
PREPRINT

Contents

2 Programming Language Syntax C 1

2.3.5 Recovering from Syntax Errors C 1

2.4 Theoretical Foundations C 13
2.4.1 Finite Automata C 13
2.4.2 Push-Down Automata C 18
2.4.3 Grammar and Language Classes C 19

2.6 Exercises C 25

2.7 Explorations C 27

3 Names, Scopes, and Bindings C 29

3.4 Implementing Scope C 29
3.4.1 Symbol Tables C 29
3.4.2 Association Lists and Central Reference Tables C 34

3.8 Separate Compilation C 39
3.8.1 Separate Compilation in C C 40
3.8.2 Packages and Automatic Header Inference C 43
3.8.3 Module Hierarchies C 44

3.10 Exercises C 45

3.11 Explorations C 47

4 Program Semantics C 49

4.6 Attribute Grammars C 49
4.6.1 Evaluating Attributes C 51
4.6.2 Action Routines and Attribute Grammars C 58
4.6.3 Semantic Analysis with Attribute Grammars C 60

C ii Contents

4.6.4 Space Management for Attributes C 64

4.8 Exercises C 77

4.9 Explorations C 83

5 Target Machine Architecture C 85

5.1 The Memory Hierarchy C 86

5.2 Data Representation C 88
5.2.1 Integer Arithmetic C 90
5.2.2 Floating-Point Arithmetic C 93

5.3 Instruction Set Architecture (ISA) C 95
5.3.1 Addressing Modes C 96
5.3.2 Conditions and Branches C 97

5.4 Architecture and Implementation C 100
5.4.1 Microprogramming C 101
5.4.2 Microprocessors C 102
5.4.3 RISC C 102
5.4.4 Multithreading and Multicore C 103
5.4.5 Two Example Architectures: The x86 and Arm C 106

5.5 Compiling for Modern Processors C 113
5.5.1 Keeping the Pipeline Full C 114
5.5.2 Register Allocation C 118

5.6 Summary and Concluding Remarks C 123

5.7 Exercises C 125

5.8 Explorations C 128

5.9 Bibliographic Notes C 129

6 Control Flow C 131

6.7 Nondeterminacy C 131

6.9 Exercises C 137

6.10 Explorations C 139

7 Type Systems C 141

7.3.5 Generics in C++, Java, and C# C 141

7.7 Exercises C 157

PREPRINT

Contents C iii

7.8 Explorations C 161

8 Composite Types C 163

8.1.4 Unions (Variant Records, Datatypes) C 163

8.5.3 Dangling References C 171

8.7 Files and Input/Output C 175
8.7.1 Interactive I/O C 175
8.7.2 File-Based I/O C 176
8.7.3 Text I/O C 178

8.9 Exercises C 187

8.10 Explorations C 189

9 Subroutines and Control Abstraction C 191

9.2.1 Displays C 191

9.2.2 Stack Case Studies: LLVM on Arm; gcc on x86 C 195

9.2.3 Register Windows C 205

9.3.2 Call by Name C 209

9.5.3 Implementation of Iterators C 213

9.5.4 Discrete Event Simulation C 217

9.9 Exercises C 221

9.10 Explorations C 223

10 Object Orientation C 225

10.6 True Multiple Inheritance C 225
10.6.1 Semantic Ambiguities C 228
10.6.2 Replicated Inheritance C 230
10.6.3 Shared Inheritance C 231

10.7.1 The Object Model of Smalltalk C 235

10.9 Exercises C 239

10.10 Explorations C 243

11 Functional Languages C 245

PREPRINT

C iv Contents

11.7 Theoretical Foundations C 245
11.7.1 Lambda Calculus C 247
11.7.2 Control Flow C 250
11.7.3 Structures C 252

11.10 Exercises C 257

11.11 Explorations C 259

12 Logic Languages C 261

12.3 Theoretical Foundations C 261
12.3.1 Clausal Form C 262
12.3.2 Limitations C 263
12.3.3 Skolemization C 265

12.6 Exercises C 267

12.7 Explorations C 269

13 Concurrency C 271

13.5 Message Passing C 271
13.5.1 Naming Communication Partners C 271
13.5.2 Sending C 276
13.5.3 Receiving C 281
13.5.4 Remote Procedure Call C 286

13.7 Exercises C 291

13.8 Explorations C 293

14 Scripting C 295

14.3 Scripting the World Wide Web C 295
14.3.1 CGI Scripts C 296
14.3.2 Embedded Server-Side Scripts C 297
14.3.3 Client-Side Scripts C 300
14.3.4 Java Applets and Other Embedded Elements C 302
14.3.5 XSLT C 305

14.6 Exercises C 319

14.7 Explorations C 323

15 Building a Runnable Program C 325

PREPRINT

Contents C v

15.2.1 GCC and LLVM C 325

15.7 Dynamic Linking C 333
15.7.1 Position-Independent Code C 334
15.7.2 Fully Dynamic (Lazy) Linking C 336

15.9 Exercises C 339

15.10 Explorations C 341

16 Run-time Program Management C 343

16.1.2 The Common Language Infrastructure C 343

16.5 Exercises C 353

16.6 Explorations C 355

17 Code Improvement C 357

17.1 Phases of Code Improvement C 359

17.2 Peephole Optimization C 361

17.3 Redundancy Elimination in Basic Blocks C 364
17.3.1 A Running Example C 364
17.3.2 Value Numbering C 367

17.4 Global Redundancy and Data Flow Analysis C 372
17.4.1 SSA Form and Global Value Numbering C 372
17.4.2 Global Common Subexpression Elimination C 375

17.5 Loop Improvement I C 383
17.5.1 Loop Invariants C 384
17.5.2 Induction Variables C 385

17.6 Instruction Scheduling C 388

17.7 Loop Improvement II C 392
17.7.1 Loop Unrolling and Software Pipelining C 392
17.7.2 Loop Reordering C 396

17.8 Register Allocation C 403

17.9 Summary and Concluding Remarks C 407

17.10 Exercises C 409

17.11 Explorations C 413

17.12 Bibliographic Notes C 414

PREPRINT

PREPRINT

PREPRINT

2Programming Language Syntax

2.3.5 Recovering from Syntax Errors

The main text illustrated the problem of syntax error recovery with a simple exampleEXAMPLE 2.43
Syntax error in C (reprise) in C:

A = B : C + D;

The compiler will detect a syntax error immediately after the B, but it cannot give
up at that point: it needs to keep looking for errors in the remainder of the program.
To permit this, we must modify the input program, the state of the parser, or both,
in a way that allows parsing to continue, hopefully without announcing a significant
number of spurious cascading errors and without missing a significant number of
real errors. The techniques discussed below allow the compiler to search for further
syntax errors. In Chapter 4 we will consider additional techniques that allow it to
search for additional static semantic errors as well.

Panic Mode

Perhaps the simplest form of syntax error recovery is a technique known as panic
mode. It defines a small set of ‘‘safe symbols’’ that delimit clean points in the input.
When an error occurs, a panic mode recovery algorithm deletes input tokens until
it finds a safe symbol, then backs the parser out to a context in which that symbol
might appear. In the earlier example, a recursive descent parser with panic mode
recovery might delete input tokens until it finds the semicolon, return from all
subroutines called from within stmt, and restart the body of stmt itself.

