accum rhs = let b_beta = suffix b rhs in match b_beta with | [] -> accum | x :: beta -> (* assert x = b *) helper ((a, beta) :: accum) beta in helper [] (snd prod)) (productions gram)) type symbol_knowledge = { symbol : string; eps : bool; first : string list; follow : string list; } type knowledge = symbol_knowledge list let initial_knowledge gram : knowledge = map (fun a -> { symbol = a; eps = false; first = []; follow = [] }) (nonterminals gram) let get_symbol_knowledge (a : string) (kdg : knowledge) : symbol_knowledge = find (fun sk -> sk.symbol = a) kdg (* Can word list w generate epsilon based on current estimates? if w is an empty list, yes if w is a single terminal, no if w is a single nonterminal, look it up if w is a non-empty list, "iterate" over elements *) let rec generates_epsilon (w : string list) (kdg : knowledge) gram : bool = match w with | [] -> true | h :: t -> if is_terminal h gram then false else (get_symbol_knowledge h kdg).eps && generates_epsilon t kdg gram (* Return FIRST(w), based on current estimates. if w is an empty list, return [] [empty set] if w is a single terminal, return [w] if w is a single nonterminal, look it up if w is a non-empty list, "iterate" over elements *) let rec first (w : string list) (kdg : knowledge) gram : string list = match w with | [] -> [] | x :: _ when is_terminal x gram -> [x] | x :: rest -> let s = (get_symbol_knowledge x kdg).first in if generates_epsilon [x] kdg gram then union s (first rest kdg gram) else s let follow (a : string) (kdg : knowledge) : string list = (get_symbol_knowledge a kdg).follow let rec map3 f l1 l2 l3 = match l1, l2, l3 with | [], [], [] -> [] | h1 :: t1, h2 :: t2, h3 :: t3 -> f h1 h2 h3 :: map3 f t1 t2 t3 | _ -> raise (Failure "mismatched_lists in map3") (* Return knowledge structure for grammar.Start with (initial_knowledge grammar) and "iterate" (tail recurse) until the structure doesn't change.Uses (get_right_context B gram), for all nonterminals B, to help compute follow sets. *) let get_knowledge gram : knowledge = let (nts : string list) = nonterminals gram in let (right_contexts : right_context list) = map (fun s -> get_right_context s gram) nts in let rec helper kdg = let update : symbol_knowledge -> symbol_productions -> right_context -> symbol_knowledge = fun old_sym_kdg sym_prods sym_right_context -> let my_first s = first s kdg gram in let my_eps s = generates_epsilon s kdg gram in let filtered_follow p = if my_eps (snd p) then follow (fst p) kdg else [] in { symbol = old_sym_kdg.symbol; (* nonterminal itself *) eps = old_sym_kdg.eps (* previous estimate *) || fold_left (||) false (map my_eps (snd sym_prods)); first = union old_sym_kdg.first (* previous estimate *) (fold_left union [] (map my_first (snd sym_prods))); follow = union (union old_sym_kdg.follow (fold_left union [] (map my_first (map (fun p -> match snd p with | [] -> [] | h :: t -> [h]) sym_right_context)))) (fold_left union [] (map filtered_follow sym_right_context)); } in (* end of update *) let new_kdg = map3 update kdg gram right_contexts in (* body of helper: *) if new_kdg = kdg then kdg else helper new_kdg in (* body of get_knowledge: *) helper (initial_knowledge gram) let get_parse_table (gram : grammar) : parse_table = let kdg = get_knowledge gram in map (fun (lhs, rhss) -> lhs, map (fun rhs -> union (first rhs kdg gram) (if generates_epsilon rhs kdg gram then follow lhs kdg else []), rhs) rhss) gram type row_col = int * int (* source location *) let complaint (loc : row_col) (msg : string) = let (l, c) = loc in Printf.sprintf " line %2d, col %2d: %s" l c msg (* Convert string to list of chars, each tagged with row and column. Also return number of lines. *) let explode_and_tag (s : string) : (char * row_col) list * int = let rec exp i r c l = if i = String.length s then l else let (r2, c2) = if s.[i] = '\n' then r + 1, 1 else r, c + 1 in exp (i + 1) r2 c2 ((s.[i], (r, c)) :: l) in let chars = exp 0 1 1 [] in let rows = match chars with | [] -> 0 | (_, (r, _)) :: t -> r in rev chars, rows (* Convert list of char to string. (This uses imperative features. It used to be a built-in.) *) let implode (l : char list) : string = let res = Bytes.create (length l) in let rec imp i l = match l with | [] -> Bytes.to_string res | c :: l -> Bytes.set res i c; imp (i + 1) l in imp 0 l (*************************************************************************** Scanner. Currently specific to the extended calculator language. ***************************************************************************) type token = string * string * row_col (* category * name * row+column *) let tokenize (program : string) : token list = let (chars, num_lines) = explode_and_tag program in let get_id prog = let rec gi tok p = match p with | (c, _) :: rest when 'a' <= c && c <= 'z' || 'A' <= c && c <= 'Z' || '0' <= c && c <= '9' || c = '_' -> gi (c :: tok) rest | _ -> implode (rev tok), p in gi [] prog in (* get_num matches digit*(.digit*((e|E)(+|-)?digit+)?)