Unfortunately, panic mode tends to be a bit drastic. By limiting itself to a static
set of ‘‘safe’’ symbols at which to resume parsing, it admits the possibility of deleting
a significant amount of input while looking for such a symbol. Worse, if some of
the deleted tokens are ‘‘starter’’ symbols that begin large-scale constructs in the
language (e.g., begin, procedure, while), we shall almost surely see spurious
cascading errors when we reach the end of the construct.

Consider the following fragment of code in an Algol-family language:EXAMPLE 2.44
The problem with panic
mode

C 1

C 2 Chapter 2 Programming Language Syntax

IF a b THEN x;
ELSE y;
END;

When it discovers the error at b in the first line, a panic-mode recovery algorithm
is likely to skip forward to the semicolon, thereby missing the THEN. When the
parser finds the ELSE on line 2 it will produce a spurious error message. When it
finds the END on line 3 it will think it has reached the end of the enclosing structure
(e.g., the whole subroutine), and will probably generate additional cascading errors
on subsequent lines. Panic mode tends to work acceptably only in relatively ‘‘un-
structured’’ languages, such as Basic and (early) Fortran, which don’t have many
‘‘starter’’ symbols.

Phrase-Level Recovery

We can improve the quality of recovery by employing different sets of ‘‘safe’’ sym-
bols in different contexts. Parsers that incorporate this improvement are said to
implement phrase-level recovery. When it discovers an error in an expression, for
example, a phrase-level recovery algorithm can delete input tokens until it reaches
something that is likely to follow an expression—or perhaps that is able to start an
expression, in the hope that what was deleted was an ignorable prefix. This more
local recovery is better than always backing out to the end of the current statement,
because it gives us the opportunity to examine the parts of the statement (and
maybe even the expression) that follow the erroneous tokens.

Niklaus Wirth, the inventor of Pascal, published an elegant implementation ofEXAMPLE 2.45
Phrase-level recovery in
recursive descent

phrase-level recovery for recursive descent parsers in 1976 [Wir76, Sec. 5.9]. The
simplest version of his algorithm depends on the FIRST and FOLLOW sets defined
at the end of Section 2.3.1. If the parsing routine for nonterminal foo discovers an
error at the beginning of its code, it deletes incoming tokens until it finds a member
of FIRST(foo), in which case it proceeds, or a member of FOLLOW(foo), in which
case it returns:

procedure foo()
if not (input_token ∈ FIRST(foo) or (EPS(foo) and input_token ∈ FOLLOW(foo))

report_error() –– print message for the user
repeat

delete_token()
until input_token ∈ (FIRST(foo) ∪ FOLLOW(foo) ∪ {$$})

case input_token of
. . . : . . .
. . . : . . . –– valid starting tokens
. . . : . . .
otherwise return –– error or foo−→ ε

Note that the report_error routine does not terminate the parse; it simply prints
a message and returns. To complete the algorithm, the match routine must be
altered so that it, too, will return after announcing an error, effectively inserting
the expected token when something else appears:

PREPRINT

2.3.5 Recovering from Syntax Errors C 3

procedure match(expected)
if input_token = expected

consume_input_token()
else

report_error()

Finally, to simplify the code, the common prefix of the various nonterminal sub-
routines can be moved into an error-checking subroutine:

procedure check_for_error(sym)
if not (input_token ∈ FIRST(sym) or EPS(sym) and input_token ∈ FOLLOW(sym))

report_error()
repeat

delete_token()
until input_token ∈ (FIRST(sym) ∪ FOLLOW(sym) ∪ {$$})

Context-Specific Look-Ahead

Though simple, the recovery algorithm just described has an unfortunate tendency,
when foo−→ ε , to predict one or more epsilon productions when it should really
announce an error right away. This weakness is known as the immediate error
detection problem. It stems from the fact that FOLLOW(foo) is context-independent:
it contains all tokens that may follow foo somewhere in some valid program, but
not necessarily in the current context in the current program. This is basically the
same observation that underlies the distinction between SLR and LALR parsers
(‘‘The Characteristic Finite-State Machine and LR Parsing Variants,’’ Section 2.3.4).

As an example, consider the following incorrect code in our calculator language:EXAMPLE 2.46
Cascading syntax errors

Y := (A * X X*X) + (B * X*X) + (C * X) + D

To a human being, it is pretty clear that the programmer forgot a * in the x3 term of
a polynomial. The recovery algorithm isn’t so smart. In a recursive descent parser
it will see an identifier (X) coming up on the input when it is inside the following
routines:

program
stmt_list
stmt
expr
term
factor
expr
term
factor_tail
factor_tail

Since an id can follow a factor_tail in some programs (e.g., A := B C := D),
the innermost parsing routine will predict factor_tail−→ ε , and simply return. At

PREPRINT

C 4 Chapter 2 Programming Language Syntax

that point both the outer factor_tail and the inner term will be at the end of their
code, and they, too, will return. Next, the inner expr will call term_tail, which will
also predict an epsilon production, since an id can follow a term_tail in certain
programs. This will leave the inner expr at the end of its code, allowing it to return.
Only then will we discover an error, when factor calls match, expecting to see a
right parenthesis. Afterward there will be a host of cascading errors, as the input is
transformed into

Y := (A * X)
X := X
B := X*X
C := X

To avoid inappropriate epsilon predictions, Wirth introduced the notion ofEXAMPLE 2.47
Reducing cascading errors
with context-specific
look-ahead

context-specific FOLLOW sets, passed into each nonterminal subroutine as an
explicit parameter. In our example, we would pass id as part of the FOLLOW set for
the initial, outer expr, which is called as part of the production stmt −→ id :=
expr, but not into the second, inner expr, which is called as part of the production
factor −→ (expr) . The nested calls to term and factor_tail will end up being
called with a FOLLOW set whose only member is a right parenthesis. When the
inner call to factor_tail discovers that id is not in FIRST(factor_tail), it will delete
tokens up to the right parenthesis before returning. The net result is a single error
message, and a transformation of the input into

Y := (A * X*X) + (B * X*X) + (C * X) + D

That’s still not the ‘‘right’’ interpretation, but it’s a lot better than it was.
The final version of Wirth’s phrase-level recovery employs one additional heu-

ristic: to avoid cascading errors it refrains from deleting members of a statically
defined set of ‘‘starter’’ symbols (e.g., begin, procedure, (, etc.). These are the
symbols that tend to require matching tokens later in the program. If we see a
starter symbol while deleting input, we give up on the attempt to delete the rest of
the erroneous construct. We simply return, even though we know that the starter
symbol will not be acceptable to the calling routine. With context-specific FOLLOWEXAMPLE 2.48

Recursive descent with full
phrase-level recovery

sets and starter symbols, phrase-level recovery looks like this:

procedure check_for_error(sym, follow_set)
if not (input_token ∈ FIRST(sym) or (EPS(sym) and input_token ∈ follow_set))

report_error()
repeat

delete_token()
until input_token ∈ FIRST(sym) ∪ follow_set ∪ starter_set ∪ {$$}

PREPRINT

2.3.5 Recovering from Syntax Errors C 5

procedure expr(follow_set)
check_for_error(expr, follow_set)
case input_token of

. . . : . . .