? We're pickier below -- insist on a digit on at least one side of the . *) let get_num prog = (* integer or real *) let get_int prog = (* eat digit* *) let rec gi tok p = match p with | (c, _) :: rest when '0' <= c && c <= '9' -> gi (c :: tok) rest | _ -> implode (rev tok), p in gi [] prog in let get_exp prog = (* eat (e|E)(+|-|epsilon)digit+ *) match prog with | (e, eloc) :: r1 when e = 'e' || e = 'E' -> begin match r1 with | (s, _) :: (d, dloc) :: r2 when (s = '+' || s = '-') && '0' <= d && d <= '9' -> let (pow, r3) = get_int ((d, dloc) :: r2) in String.make 1 e ^ String.make 1 s ^ pow, r3 | (d, dloc) :: r2 when '0' <= d && d <= '9' -> let (pow, r3) = get_int ((d, dloc) :: r2) in String.make 1 e ^ pow, r3 | _ -> "error", (e, eloc) :: r1 end | _ -> "", prog in let (whole, r1) = get_int prog in match r1 with | ('.', _) :: r2 -> let (frac, r3) = get_int r2 in let (exp, r4) = get_exp r3 in whole ^ "." ^ frac ^ exp, r4 | _ -> whole, r1 in let rec get_error tok prog = match prog with | [] -> implode (rev tok), prog | (c, _) :: rest -> match c with | ';' | ':' | '+' | '-' | '*' | '/' | '(' | ')' | '_' | '<' | '>' | '=' | 'a'..'z' | 'A'..'Z' | '0'..'9' -> implode (rev tok), prog | _ -> get_error (c :: tok) rest in let rec skip_space prog = match prog with | [] -> [] | (c, _) :: rest -> if c = ' ' || c = '\n' || c = '\r' || c = '\t' then skip_space rest else prog in let rec tkize toks prog = match prog with | [] -> ("$$", (num_lines + 1, 0)) :: toks, [] | ('\n', _) :: rest | ('\r', _) :: rest | ('\t', _) :: rest | (' ', _) :: rest -> tkize toks (skip_space prog) | (':', l) :: ('=', _) :: rest -> tkize ((":=", l) :: toks) rest | ('+', l) :: rest -> tkize (("+", l) :: toks) rest | ('-', l) :: rest -> tkize (("-", l) :: toks) rest | ('*', l) :: rest -> tkize (("*", l) :: toks) rest | ('/', l) :: rest -> tkize (("/", l) :: toks) rest | ('(', l) :: rest -> tkize (("(", l) :: toks) rest | (')', l) :: rest -> tkize ((")", l) :: toks) rest | ('<', l) :: ('=', _) :: rest -> tkize (("<=", l) :: toks) rest | ('<', l) :: ('>', _) :: rest -> tkize (("<>", l) :: toks) rest | ('<', l) :: rest -> tkize (("<", l) :: toks) rest | ('>', l) :: ('=', _) :: rest -> tkize ((">=", l) :: toks) rest | ('>', l) :: rest -> tkize ((">", l) :: toks) rest | ('=', l) :: ('=', _) :: rest -> tkize (("==", l) :: toks) rest | (h, l) :: t -> match h with | '.' | '0'..'9' -> let (nm, rest) = get_num prog in tkize ((nm, l) :: toks) rest | 'a'..'z' | 'A'..'Z' | '_' -> let (nm, rest) = get_id prog in tkize ((nm, l) :: toks) rest | x -> let (nm, rest) = get_error [x] t in tkize ((nm, l) :: toks) rest in let (toks, _) = tkize [] chars in let categorize tok = let (nm, loc) = tok in match nm with | "do" | "else" | "elsif" | "end" | "float" | "if" | "int" | "read" | "real" | "then" | "trunc" | "while" | "write" | ":=" | "+" | "-" | "*" | "/" | "(" | ")" | "<" | "<=" | ">" | ">=" | "<>" | "==" | "$$" -> nm, nm, loc | _ -> match nm.[0] with | '.' -> begin try if '0' <= nm.[1] && nm.[1] <= '9' then "r_lit", nm, loc else "error", nm, loc with Invalid_argument _ -> "error", nm, loc end | '0'..'9' -> if String.contains nm '.' then "r_lit", nm, loc else "i_lit", nm, loc | 'a'..'z' | 'A'..'Z' | '_' -> "id", nm, loc | _ -> "error", nm, loc in map categorize (rev toks) (*************************************************************************** Parser. The main parse routine returns a parse tree (or PT_error if the input program is syntactically invalid). To build that tree it employs a simplified version of the "attribute stack" described in Section 4.6.4 (pages 67-69) on the PLP 5e companion site. When it predicts A -> B C D, the parser pops A from the parse stack and then, before pushing D, C, and B (in that order), it pushes a number (in this case 3) indicating the length of the right hand side. It also pushes A into the attribute stack. When it matches a token, the parser pushes this into the attribute stack as well. Finally, when it encounters a number (say k) in the stack (as opposed to a character string), the parser pops k+1 symbols from the attribute stack, joins them together into a list, and pushes the list back into the attribute stack. These rules suffice to accumulate a complete parse tree into the attribute stack at the end of the parse. Note that everything is done functionally. We don't really modify the stacks; we pass new versions to tail recursive routines. Note also that we don't do syntax error recovery -- we simply die (return PT_error) when we first run into trouble. ***************************************************************************) (* Extract