. . . : . . . valid starting tokens

. . . : . . .
otherwise return

Context-specific FOLLOW sets are tracked dynamically during the parse of
a given input. Initially, in the augmenting production S −→ program $$, the
context-specific FOLLOW set for program is {$$}. Thus when calling the recursive
descent routine for program, we pass {$$} as parameter. Then, within each routine,
we determine the FOLLOW sets to pass to other routines based on whatever comes
next in the current right-hand side, potentially augmented by what was already
passed as the FOLLOW set of the current left-hand side. Specifically, suppose we
are currently executing the recursive descent routine for symbol A, called with
context-specific FOLLOW set S. Suppose further that we have realized (predicted)
that we are in the production A −→ α B β and we are about to call the routine for
symbol B. If β =⇒∗ ε, we will pass FIRST(β) ∪ S as the context-specific FOLLOW
set for B. If β cannot generate ε, we will simply pass FIRST(β).

Exception-Based Recovery in Recursive Descent

An attractive alternative to Wirth’s technique relies on the exception-handling
mechanisms available in many modern languages (we will discuss these mechan-
isms in detail in Section 9.4). Rather than implement recovery for every nonter-
minal in the language (a somewhat tedious task), the exception-based approach
identifies a small set of contexts to which we back out in the event of an error. In
many languages, we could obtain simple, but probably serviceable error recovery
by backing out to the nearest statement or declaration. In the limit, if we choose a
single place to ‘‘back out to,’’ we have an implementation of panic-mode recovery.

The basic idea is to attach an exception handler (a special syntactic construct)EXAMPLE 2.49
Exceptions in a recursive
descent parser

to the blocks of code in which we want to implement recovery:

procedure statement()
try

. . . –– code to parse a statement
except when syntax_error

loop
if next_token ∈ FIRST(statement)

statement() –– try again
return

elsif next_token ∈ FOLLOW(statement)
return

else delete_token()

Code for declaration would be similar. For better-quality repair, we might add
handlers around the bodies of expression, aggregate, or other complex constructs.

PREPRINT

C 6 Chapter 2 Programming Language Syntax

To guarantee that we can always recover from an error, we must ensure that all
parts of the grammar lie inside at least one handler.

When we detect an error (possibly nested many procedure calls deep), we
raise a syntax error exception (‘‘raise’’ is a built-in command in languages with
exceptions). The language implementation then unwinds the stack to the most
recent context in which we have an exception handler, which it executes in place of
the remainder of the block to which the handler is attached. For phrase-level (or
panic mode) recovery, the handler can delete input tokens until it sees one with
which it can recommence parsing.

As noted in Section 2.3.1, the ANTLR parser generator takes a CFG as input
and builds a human-readable recursive descent parser. Compiler writers have
the option of generating Java, C#, or C++, all of which have exception-handling
mechanisms. When an ANTLR-generated parser encounters a syntax error, it
throws a MismatchedTokenException or NoViableAltException. By default
ANTLR includes a handler for these exceptions in every nonterminal subroutine.
The handler prints an error message, deletes tokens until it finds something in the
FOLLOW set of the nonterminal, and then returns. The compiler writer can define
alternative handlers if desired on a production-by-production basis.

Error Productions

As a general rule, it is desirable for an error recovery technique to be as language-
independent as possible. Even in a recursive descent parser, which is handwritten
for a particular language, it is nice to be able to encapsulate error recovery in the
check_for_error and match subroutines. Sometimes, however, one can obtain much
better repairs by being highly language specific.

Most languages have a few unintuitive rules that programmers tend to violate inEXAMPLE 2.50
Error production for
‘‘; else’’

predictable ways. In Pascal, for example, semicolons are used to separate statements,
but many programmers think of them as terminating statements instead. Most of
the time the difference is unimportant, since a statement is allowed to be empty. In
the following, for example,

begin
x := (-b + sqrt(b*b -4*a*c)) / (2*a);
writeln(x);

end;

the compiler parses the begin. . . end block as a sequence of three statements, the
third of which is empty. In the following, however,

if d <> 0 then
a := n/d;

else
a := n;

end;

the compiler must complain, since the then part of an if. . . then . . . else con-
struct must consist of a single statement in Pascal. A Pascal semicolon is never

PREPRINT

2.3.5 Recovering from Syntax Errors C 7

allowed immediately before an else, but programmers put them there all the time.
Rather than try to tune a general recovery or repair algorithm to deal correctly
with this problem, most Pascal compiler writers modify the grammar: they include
an extra production that allows the semicolon, but causes the semantic analyzer
to print a warning message, telling the user that the semicolon shouldn’t be there.
Similar error productions are used in C compilers to cope with ‘‘anachronisms’’
that have crept into the language as it evolved. Syntax that was valid only in early
versions of C is still accepted by the parser, but evokes a warning message.

Error Recovery in Table-Driven LL Parsers

Given the similarity to recursive descent parsing, it is straightforward to implement
phrase-level recovery in a table-driven top-down parser. Whenever we encounter
an error entry in the parse table, we simply delete input tokens until we find a
member of a statically defined set of starter symbols (including $$), or a member
of the FIRST or FOLLOW set of the nonterminal at the top of the parse stack.1 If
we find a member of the FIRST set, we continue the main loop of the driver. If we
find a member of the FOLLOW set or the starter set, we pop the nonterminal off
the parse stack first. If we encounter an error in match, rather than in the parse
table, we simply pop the token off the parse stack.

But we can do better than this! Since we have the entire parse stack easily
accessible (it was hidden in the control flow and procedure calling sequence of
recursive descent), we can enumerate all possible combinations of insertions and
deletions that would allow us to continue parsing. Given appropriate metrics, we
can then evaluate the alternatives to pick the one that is in some sense ‘‘best.’’

Because perfect error recovery (actually error repair) would require that we
read the programmer’s mind, any practical technique to evaluate alternative ‘‘cor-
rections’’ must rely on heuristics. For the sake of simplicity, most compilers limit
themselves to heuristics that (1) require no semantic information, (2) do not require
that we ‘‘back up’’ the parser or the input stream (i.e., to some state prior to the
one in which the error was detected), and (3) do not change the spelling of tokens
or the boundaries between them. A particularly elegant algorithm that conforms
to these limits was published by Fischer, Milton, and Quiring in 1980 [FMQ80].
As originally described, the algorithm was limited to languages in which programs
could always be corrected by inserting appropriate tokens into the input stream,
without ever requiring deletions. It is relatively easy, however, to extend the al-
gorithm to encompass deletions and substitutions. We consider the insert-only
algorithm first; the version with deletions employs it as a subroutine. We do not
consider substitutions here.2

1 This description uses global FOLLOW sets. If we want to use context-specific look-aheads instead,
we can peek farther down in the stack. A token is an acceptable context-specific look-ahead if it is
in the FIRST set of the second symbol A from the top in the stack or, if it would cause us to predict
A−→ ε , the FIRST set of the third symbol B from the top or, if it would cause us to predict B−→ ε ,
the FIRST set of the fourth symbol from the top, and so on.

PREPRINT

C 8 Chapter 2 Programming Language Syntax

The FMQ error-repair algorithm requires the compiler writer to assign an inser-
tion cost C(t) and a deletion cost D(t) to every token t. (Since we cannot change
where the input ends, we have C($$) = D($$) =∞.) In any given error situation,
the algorithm chooses the least cost combination of insertions and deletions that
allows the parser to consume one more token of real input. The state of the parser
is never changed; only the input is modified (rather than pop a stack symbol, the
repair algorithm pushes its yield onto the input stream).

As in phrase-level recovery in a recursive descent parser, the FMQ algorithm
needs to address the immediate error detection problem. There are several ways
we could do this. One would be to use a ‘‘full LL’’ parser, which keeps track of local
FOLLOW sets. Another would be to inspect the stack when predicting an epsilon
production, to see if what lies underneath will allow us to accept the incoming
token. The first option significantly increases the size and complexity of the parser.
The second option leads to a nonlinear-time parsing algorithm. Fortunately, there
is a third option. We can save all changes to the stack (and calls to the semantic
analyzer’s action routines) in a temporary buffer until the match routine accepts
another real token of input. If we discover an error before we accept a real token,
we undo the stack changes and throw away the buffered calls to action routines.
Then we can pretend we recognized the error when a full LL parser would have.

We now consider the task of repairing with only insertions. We begin by extend-
ing the notion of insertion costs to strings in the obvious way: if w = a1a2. . . an , we
have C(w) =

∑n
i=1 C(a i). Using the cost function C, we then build a pair of tables

S and E. The S table is one-dimensional, and is indexed by grammar symbol. For
any symbol X, S(X) is a least-cost string of terminals derivable from X. That is,

S(X) = w ⇐⇒ X =⇒∗ w and ∀x such that X =⇒∗ x , C(w) ≤ C(x)

Clearly S(a) = a ∀ tokens a.
The E table is two-dimensional, and is indexed by symbol/token pairs. For any

symbol X and token a, E(X , a) is the lowest-cost prefix of a in X; that is, the lowest
cost token string w such that X =⇒∗ wax. If X cannot yield a string containing a,
then E(X , a) is defined to be a special symbol ?? whose insertion cost is∞. If X
= a, or if X =⇒∗ ax, then E(X , a) = ε, where C(ε) = 0.

To find a least-cost insertion that will repair a given error, we execute the functionEXAMPLE 2.51
Insertion-only repair in
FMQ

find_insertion, shown in Figure C 2.31. The function begins by considering the
least-cost insertion that will allow it to derive the input token from the symbol
at the top of the stack (there may be none). It then considers the possibility of
‘‘deleting’’ that top-of-stack symbol (by inserting its least-cost yield into the input
stream) and deriving the input token from the second symbol on the stack. It

2 A substitution can always be effected as a deletion/insertion pair, but we might want ideally to
give it special consideration. For example, we probably want to be cautious about deleting a left
square bracket or inserting a left parenthesis, since both of these symbols must be matched by
something later in the input, at which point we are likely to see cascading errors. But substituting
a left parenthesis for a left square bracket is in some sense more plausible, especially given the
differences in array subscript syntax in different programming languages.

PREPRINT

2.3.5 Recovering from Syntax Errors C 9

function find_insertion(a : token) : string
–– assume that the parse stack consists of symbols Xn ,. . . X2, X1,
–– with Xn at top-of-stack
ins := ??
prefix := ε
for i in n . .1

if C(prefix) ≥ C(ins)
–– no better insertion is possible
return ins

if C(prefix . E(X i , a)) < C(ins)
–– better insertion found
ins := prefix . E(X i , a)

prefix := prefix . S(X i)
return ins

Figure 2.31 Outline of a function to find a least-cost insertion that will allow the parser to
accept the input token a. The dot character (.) is used here for string concatenation.

function find_repair() : ⟨string, int⟩
–– assume that the parse stack consists of symbols Xn ,. . . X2, X1,
–– with Xn at top-of-stack,
–– and that the input stream consists of tokens a1, a2, a3, . . .
i := 0 –– number of tokens we’re considering deleting
best_ins := ??
best_del := 0
loop

cur_ins := find_insertion(a i+1)
if C(cur_ins) + D(a1. . . a i) < C(best_ins) + D(a1. . . abest_del)

–– better repair found
best_ins := cur_ins
best_del := i

i +:= 1
if D(a1. . . a i) > C(best_ins) + D(a1. . . abest_del)

–– no better repair is possible
return ⟨best_ins, best_del⟩

Figure 2.32 Outline of a function to find a least-cost combination of insertions and deletions
that will allow the parser to accept one more token of input.

continues in this fashion, considering ways to derive the input token from ever
deeper symbols on the stack, until the cost of inserting the yields of the symbols
above exceeds the cost of the cheapest repair found so far. If it reaches the bottom
of the stack without finding a finite-cost repair, then the error cannot be repaired
by insertions alone.

To produce better-quality repairs, and to handle languages that cannot be re-EXAMPLE 2.52
FMQ with deletions paired with insertions only, we need to consider deletions. As we did with the

insert cost vector C, we extend the deletion cost vector D to strings of tokens in

PREPRINT

C 10 Chapter 2 Programming Language Syntax

the obvious way. We then embed calls to find_insertion in a second loop, shown
in Figure C 2.32. This loop repeatedly considers deleting more and more tokens,
each time calling find_insertion on the remaining input, until the cost of deleting
additional tokens exceeds the cost of the cheapest repair found so far. The search
can never fail; it is always possible to find a combination of insertions and deletions
that will allow the end-of-file token to be accepted. Since the algorithm may need
to consider (and then reject) the option of deleting an arbitrary number of tokens,
the scanner must be prepared to peek an arbitrary distance ahead in the input
stream and then back up again.

The FMQ algorithm has several desirable properties. It is simple and efficient
(given that the grammar is bounded in size, we can prove that the time to choose a
repair is bounded by a constant). It can repair an arbitrary input string. Its decisions
are locally optimal, in the sense that no cheaper repair can allow the parser to make
forward progress. It is table-driven and therefore fully automatic. Finally, it can be
tuned to prefer ‘‘likely’’ repairs by modifying the insertion and deletion costs of
tokens. Some obvious heuristics include:

Deletion should usually be more expensive than insertion.
Common operators (e.g., multiplication) should have lower cost than uncom-
mon operators (e.g., modulo division) in the same place in the grammar.
Starter symbols (e.g., begin, if, () should have higher cost than their corre-
sponding final symbols (end, fi,)).
‘‘Noise’’ symbols (comma, semicolon, do) should have very low cost.