grammar from parse-tab, so we can invoke the various routines that expect a grammar as argument. *) let grammar_of (parse_tab : parse_table) : grammar = map (fun p -> fst p, fold_left (@) [] (map (fun (a, b) -> [b]) (snd p))) parse_tab type parse_tree = (* among other things, parse_trees are *) | PT_error (* the elements of the attribute stack *) | PT_id of string * row_col | PT_int of string * row_col | PT_real of string * row_col | PT_term of string * row_col | PT_nt of string * row_col * parse_tree list (* Pop rhs-len + 1 symbols off the attribute stack, assemble into a production, and push back onto the stack. *) let reduce_1_prod (astack : parse_tree list) (rhs_len : int) : parse_tree list = let rec helper atk k prod = match k, atk with | 0, PT_nt (nt, loc, []) :: t -> PT_nt (nt, loc, prod) :: t | n, h :: t when n != 0 -> helper t (k - 1) (h :: prod) | _ -> raise (Failure "expected nonterminal at top of astack") in helper astack rhs_len [] type parse_action = | PA_error | PA_prediction of string list (* Double-index to find prediction (list of RHS symbols) for nonterminal nt and terminal t. Return PA_error if not found. *) let get_parse_action (nt : string) (t : string) (parse_tab : parse_table) : parse_action = let rec helper l = match l with | [] -> PA_error | (fs, rhs) :: rest -> if mem t fs then PA_prediction rhs else helper rest in helper (assoc nt parse_tab) type ps_item = (* elements of parse stack *) | PS_end of int | PS_sym of string (* Parse program according to grammar. [Commented-out code would print predictions and matches (imperatively) along the way.] Return parse tree if the program is in the language; PT_error if it's not. *) let parse (parse_tab : parse_table) (program : string) : parse_tree = let die loc msg = let (l, c) = loc in (* print to screen in REPL; to stderr when compiled *) (if !(Sys.interactive) then Printf.printf else Printf.eprintf) "syntax error at line %d, col %d: %s\n" l c msg; PT_error in let gram = grammar_of parse_tab in let rec helper pstack tokens astack = match pstack with | [] -> if tokens = [] then (* assert: astack is nonempty *) hd astack else die (0, 0) "extra input beyond end of program" | PS_end n :: ps_tail -> helper ps_tail tokens (reduce_1_prod astack n) | PS_sym tos :: ps_tail -> match tokens with | [] -> die (0, 0) "unexpected end of program" | (term, nm, loc) :: more_tokens -> (* if nm is an individual identifier or number, term will be a generic "id" or "i_lit" or "r_lit" *) if is_terminal tos gram then if tos = term then begin (* print_string (" match " ^ tos); print_string (if tos <> term (* deep comparison *) then (" (" ^ nm ^ ")") else ""); print_newline (); *) helper ps_tail more_tokens ((match term with | "id" -> PT_id (nm, loc) | "i_lit" -> PT_int (nm, loc) | "r_lit" -> PT_real (nm, loc) | _ -> PT_term (nm, loc)) :: astack) (* note push of nm into astack *) end else die loc ("expected " ^ tos ^ " ; saw " ^ nm) else (* nonterminal *) match get_parse_action tos term parse_tab with | PA_error -> die loc ("no prediction for " ^ tos ^ " when seeing " ^ nm) | PA_prediction rhs -> begin (* print_string (" predict " ^ tos ^ " ->"); print_string (fold_left (fun a b -> a ^ " " ^ b) "" rhs); print_newline (); *) helper (fold_left (@) [] (map (fun s -> [PS_sym s]) rhs) @ [PS_end (length rhs)] @ ps_tail) tokens (PT_nt (tos, loc, []) :: astack) end in helper [PS_sym (start_symbol gram)] (tokenize program) [] let cg_parse_table = get_parse_table calc_gram let ecg_parse_table = get_parse_table ecg (*************************************************************************** Syntax tree builder. In contrast to project 2, in which you built a syntax tree while parsing, this project separates parse tree construction (above) with AST construction (below). ***************************************************************************) (* Syntax tree node types. We distinguish between statements and expressions. Comments below indicate what syntactic element in the source is associated with the location [row_col] values. Note that each declaration (e.g., "int foo := 3" or "read int foo") is turned into a _pair_ of AST nodes -- one for the declaration itself and one for the initialization. *) type ast_sl = ast_s list and ast_s = | AST_error | AST_i_dec of string * row_col (* id location *) | AST_r_dec of string * row_col (* id location *) | AST_read of string * row_col (* id location *) | AST_write of ast_e | AST_assign of string * ast_e * row_col * row_col (* id location, := location *) | AST_if of ast_c * ast_sl * ast_sl | AST_while of ast_c * ast_sl and ast_e = | AST_int of string * row_col | AST_real of string * row_col | AST_id of string * row_col | AST_float of ast_e * row_col (* lparen location *) | AST_trunc of ast_e * row_col (* lparen location *) | AST_binop of string * ast_e * ast_e * row_col (* op location *) and ast_c = string * ast_e * ast_e * row_col (* op location *) (* Convert parse tree to syntax tree. Walks the parse tree using a collection of mutually recursive subroutines. *) let rec ast_ize_prog (p : parse_tree) : ast_sl = match p with | PT_error -> [AST_error] | PT_nt ("P", _, [sl; PT_term ("$$", _)]) -> ast_ize_stmt sl | _ -> raise (Failure "malformed parse tree in ast_ize_prog") and ast_ize_stmt (s : parse_tree) : ast_sl = match s with | PT_nt ("SL", _, []) -> [] | PT_nt ("SL", _, [s1; rest]) -> ast_ize_stmt s1 @ ast_ize_stmt rest | PT_nt ("S", _, [tp; PT_id (var, vloc); PT_term (":=", aloc); expr]) -> begin match tp with | PT_nt ("TP", _, []) -> [AST_assign (var, ast_ize_expr expr, vloc, aloc)] | PT_nt ("TP", _, [PT_term ("int", dloc)]) -> [AST_i_dec (var, vloc); AST_assign (var, ast_ize_expr expr, vloc, aloc)] | PT_nt ("TP", _, [PT_term ("real", dloc)]) -> [AST_r_dec (var, vloc); AST_assign (var, ast_ize_expr expr, vloc, aloc)] | _ -> raise (Failure "unexpected type in read") end | PT_nt ("S", _, [PT_term ("read", _); tp; PT_id (var, vloc)]) -> begin match tp with | PT_nt ("TP", _, []) -> [AST_read (var, vloc)] | PT_nt ("TP", _, [PT_term ("int", dloc)]) -> [AST_i_dec (var, vloc); AST_read (var, vloc)] | PT_nt ("TP", _, [PT_term ("real", dloc)]) -> [AST_r_dec (var, vloc); AST_read (var, vloc)] | _ -> raise (Failure "unexpected type in read") end | PT_nt ("S", _, [PT_term ("write", _); expr]) -> [AST_write (ast_ize_expr expr)] | PT_nt ("S", _, [PT_term ("if", _); cond; PT_term ("then", _); then_pt; else_pt; PT_term ("end", _)]) -> [AST_if (ast_ize_cond cond, ast_ize_stmt then_pt, ast_ize_stmt else_pt)] | PT_nt ("EL", _, [PT_term ("elsif", _); cond; PT_term ("then", _); then_pt; else_pt]) -> [AST_if (ast_ize_cond cond, ast_ize_stmt then_pt, ast_ize_stmt else_pt)] | PT_nt ("EL", _, [PT_term ("else", _); sl]) -> ast_ize_stmt sl | PT_nt ("EL", _, []) -> [] | PT_nt ("S", _, [PT_term ("while", _); cond; PT_term ("do", _); sl; PT_term ("end", _)]) -> [AST_while (ast_ize_cond cond, ast_ize_stmt sl)] | _ -> raise (Failure "malformed parse tree in ast_ize_stmt") and ast_ize_expr (e : parse_tree) : ast_e = (* E, T, or F *) match e with | PT_nt ("F", _, [PT_term ("(", _); expr; PT_term (")", _)]) -> ast_ize_expr expr | PT_nt ("F", _, [PT_id (var, vloc)]) -> AST_id (var, vloc) | PT_nt ("F", _, [PT_int (value, iloc)]) -> AST_int (value, iloc) | PT_nt ("F", _, [PT_real (value, rloc)]) -> AST_real (value, rloc) | PT_nt ("F", _, [PT_term ("float", _); PT_term ("(", eloc); expr; PT_term (")", _)]) -> AST_float (ast_ize_expr expr, eloc) | PT_nt ("F", _, [PT_term ("trunc", _); PT_term ("(", eloc); expr; PT_term (")", _)]) -> AST_trunc (ast_ize_expr expr, eloc) | PT_nt ("T", _, [lhs; tail]) | PT_nt ("E", _, [lhs; tail]) -> ast_ize_expr_tail (ast_ize_expr lhs) tail | _ -> raise (Failure "malformed parse tree in ast_ize_expr") and ast_ize_expr_tail (lo : ast_e) (tail : parse_tree) : ast_e = (* TT or FT *) (* lo is a left operand for a potential operator in tail *) match tail with | PT_nt ("TT", _, []) | PT_nt ("FT", _, []) -> lo | PT_nt ("TT", _, [PT_nt ("AO", oloc, [PT_term (op, _)]); ro; t2]) | PT_nt ("FT", _, [PT_nt ("MO", oloc, [PT_term (op, _)]); ro; t2]) -> ast_ize_expr_tail (AST_binop (op, lo, ast_ize_expr ro, oloc)) t2 | _ -> raise (Failure "malformed parse tree in ast_ize_expr_tail") and ast_ize_cond (c : parse_tree) : ast_c = match c with | PT_nt ("C", _, [lo; PT_nt ("RO", oloc, [PT_term (op, _)]); ro]) -> op, ast_ize_expr lo, ast_ize_expr ro, oloc | _ -> raise (Failure "malformed parse tree in ast_ize_cond") (*************************************************************************** Post-typecheck syntax tree. Declarations aren't needed anymore. For numbers, strings are replaced by int or real values. For ids, strings (names) are augmented by (type, index) pairs. We don't really need the names anymore, but I retain them for pretty-printing. Source code locations are retained for read statements and binops, which can suffer run-time errors during interpretation (out of input / wrong-type input and divide-by-zero, respectively). ***************************************************************************) type val_type = Real | Int | Verror let type_name = function | Real -> "real" | Int -> "int" | Verror -> "error" type index = int type tpd_ind = val_type * index type ast2_sl = ast2_s list and ast2_s = | AST2_error | AST2_read of string * tpd_ind * row_col (* id location *) | AST2_write of ast2_e | AST2_assign of string * tpd_ind * ast2_e | AST2_if of ast2_c * ast2_sl * ast2_sl | AST2_while of ast2_c * ast2_sl and ast2_e = | AST2_real of float | AST2_int of int | AST2_id of