Error Recovery in Bottom-Up Parsers

Locally least-cost repair is possible in bottom-up parsers, but it isn’t as easy as it
is in top-down parsers. The advantage of a top-down parser is that the content of
the parse stack unambiguously identifies the context of an error, and specifies the
constructs expected in the future. The stack of a bottom-up parser, by contrast,
describes a set of possible contexts, and says nothing explicit about the future.

In practice, most bottom-up parsers tend to rely on panic-mode or phrase-level
recovery. The intuition is that when an error occurs, the top few states on the parse
stack represent the shifted prefix of an erroneous construct. Recovery consists of
popping these states off the stack, deleting the remainder of the construct from
the incoming token stream, and then restarting the parser, possibly after shifting a
fictitious nonterminal to represent the erroneous construct.

Unix’s yacc/bison provides a typical example of bottom-up phrase-level re-
covery. In addition to the usual tokens of the language, yacc/bison allows the
compiler writer to include a special token, error, anywhere in the right-hand
sides of grammar productions. When the parser built from the grammar detects a
syntax error, it

1. Calls the function yyerror, which the compiler writer must provide. Normally,
yyerror simply prints a message (e.g., ‘‘parse error’’), which yacc/bison passes
as an argument

PREPRINT

2.3.5 Recovering from Syntax Errors C 11

2. Pops states off the parse stack until it finds a state in which it can shift the error
token (if there is no such state, the parser terminates)

3. Inserts and then shifts the error token
4. Deletes tokens from the input stream until it finds a valid look-ahead for the

new (post error) context
5. Temporarily disables reporting of further errors
6. Resumes parsing

If there are any semantic action routines associated with the production con-
taining the error token, these are executed in the normal fashion. They can do
such things as print additional error messages, modify the symbol table, patch up
semantic processing, prompt the user for additional input in an interactive tool
(yacc/bison can be used to build things other than batch-mode compilers), or
disable code generation. The rationale for disabling further syntax errors is to make
sure that we have really found an acceptable context in which to resume parsing
before risking cascading errors. Yacc/bison automatically reenables the reporting
of errors after successfully shifting three real tokens of input. A semantic action
routine can reenable error messages sooner if desired by calling the built-in routine
yyerrorok.

For our example calculator language, we can imagine building a yacc/bisonEXAMPLE 2.53
Panic mode in yacc/bison parser using the bottom-up grammar of Figure 2.25. For panic-mode recovery, we

might want to back out to the nearest statement:

stmt −→ error
{printf("parsing resumed at end of current statement\n");}

The semantic routine written in curly braces would be executed when the parser
recognizes stmt −→ error .3 Parsing would resume at the next token that can
follow a statement—in our calculator language, at the next id, read, write, or
$$.

A weakness of the calculator language, from the point of view of error recovery,EXAMPLE 2.54
Panic mode with statement
terminators

is that the current, erroneous statement may well contain additional ids. If we
resume parsing at one of these, we are likely to see another error right away. We
could avoid the error by disabling error messages until several real tokens have
been shifted. In a language in which every statement ends with a semicolon, we
could have more safely written

stmt −→ error ;
{printf("parsing resumed at end of current statement\n");}

In both of these examples we have placed the error symbol at the beginningEXAMPLE 2.55
Phrase-level recovery in
yacc/bison

of a right-hand side, but there is no rule that says it must be so. We might decide,

3 The syntax shown here is not the same as that accepted by yacc/bison, but is used for the sake of
consistency with earlier material.

PREPRINT

C 12 Chapter 2 Programming Language Syntax

for example, that we will abandon the current statement whenever we see an error,
unless the error happens inside a parenthesized expression, in which case we will
attempt to resume parsing after the closing parenthesis. We could then add the
following production:

factor −→ (error)
{printf("parsing resumed at end of parenthesized expression\n");}

In the CFSM of Figure 2.26, it would then be possible in State 8 to shift error,
delete some tokens, shift), recognize factor, and continue parsing the surrounding
expression. Of course, if the erroneous expression contains nested parentheses, the
parser may not skip all of it, and a cascading error may still occur.

Because yacc/bison creates LALR parsers, it automatically employs context-
specific look-ahead, and does not usually suffer from the immediate error detection
problem. (A full LR parser would do slightly better.) In an SLR parser, a good error
recovery algorithm needs to employ the same trick we used in the top-down case.
Specifically, we buffer all stack changes and calls to semantic action routines until
the shift routine accepts a real token of input. If we discover an error before we
accept a real token, we undo the stack changes and throw away the buffered calls
to semantic routines. Then we can pretend we recognized the error when a full LR
parser would have.

3CHECK YOUR UNDERSTANDING

44. Why is syntax error recovery important?

45. What are cascading errors?

46. What is panic mode? What is its principal weakness?

47. What is the advantage of phrase-level recovery over panic mode?

48. What is the immediate error detection problem, and how can it be addressed?

49. Describe two situations in which context-specific FOLLOW sets may be useful.

50. Outline Wirth’s mechanism for error recovery in recursive descent parsers.
Compare this mechanism to exception-based recovery.

51. What are error productions? Why might a parser that incorporates a high-
quality, general-purpose error recovery algorithm still benefit from using such
productions?

52. Outline the FMQ algorithm. In what sense is the algorithm optimal?

53. Why is error recovery more difficult in bottom-up parsers than it is in top-down
parsers?

54. Describe the error recovery mechanism employed by yacc/bison.

PREPRINT

PREPRINT

2Programming Language Syntax

2.4 Theoretical Foundations

As noted in the main text, scanners and parsers are based on the finite automata
and pushdown automata that form the bottom two levels of the Chomsky language
hierarchy. At each level of the hierarchy, machines can be either deterministic or
nondeterministic. A deterministic automaton always performs the same operation
in a given situation. A nondeterministic automaton can perform any of a set of
operations. A nondeterministic machine is said to accept a string if there exists
a choice of operation in each situation that will eventually lead to the machine
saying ‘‘yes.’’ As it turns out, nondeterministic and deterministic finite automata
are equally powerful: every DFA is, by definition, a degenerate NFA, and the
construction in Example 2.14 demonstrates that for any NFA we can create a DFA
that accepts the same language. The same is not true of push-down automata: there
are context-free languages that are accepted by an NPDA but not by any DPDA.
Fortunately, DPDAs suffice in practice to accept the syntax of real programming
languages. Practical scanners and parsers are always deterministic.

2.4.1 Finite Automata

Precisely defined, a deterministic finite automaton (DFA) M consists of (1) a
finite set Q of states, (2) a finite alphabet Σ of input symbols, (3) a distinguished
initial state q1 ∈ Q, (4) a set of distinguished final states F ⊆ Q, and (5) a
transition function δ : Q × Σ→ Q that chooses a new state for M based on the
current state and the current input symbol. M begins in state q1. One by one it
consumes its input symbols, using δ to move from state to state. When the final
symbol has been consumed, M is interpreted as saying ‘‘yes’’ if it is in a state in
F; otherwise it is interpreted as saying ‘‘no.’’ We can extend δ in the obvious way
to take strings, rather than symbols, as inputs, allowing us to say that M accepts
string x if δ(q1 , x) ∈ F. We can then define L(M), the language accepted by M,

C 13

C 14 Chapter 2 Programming Language Syntax

. .

Start
d

d

d

dq3 q4

q1 q2

Figure 2.33 Minimal DFA for the language consisting of all strings of decimal digits containing
a single decimal point. Adapted from Figure 2.10 in the main text. The symbol d here is short
for ‘‘0, 1, 2, 3, 4, 5, 6, 7, 8, 9’’.

to be the set {x | δ(q1 , x) ∈ F}. In a nondeterministic finite automaton (NFA),
the transition function, δ, is multivalued: the automaton can move to any of a set
of possible states from a given state on a given input. In addition, it may move
from one state to another ‘‘spontaneously’’; such transitions are said to take input
symbol ε.

We can illustrate these definitions with an example. Consider the circles-and-EXAMPLE 2.56
Formal DFA for
d *(.d | d.) d *

arrows automaton of Figure C 2.33 (adapted from Figure 2.10 in the main text).
This is the minimal DFA accepting strings of decimal digits containing a single
decimal point. Σ = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , .} is the machine’s input alphabet.
Q = {q1 , q2 , q3 , q4} is the set of states; q1 is the initial state; F = {q4} (a singleton in
this case) is the set of final states. The transition function can be represented by a set
of triples δ = {(q1 , 0 , q2), . . . , (q1 , 9 , q2), (q1 , . , q3), (q2 , 0 , q2), . . . , (q2 , 9 , q2),
(q2 , . , q4), (q3 , 0 , q4), . . . , (q3 , 9 , q4), (q4 , 0 , q4), . . . , (q4 , 9 , q4)}. In each triple
(q i , a , q j), δ(q i , a) = q j .

Given the constructions of Examples 2.12 and 2.14, we know that there exists
an NFA that accepts the language generated by any given regular expression, and
a DFA equivalent to any given NFA. To show that regular expressions and finite
automata are of equivalent expressive power, all that remains is to demonstrate that
there exists a regular expression that generates the language accepted by any given
DFA. We illustrate the required construction below for our decimal strings example
(Figure C 2.33). More formal and general treatment of all the regular language
constructions can be found in standard automata theory texts [HMU07, Sip13].

From a DFA to a Regular Expression

To construct a regular expression equivalent to a given DFA, we employ a dynamic
programming algorithm that builds solutions to successively more complicated
subproblems from a table of solutions to simpler subproblems. We begin with a set
of simple regular expressions that describe the transition function, δ. For all states
i, we define

r0
i i = a1 | a2 | . . . | am | ε

PREPRINT

2.4.1 Finite Automata C 15

where {a1 | a2 | . . . | am} = {a | δ(q i , a) = q i} is the set of characters
labeling the ‘‘self-loop’’ from state q i back to itself. If there is no such self-loop,
r0

i j = ε. Similarly, for i ̸= j, we define

r0
i j = a1 | a2 | . . . | am

where {a1 | a2 | . . . | am} = {a | δ(q i , a) = q j} is the set of characters
labeling the arc from q i to q j. If there is no such arc, r0

i j is the empty regular
expression. (Note the difference here: we can stay in state q i by not accepting any
input, so ε is always one of the alternatives in r0

i i , but not in r0
i j when i ̸= j.)

Given these r0 expressions, the dynamic programming algorithm inductively
calculates expressions rk

i j with larger superscripts. In each, k names the highest-
numbered state through which control may pass on the way from q i to q j. We
assume that states are numbered starting with q1, so when k = 0 we must transition
directly from q i to q j , with no intervening states.

In our small example DFA, r0
11 = r0

33 = ε, and r0
22 = r0

44 = 0 | 1 | 2 | 3 | 4 | 5EXAMPLE 2.57
Reconstructing a regular
expression for the decimal
string DFA

| 6 | 7 | 8 | 9 | ε, which we will abbreviate d | ε. Similarly, r0
13 = r0

24 = ., and
r0

12 = r0
34 = d. Expressions r0

14, r0
21, r0

23, r0
31, r0

32, r0
41, r0

42, and r0
43 are all empty.

For k > 0, the rk
i j expressions will generally generate multicharacter strings. At

each step of the dynamic programming algorithm, we let

rk
i j = rk−1

i j | rk−1
i k rk−1

kk * rk−1
k j

That is, to get from q i to q j without going through any states numbered higher
than k, we can either go from q i to q j without going through any state numbered
higher than k− 1 (which we already know how to do), or else we can go from q i to
qk (without going through any state numbered higher than k − 1), travel out from
qk and back again an arbitrary number of times (never visiting a state numbered
higher than k − 1 in between), and finally go from qk to q j (again without visiting
a state numbered higher than k − 1). If any of the constituent regular expressions
is empty, we omit its term of the outermost alternation. At the end, our overall
answer is rn

1 f1
| rn

1 f2
| . . . | rn

1 f t
, where n = |Q| is the total number of states and

F = {q f1 , q f2 , . . . , q f t} is the set of final states.
Because r0

11 = ε and there are no transitions from States 2, 3, or 4 to State 1,
nothing changes in the first inductive step in our example; that is, ∀i [r1

i i = r0
i i].

The second step is a bit more interesting. Since we are now allowed to go through
State 2, we have r2

22 = r2
22 r2

22 * r2
22 = (d | ε) | (d | ε) (d | ε)*(d | ε) = d * .

Because r1
21, r1

23, r1
32, and r1

42 are empty, however, r2
11, r2

33, and r2
44 remain the same

as r1
11, r1

33, and r1
44. In a similar vein, we have

r2
12 = d | d (d | ε)*(d | ε) = d+

r2
14 = d (d | ε)* . = d+ .

r2
24 = . | (d | ε) (d | ε)* . = d * .

PREPRINT

C 16 Chapter 2 Programming Language Syntax

Missing transitions and empty expressions from the previous step leave r2
13 =

r1
13 = . and r2

34 = r1
34 = d. Expressions r2

21, r2
23, r2

31, r2
32, r2

41, r2
42, and r2

43 remain
empty.

In the third inductive step, we have

r3
13 = . | . ε * ε = .

r3
14 = d+ . | . ε * d = d+ . | . d

r3
34 = d | εε * d = d

All other expressions remain unchanged from the previous step.
Finally, we have

r4
14 = (d+ . | . d) | (d+ . | . d) (d | ε)*(d | ε)

= (d+ . | . d) | (d+ . | . d) d *
= (d+ . | . d) d *
= d+ . d * | . d+

Since F has a single member (q4), this expression is our final answer.

Space Requirements

In Section 2.2.1 we noted without proof that the conversion from an NFA to a DFA
may lead to exponential blow-up in the number of states. Certainly this did not
happen in our decimal string example: the NFA of Figure 2.8 has 14 states, while
the equivalent DFA of Figure 2.9 has only 7, and the minimal DFA of Figures 2.10
and C 2.33 has only 4.

Consider, however, the subset of (a | b | c)* in which some letter appears atEXAMPLE 2.58
A regular language with a
large minimal DFA

least three times. The minimal DFA for this language has 28 states. As shown in
Figure C 2.34, 27 of these are states in which we have seen i, j, and k as, bs, and cs,
respectively. The 28th (and only final) state is reached once we have seen at least
three of some specific character.