string * tpd_ind | AST2_float of ast2_e | AST2_trunc of ast2_e | AST2_binop of string * val_type * ast2_e * ast2_e * row_col (* op location *) and ast2_c = string * ast2_e * ast2_e let ast2_etype = function | AST2_real _ -> Real | AST2_int _ -> Int | AST2_id (_, (tp, ix)) -> tp | AST2_float _ -> Real | AST2_trunc _ -> Int | AST2_binop (_, tp, _, _, _) -> tp (*************************************************************************** AST Pretty-printers. ***************************************************************************) (******** Pre-typecheck trees: ********) let rec pp_sl (sl : ast_sl) (ind : string) : string = match sl with | [] -> "" | [s] -> pp_s s ind | s :: tl -> pp_s s ind ^ "\n" ^ ind ^ pp_sl tl ind and pp_s (s : ast_s) (ind : string) : string = match s with | AST_i_dec (id, _) -> "(int \"" ^ id ^ "\")" | AST_r_dec (id, _) -> "(real \"" ^ id ^ "\")" | AST_read (id, _) -> "(read \"" ^ id ^ "\")" | AST_write expr -> "(write " ^ pp_e expr ^ ")" | AST_assign (id, expr, _, _) -> "(:= \"" ^ id ^ "\" " ^ pp_e expr ^ ")" | AST_if (cond, tpt, ept) -> "(if " ^ pp_c cond ^ " [" ^ "\n" ^ ind ^ " " ^ pp_sl tpt (ind ^ " ") ^ "\n" ^ ind ^ " ] [" ^ (if ept = [] then "" else "\n" ^ ind ^ " ") ^ pp_sl ept (ind ^ " ") ^ "\n" ^ ind ^ " ]\n" ^ ind ^ ")" | AST_while (cond, sl) -> "(while " ^ pp_c cond ^ "\n" ^ ind ^ " [ " ^ pp_sl sl (ind ^ " ") ^ "\n" ^ ind ^ " ]\n" ^ ind ^ ")" | AST_error -> "error" and pp_e (e : ast_e) : string = match e with | AST_int (num, _) -> "\"" ^ num ^ "\"" | AST_real (num, _) -> "\"" ^ num ^ "\"" | AST_id (id, _) -> "\"" ^ id ^ "\"" | AST_float (e, _) -> "(float " ^ pp_e e ^ ")" | AST_trunc (e, _) -> "(trunc " ^ pp_e e ^ ")" | AST_binop (op, lo, ro, _) -> "(" ^ op ^ " " ^ pp_e lo ^ " " ^ pp_e ro ^ ")" and pp_c (c : ast_c) : string = let (op, lo, ro, _) = c in "(" ^ op ^ " " ^ pp_e lo ^ " " ^ pp_e ro ^ ")" let pp_p (sl : ast_sl) = print_string ("[ " ^ pp_sl sl " " ^ "\n]\n") (******** Post-typecheck trees: ********) let rec pp2_sl (sl : ast2_sl) (ind : string) : string = match sl with | [] -> "" | [s] -> pp2_s s ind | s :: tl -> pp2_s s ind ^ "\n" ^ ind ^ pp2_sl tl ind and pp2_s (s : ast2_s) (ind : string) : string = match s with | AST2_read (id, (tp, ix), _) -> Printf.sprintf "(read \"%s\" (%s %d))" id (type_name tp) ix | AST2_write expr -> "(write " ^ pp2_e expr ^ ")" | AST2_assign (id, (tp, ix), expr) -> let note = match tp with | Verror -> "(error)" | _ -> Printf.sprintf "(%s %d)" (type_name tp) ix in Printf.sprintf "(:= \"%s\" %s %s)" id note (pp2_e expr) | AST2_if (cond, tpt, ept) -> "(if " ^ pp2_c cond ^ " [" ^ "\n" ^ ind ^ " " ^ pp2_sl tpt (ind ^ " ") ^ "\n" ^ ind ^ " ] [" ^ (if ept = [] then "" else "\n" ^ ind ^ " ") ^ pp2_sl ept (ind ^ " ") ^ "\n" ^ ind ^ " ]\n" ^ ind ^ ")" | AST2_while (cond, sl) -> "(while " ^ pp2_c cond ^ "\n" ^ ind ^ " [ " ^ pp2_sl sl (ind ^ " ") ^ "\n" ^ ind ^ " ]\n" ^ ind ^ ")" | AST2_error -> "error" and pp2_e (e : ast2_e) : string = match e with | AST2_real rv -> Printf.sprintf "%f" rv | AST2_int iv -> Printf.sprintf "%d" iv | AST2_id (id, (tp, ix)) -> Printf.sprintf "\"%s\" (%s %d)" id (type_name tp) ix | AST2_float e -> "(float " ^ pp2_e e ^ ")" | AST2_trunc e -> "(trunc " ^ pp2_e e ^ ")" | AST2_binop (op, tp, lo, ro, _) -> Printf.sprintf "(%s %s %s %s)" (type_name tp) op (pp2_e lo) (pp2_e ro) and pp2_c (c : ast2_c) : string = let (op, lo, ro) = c in "(" ^ op ^ " " ^ pp2_e lo ^ " " ^ pp2_e ro ^ ")" let pp2_p (sl : ast2_sl) = print_string ("[ " ^ pp2_sl sl " " ^ "\n]\n") (*************************************************************************** Everything above this point in the file is complete and (I think) usable as-is. The rest of the file, from here down, is a skeleton of what you need to write. ***************************************************************************) (*************************************************************************** Symbol Table The symbol table is a stack of scopes and a pair of indices, with the innermost scope at the top of the stack. Each scope consists of a list of (name, tpd_ind) pairs. The indices indicate slots in the (to be created) real and integer memory arrays. ***************************************************************************) type 'a stack = 'a list let push (x : 'a) (s : 'a stack) : 'a stack = x :: s let pop (s : 'a stack) : 'a option * 'a stack = match s with | [] -> None, [] | x :: r -> Some x, r type symtab = { scopes : (string * tpd_ind) list stack; next_r : index; next_i : index; } let new_symtab = {scopes = []; next_r = 0; next_i = 0} let new_scope (stab:symtab) : symtab = { scopes = push [] stab.scopes; next_r = stab.next_r; next_i = stab.next_i; } let end_scope (stab:symtab) : symtab = { scopes = (let (_, surround) = pop stab.scopes in surround); next_r = stab.next_r; next_i = stab.next_i; } let name_match id (sym, _) = (id = sym) (* deep eq *) (* Insert name in current scope of symtab; return updated symtab. If already present in innermost scope, return error msg. *) let stab_insert (id : string) (tp : val_type) (loc : row_col) (stab : symtab) : symtab * string = match stab.scopes with | [] -> raise (Failure "empty scope in stab_insert") | scope :: surround -> match find_opt (name_match id) scope with | Some (_, _) -> stab, complaint loc (id ^ " is already defined in this scope") | None -> let (vi, ri, ii) = match tp with | Real -> stab.next_r, stab.next_r + 1, stab.next_i | Int -> stab.next_i, stab.next_r, stab.next_i + 1 | Verror -> 0, stab.next_r, stab.next_i in { scopes = ((id, (tp, vi)) :: scope) :: surround; next_r = ri; next_i = ii }, "" (* Look up name in symtab and return type and index. If not present, insert error entry in innermost scope and return new symtab and error msg *) let rec stab_lookup (id : string) (loc : row_col) (stab : symtab) : symtab * tpd_ind * string = (* helper just does the lookup *) let rec helper scopes : (val_type * index) option = match scopes with | [] -> None | scope :: surround -> match find_opt (name_match id) scope with | Some (_, t_i) -> Some t_i | None -> helper surround in (** YOUR CODE HERE **) stab, (Verror, 0), "" (* this is wrong *) (*************************************************************************** Type-checker As an alternative to fully dynamic semantics, this code checks static semantic rules before program execution. Specifically: - all variables must be declared before use. - no variable can be redeclared in the same scope (global, loop body, then clause, else clause), though nested declarations can hide outer ones. For the sake of simplicity, we'll say (as in C) that the outer declaration remains visible in the inner scope prior to the nested declaration. - operands of binary operators must agree in type - lhs and rhs of assignments must agree in type - argument of trunc must be real - argument of float must be integer These errors should never arise in a program that has passed typechecking (that is, the typechecking should be sound). ***************************************************************************) (* Typecheck statement list in nested scope; accumulate error messages. *) let rec typecheck_sl (sl : ast_sl) (stab : symtab) : ast2_sl * symtab * string list = (* new_ast new_stab errors *) let rec helper (ss : ast_sl) (stab2 : symtab) (ss2_so_far : ast2_sl) (errs_so_far : string list) : ast2_sl * symtab * string list = (** YOUR CODE HERE You'll want to (tail-recursively) "iterate" over the statements of ss, building a new ast2_sl. Note that declarations change the symbol table, but will not be part of the new list. Individual statements can produce more than one error, so you'll need list concatenation (@) to join them. This isn't constant time, but error lists are expected to be short. **) [], stab2, [] (* this is wrong *) in (** YOUR CODE HERE You'll want to think about how to handle scopes. **) [], stab, ["this is also wrong"] and typecheck_s (s : ast_s) (stab : symtab) : ast2_s * symtab * string list = (* new_ast new_stab errors *) match s with | AST_i_dec (id, vloc) -> let (stab2, err) = stab_insert id Int vloc stab in AST2_error (* ignored by caller *), stab2, (if err = "" (* deep eq *) then [] else [err]) | AST_r_dec (id, vloc) -> (** YOUR CODE HERE **) AST2_error, stab, [] (* this is wrong *) | AST_read (id, vloc) -> let (stab2, tl, err) = stab_lookup id vloc stab in AST2_read (id, tl, vloc), stab2, (if err = "" (* deep eq *) then [] else [err]) | AST_write expr -> (** YOUR CODE HERE **) AST2_error, stab, [] (* this is wrong *) | AST_assign (id, expr, id_loc, gets_loc) -> (** YOUR CODE HERE You'll want to catch type clashes, but avoid cascading errors. **) AST2_error, stab, [] (* this is wrong *) | AST_if (cond, tsl, esl) -> (** YOUR CODE HERE **) AST2_error, stab, [] (* this is wrong *) | AST_while (cond, sl) -> (** YOUR CODE HERE **) AST2_error, stab, [] (* this is wrong *) | AST_error -> raise (Failure "cannot interpret erroneous tree") and typecheck_e (e : ast_e) (stab : symtab) : ast2_e * symtab * string list = (* new_ast new_stab errors *) match e with | AST_int (str, iloc) -> AST2_int (int_of_string str), stab, [] (* raises Failure "int_of_string" on (unexpected) error *) | AST_real (str, rloc) -> (** YOUR CODE HERE **) AST2_real 0., stab, [] (* this is wrong *) | AST_id (id, vloc) -> let (stab2, tl, err) = stab_lookup id vloc stab in AST2_id (id, tl), stab2, (if err = "" (* deep eq *) then [] else [err]) | AST_float (expr, eloc) -> (** YOUR CODE HERE You'll want to catch non-int input. **) AST2_real 0., stab, [] (* this is wrong *) | AST_trunc (expr, eloc) -> (** YOUR CODE HERE You'll want to catch non-real input. **) AST2_int 0, stab, [] (* this is wrong *) | AST_binop (op, lo, ro, oloc) -> (** YOUR CODE HERE You'll want to catch type clashes, but avoid cascading errors. **) AST2_int 0, stab, [] (* this is wrong *) and typecheck_c (op, lo, ro, oloc : ast_c) (stab : symtab) : ast2_c * symtab * string list = (* new_ast new_stab errors *) (** YOUR CODE HERE You'll want to catch type clashes, but avoid cascading errors. **) ("=", AST2_int 0, AST2_int 0), stab, [] (* this is wrong *) (* Typecheck a whole AST. Return an AST2, a (properly ordered) error list, and counts of real and int vars. *) let typecheck (p : ast_sl) : ast2_sl * string list * index * index = (* new_ast new_stab errors num_rs num_is *) let (p2, stab2, errs) = typecheck_sl p new_symtab in p2, errs, stab2.next_r, stab2.next_i (*************************************************************************** Actual interpreter Catches divide-by-zero, invalid input, and unexpected end of input on read. Uses imperative code (mutable array slots) to modify values of calculator variables during execution. (We could pass around updated environments instead, but there's no easy way to do that without making every assignment or read statement take time O(log n), where n is the number of variables in the program.) ***************************************************************************) type memory = { reals : float array; ints : int array } type status = Good | Bad (* run-time error *) type value = | Rvalue of float | Ivalue of int | Evalue of string (* divide-by-zero is the only bad case at present *) (* Accumulated output is constructed in reverse. *) let rec interpret_sl (sl : ast2_sl) (mem : memory) (inp : string list) (outp : string list) : status * string list * string list = (* ok? new_input new_output *) (** YOUR CODE HERE You'll want to tail-recursively "iterate" over the statements of the list, accumulating reversed output. You should stop when you reach the end of the list or you encounter a run-time error (status of Bad returned from a call to interpret_s). **) Good, inp, outp (* this is wrong *) and interpret_s (s : ast2_s) (mem : memory) (inp : string list) (outp : string list) : status * string list * string list = (* ok? new_input new_output *) match s with | AST2_error -> raise (Failure "cannot interpret erroneous tree") | AST2_read (_, tl, loc) -> interpret_read tl loc mem inp outp | AST2_write expr -> interpret_write expr mem inp outp | AST2_assign (_, tl, expr) -> interpret_assign tl expr mem inp outp | AST2_if (cond, tsl, esl) -> interpret_if cond tsl esl mem inp outp | AST2_while (cond, sl) -> interpret_while cond sl mem inp outp and interpret_read (tp, ix : tpd_ind) (loc : row_col) (mem : memory) (inp : string list) (outp : string list) : status * string list * string list = (* ok? new_input new_output *) (** YOUR CODE HERE You'll want to catch bad input (non-int or non-real, as appropriate). In the error-free case, you'll need to convert the string to an int or float (as appropriate) and then update (imperatively) the appropriate slot in mem. **) Good, inp, outp (* this is wrong *) and interpret_write (expr : ast2_e) (mem : memory) (inp : string list) (outp : string list) : status * string list * string list = (* ok? new_input new_output *) (** YOUR CODE HERE **) Good, inp, outp (* this is wrong *) and interpret_assign (tp, ix : tpd_ind) (expr : ast2_e) (mem : memory) (inp : string list) (outp : string list) : status * string list * string list = (* ok? new_input new_output *) (** YOUR CODE HERE **) Good, inp, outp (* this is wrong *) and interpret_if (cond : ast2_c) (tsl : ast2_sl) (esl : ast2_sl) (mem : memory) (inp : string list) (outp : string list) : status * string list * string list = (* ok? new_input new_output *) (** YOUR CODE HERE **) Good, inp, outp (* this is wrong *) and interpret_while (cond : ast2_c) (sl : ast2_sl) (mem : memory) (inp : string list) (outp : string list) : status * string list * string list = (* ok? new_input new_output *) (** YOUR CODE HERE This is a somewhat tricky case. It needs to be (tail) recursive. **) Good, inp, outp (* this is wrong *) and interpret_e (expr : ast2_e) (mem : memory) : value = match expr with | AST2_real r -> Rvalue r | AST2_int n -> Ivalue n | AST2_id (_, (tp, ix)) -> begin match tp with | Real -> Rvalue mem.reals.(ix) | Int -> Ivalue mem.ints.