By contrast, there exists an NFA for this language with only eight states, as
shown in Figure C 2.35. It requires that we ‘‘guess,’’ at the outset, whether we will
see three as, three bs, or three cs. It mirrors the structure of the natural regu-
lar expression (a | b | c)* a (a | b | c)* a (a | b | c)* a (a | b | c)* |
(a | b | c)* b (a | b | c)* b (a | b | c)* b (a | b | c)* | (a | b | c)*
c (a | b | c)* c (a | b | c)* c (a | b | c)* .

Of course, the eight-state NFA does not emerge directly from the construction
of Figure 2.7; that construction produces a 52-state machine with a certain amount
of redundancy, and with many extraneous states and epsilon productions. ButEXAMPLE 2.59

Exponential DFA blow-up consider the similar subset of (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)* in
which some digit appears at least ten times. The minimal DFA for this language
has 10,000,000,001 states: a non-final state for each combination of zeros through
nines with less than ten of each, and a single final state reached once any digit has
appeared at least ten times. One possible regular expression for this language is

PREPRINT

2.4.1 Finite Automata C 17

a,b,c

a,b,c

a,c

b,c b,c

a,c

a,b

a,b

a

a

a

a

a

c

c

c c

c

b

b b

b b

Start

000 100 200

010 110 210

020 120 220

001 101 201

011 111 211

021 121 221

002 102 202

012 112 212

022 122 222

Figure 2.34 DFA for the language consisting of all strings in (a | b | c)* in which some letter appears at least three times.
State name i jk indicates that i as, j bs, and k cs have been seen so far. Within the cubic portion of the figure, most edge labels
are elided: a transitions move to the right, b transitions go back into the page, and c transitions move down.

((0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0
(0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0
(0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)* 0 (0 | 1 | . . . | 9)*)

| ((0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1
(0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1
(0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)* 1 (0 | 1 | . . . | 9)*)

| . . .

PREPRINT

C 18 Chapter 2 Programming Language Syntax

Start

a

bb b

a

a,b,c a,b,c

b,c b,c

a,c a,c

a,b a,b

c

a

c

c

Figure 2.35 NFA corresponding to the DFA of Figure C 2.34.

| ((0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9
(0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9
(0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)* 9 (0 | 1 | . . . | 9)*)

Our construction would yield a very large NFA for this expression, but clearly
many orders of magnitude smaller than ten billion states!

2.4.2 Push-Down Automata

A deterministic push-down automaton (DPDA) N consists of (1) Q, (2) Σ, (3)
q1, and (4) F, as in a DFA, plus (6) a finite alphabet Γ of stack symbols, (7) a
distinguished initial stack symbol Z1 ∈ Γ, and (5′) a transition function δ :
Q × Γ × {Σ ∪ {ε}} → Q × Γ∗, where Γ∗ is the set of strings of zero or more
symbols from Γ. N begins in state q1, with symbol Z1 in an otherwise empty
stack. It repeatedly examines the current state q and top-of-stack symbol Z. If
δ(q,ε, Z) is defined, N moves to state r and replaces Z with α in the stack, where
(r, α) = δ(q,ε, Z). In this case N does not consume its input symbol. If δ(q,ε, Z)
is undefined, N examines and consumes the current input symbol a. It then moves
to state s and replaces Z with β, where (s, β) = δ(q, a , Z). N is interpreted as
accepting a string of input symbols if and only if it consumes the symbols and ends
in a state in F.

As with finite automata, a nondeterministic push-down automaton (NPDA)
is distinguished by a multivalued transition function: an NPDA can choose any
of a set of new states and stack symbol replacements when faced with a given
state, input, and top-of-stack symbol. If δ(q,ε, Z) is nonempty, N can also choose
a new state and stack symbol replacement without inspecting or consuming its
current input symbol. While we have seen that nondeterministic and deterministic
finite automata are equally powerful, this correspondence does not carry over to
push-down automata: there are context-free languages that are accepted by an
NPDA but not by any DPDA.

PREPRINT

2.4.3 Grammar and Language Classes C 19

The proof that CFGs and NPDAs are equivalent in expressive power is more
complex than the corresponding proof for regular expressions and finite automata.
The proof is also of limited practical importance for compiler construction; we do
not present it here. While it is possible to create an NPDA for any CFL, simulating
that NPDA may in some cases require exponential time to recognize strings in the
language. (The O(n3) algorithms mentioned in Section 2.3 do not take the form
of PDAs.) Practical programming languages can all be expressed with LL or LR
grammars, which can be parsed with a (deterministic) PDA in linear time.

An LL(1) PDA is very simple. Because it makes decisions solely on the basis of
the current input token and top-of-stack symbol, its state diagram is trivial. All but
one of the transitions is a self-loop from the initial state to itself. A final transition
moves from the initial state to a second, final state when it sees $$ on the input and
the stack. As we noted in Section 2.3.4, the state diagram for an SLR(1) or LALR(1)
parser is substantially more interesting: it’s the characteristic finite-state machine
(CFSM). Full LR(1) parsers have similar machines, but usually with many more
states, due to the need for path-specific look-ahead.

A little study reveals that if we define every state to be accepting, then the CFSM,
without its stack, is a DFA that recognizes the grammar’s viable prefixes. These are
all the strings of grammar symbols that can begin a sentential form in the canonical
(right-most) derivation of some string in the language, and that do not extend
beyond the end of the handle. The algorithms to construct LL(1) and SLR(1) PDAs
from suitable grammars were given in Sections 2.3.3 and 2.3.4.

2.4.3 Grammar and Language Classes

As we noted in Section 2.1.2, a scanner is incapable of recognizing arbitrarily nestedEXAMPLE 2.60
0n1n is not a regular
language

constructs. The key to the proof is to realize that we cannot count an arbitrary
number of left-bracketing symbols with a finite number of states. Consider, for
example, the problem of accepting the language 0n 1n . Suppose there is a DFA M
that accepts this language. Suppose further that M has m states. Now suppose we
feed M a string of m + 1 zeros. By the pigeonhole principle (you can’t distribute
m objects among p < m pigeonholes without putting at least two objects in some
pigeonhole), M must enter some state q i twice while scanning this string. Without
loss of generality, let us assume it does so after seeing j zeros and again after seeing
k zeros, for j ̸= k. Since we know that M accepts the string 0 j 1 j and the string
0k 1k , and since it is in precisely the same state after reading 0 j and 0k , we can
deduce that M must also accept the strings 0 j 1k and 0k 1 j . Since these strings are
not in the language, we have a contradiction: M cannot exist.