(ix) | Verror -> raise (Failure "error type id??") end | AST2_float e -> (** YOUR CODE HERE **) Rvalue 0.0 (* this is wrong *) | AST2_trunc e -> (** YOUR CODE HERE **) Ivalue 0 (* this is wrong *) | AST2_binop (op, tp, lo, ro, loc) -> (** YOUR CODE HERE In the division case you'll need to check for a zero denominator. **) match tp with (* this is all wrong *) | Real -> Rvalue 0. | Int -> Ivalue 0 | Verror -> raise (Failure "???") and interpret_c ((op : string), (lo : ast2_e), (ro : ast2_e)) (mem : memory) : value = (** YOUR CODE HERE **) Ivalue 0 (* this is wrong *) (* Input to a calculator program is just a sequence of numbers, entered as one long character string. We use the standard Str library to split the string into whitespace-separated words, each of which is subsequently checked for validity. *) let interpret (sl : ast2_sl) (num_reals : int) (num_ints : int) (full_input : string) : string = let inp = split (regexp "[ \t\n\r]+") full_input in let mem = { reals = Array.make num_reals 0.; ints = Array.make num_ints 0 } in let (_, _, outp) = interpret_sl sl mem inp [] in String.concat " " (rev outp) ^ "\n" (*************************************************************************** Testing ***************************************************************************) let sum_ave_prog = " read int a read int b int sum := a + b write sum write float(sum) / 2.0" let primes_prog = " read int n int cp := 2 while n > 0 do int found := 0 int cf1 := 2 int cf1s := cf1 * cf1 while cf1s <= cp do int cf2 := 2 int pr := cf1 * cf2 while pr <= cp do if pr == cp then found := 1 end cf2 := cf2 + 1 pr := cf1 * cf2 end cf1 := cf1 + 1 cf1s := cf1 * cf1 end if found == 0 then write cp n := n - 1 end cp := cp + 1 end" let gcd_prog = " read int a read int b while a <> b do if a > b then a := a - b else b := b - a end end write a" let sqrt_prog = " read real d real l := d / 2.0 while l * l > d do l := l / 2.0 end real h := 2.0 * l real err := d - (l * l) if err < 0.0 then err := 0.0 - err end while err > 1.e-8 do real a := (l + h) / 2.0 if (a * a) < d then l := a else h := a end err := d - (l * l) if err < 0.0 then err := 0.0 - err end end write l" let ecg_parse prog = parse ecg_parse_table prog let ecg_ast prog = ast_ize_prog (ecg_parse prog) let ecg_run (prog : string) (inp : string) : string = let (tree, errs, num_rs, num_is) = typecheck (ecg_ast prog) in if errs <> [] (* deep comparison *) then String.concat "\n" errs else begin print_string "typecheck completed successfully\n"; interpret tree num_rs num_is inp end let show_ast prog = pp_p (ecg_ast prog) let show_ast2 prog = let (tree, errs, num_rs, num_is) = typecheck (ecg_ast prog) in print_string ((if errs = [] then "no errors" else String.concat "\n" errs) ^ Printf.sprintf "\n# reals:%3d\n# ints: %3d\n" num_rs num_is); pp2_p tree let main () = (* let sum_ave_parse_tree = parse ecg_parse_table sum_ave_prog let sum_ave_syntax_tree = ast_ize_prog sum_ave_parse_tree let primes_parse_tree = parse ecg_parse_table primes_prog let primes_syntax_tree = ast_ize_prog primes_parse_tree let gcd_parse_tree = parse ecg_parse_table gcd_prog let gcd_syntax_tree = ast_ize_prog gcd_parse_tree print_string (ecg_run sum_ave_prog "4 6"); (* should print "typecheck completed successfully 10 5." *) print_string (ecg_run primes_prog "10"); (* should print "typecheck completed successfully 2 3 5 7 11 13 17 19 23 29" *) print_string (ecg_run sum_ave_prog "4 foo"); (* should print "typecheck completed successfully line 1, col 24: non-int input" *) print_string (ecg_run "write 3 write 2 / 0" ""); (* should print "typecheck completed successfully 3 line1, col 17: divide by zero" *) print_string (ecg_run "write foo" ""); (* should print " line 1, col 7: foo has not been declared" *) print_string (ecg_run "read int a read int b" "3"); (* should print "typecheck completed successfully line 1, col 21: unexpected end of input" *) print_string (ecg_run "int a := 2 int a := 3" ""); (* should print " line 1, col 16: a is already defined in this scope" *) *) (* Code below expects there to be a single command-line argument, which names a file containing an ecg program. It runs that program, taking input from stdin. It does NOT run interactively: it sucks up _all_ input and runs only once it reaches end-of-file. *) let read_prog () = if Array.length Sys.argv != 2 then raise (Failure ("usage: " ^ Sys.argv.(0) ^ " prog_file_name")) else let ic = open_in Sys.argv.(1) in let lines = ref [] in try while true do lines := input_line ic :: !lines done; "" with End_of_file -> String.concat "\n" (rev !lines) in let read_input () = let lines = ref [] in try while true do lines := read_line () :: !lines done; "" with End_of_file -> String.concat "\n" (rev !lines) in let (tree, errs, num_rs, num_is) = typecheck (ecg_ast (read_prog())) in let output = if errs <> [] (* deep comparison *) then String.concat "\n" errs else begin print_string "typecheck completed successfully\n"; interpret tree num_rs num_is (read_input ()) end in print_string output (* Execute function "main" iff run as a stand-alone program. *) let _ = if !(Sys.interactive) then () else main ()