Within the family of context-free languages, one can prove similar theorems
about the constructs that can and cannot be recognized using various parsing
algorithms. Though almost all real parsers get by with a single token of look-ahead,
it is possible in principle to use more than one, thereby expanding the set of gram-
mars that can be parsed in linear time. In the top-down case we can redefine
FIRST and FOLLOW sets to contain pairs of tokens in a more or less straightforward

PREPRINT

C 20 Chapter 2 Programming Language Syntax

fashion. If we do this, however, we encounter a more serious version of the im-
mediate error detection problem described in Section C 2.3.5. There we saw that
the use of context-independent FOLLOW sets could cause us to overlook a syntax
error until after we had needlessly predicted one or more epsilon productions.
Context-specific FOLLOW sets solved the problem, but did not change the set of
valid programs that could be parsed with one token of look-ahead. If we define
LL(k) to be the set of all grammars that can be parsed predictively using the top-of-
stack symbol and k tokens of look-ahead, then it turns out that for k > 1 we must
adopt a context-specific notion of FOLLOW sets in order to parse correctly. The
algorithm of Section 2.3.3, which is based on context-independent FOLLOW sets,
is actually known as SLL (simple LL), rather than true LL. For k = 1, the LL(1) and
SLL(1) algorithms can parse the same set of grammars. For k > 1, LL is strictly
more powerful. Among the bottom-up parsers, the relationships among SLR(k),
LALR(k), and LR(k) are somewhat more complicated, but extra look-ahead always
helps.

Containment relationships among the classes of grammars accepted by popularEXAMPLE 2.61
Separation of grammar
classes

linear-time algorithms appear in Figure C 2.36. The LR class (no suffix) contains
every grammar G for which there exists a k such that G ∈ LR(k); LL, SLL, SLR, and
LALR are similarly defined. Grammars can be found in every region of the figure.
Examples appear in Figure C 2.37. Proofs that they lie in the regions claimed are
deferred to Exercise C 2.35.

For any context-free grammar G and parsing algorithm P, we say that G is
a P grammar (e.g., an LL(1) grammar) if it can be parsed using that algorithm.
By extension, for any context-free language L, we say that L is a P language if
there exists a P grammar for L (this may not be the grammar we were given).
Containment relationships among the classes of languages accepted by the popularEXAMPLE 2.62

Separation of language
classes

parsing algorithms appear in Figure C 2.38. Again, languages can be found in every
region. Examples appear in Figure C 2.39; proofs are deferred to Exercise C 2.36.

It turns out that every context-free language that can be parsed deterministically
has an SLR(1) grammar. In fact, any language that can parsed deterministically
and in which no valid string can be extended to create another valid string (this
is called the prefix property) has what is called an LR(0) grammar—one that can
be parsed with no lookahead whatsoever! In the CFSM for such a grammar, any
state containing an item with a . at the end will have no other item with a . in the
middle. When such a state is reached, the parser can blindly reduce. If our scanner
appends an explicit $$ marker at end-of-file, it is easy to see that our (augmented)
language will have the prefix property, and an LR(0) grammar must exist. At the
same time, LR(0) grammars tend to be large and unintuitive. Among other things,
they must generally avoid any epsilon productions: if an item A −→ ε. shares a
state with an item in which the dot precedes a terminal, we won’t be able to tell
whether to ‘‘recognize’’ ε without peeking ahead. Moreover, for any given grammar,
LR(0) parsers have no space or time advantage over SLR(1) or LALR(1). As a result,
LR(0) tends not to be used in practice.

The relationships among language classes are not as rich as the relationships
among grammar classes. Most real programming languages can be parsed by any

PREPRINT

2.4.3 Grammar and Language Classes C 21

LR
LL

LL(2)LR(2)

LR(1)
LL(1)

LALR

LALR(2)

LALR(1)

LR(0)

Figure 2.36 Containment relationships among popular grammar classes. Beyond the contain-
ments shown, SLL(k) is just inside LL(k), for k ≥ 2; SLR(k) is just inside LALR(k), for k ≥ 1.

LL(2) but not SLL:
S −→ a A a | b A b a
A −→ b | ε

SLL(k) but not LL(k − 1):
S −→ ak−1 b | ak

LR(0) but not LL:
S −→ A b
A −→ A a | a

SLL(1) but not LALR:
S −→ A a | B b | c C
C −→ A b | B a
A −→ D
B −→ D
D −→ ε

SLL(k) and SLR(k) but not LR(k − 1):
S −→ A ak−1 b | B ak−1 c
A −→ ε
B −→ ε

LALR(1) but not SLR:
S −→ b A b | A c | a b
A −→ a

LR(1) but not LALR:
S −→ a C a | b C b | a D b | b D a

C −→ c
D −→ c

Unambiguous but not LR:
S −→ a S a | ε

Figure 2.37 Examples of grammars in various regions of Figure C 2.36.

PREPRINT

C 22 Chapter 2 Programming Language Syntax

LL = SLL

Inherently
ambiguous

Nondeterministic
context-free

= deterministic context-free
with prefix property

SLR(1) = LR
= deterministic

context-free

LR(0)

LL(2) = SLL(2)

LL(1) = SLL(1)

Figure 2.38 Containment relationships among popular language classes.

Nondeterministic language:
{an bn c : n ≥ 1} ∪ {an b2n d : n ≥ 1}

Inherently ambiguous language:
{a i b j ck

: i = j or j = k ; i , j, k ≥ 1}
Language with LL(k) grammar but no LL(k−1) grammar:
{an(b | c | bk d) n : n ≥ 1}

Language with LR(0) grammar but no LL grammar:
{an bn

: n ≥ 1} ∪ {an cn
: n ≥ 1}

Figure 2.39 Examples of languages in various regions of Figure C 2.38.

of the popular parsing algorithms, though the grammars are not always pretty, and
special-purpose ‘‘hacks’’ may sometimes be required when a language is almost,
but not quite, in a given class. The principal advantage of the more powerful parsing
algorithms (e.g., full LR) is that they can parse a wider variety of grammars for a
given language. In practice this flexibility makes it easier for the compiler writer to
find a grammar that is intuitive and readable, and that facilitates the creation of
semantic action routines.

PREPRINT

2.4.3 Grammar and Language Classes C 23

3CHECK YOUR UNDERSTANDING

55. What formal machine captures the behavior of a scanner? A parser?

56. State three ways in which a real scanner differs from the formal machine.

57. What are the formal components of a DFA?

58. Outline the algorithm used to construct a regular expression equivalent to a
given DFA.

59. What is the inherent ‘‘big-O’’ complexity of parsing with a simulated NPDA?
Why is this worse than the O(n3) time mentioned in Section 2.3?

60. How many states are there in an LL(1) PDA? An SLR(1) PDA? Explain.

61. What are the viable prefixes of a CFG?

62. Summarize the proof that a DFA cannot recognize arbitrarily nested constructs.

63. Explain the difference between LL and SLL parsing.

64. Is every LL(1) grammar also LR(1)? Is it LALR(1)?

65. Does every LR language have an SLR(1) grammar?

66. Why are there never any epsilon productions in an LR(0) grammar?

67. Why are the containment relationships among grammar classes more complex
than those among language classes?

PREPRINT

C 24 Chapter 2 Programming Language Syntax

PREPRINT

PREPRINT

2Programming Language Syntax

2.6 Exercises

2.31 Give an example of an erroneous program fragment in which consideration
of semantic information (e.g., types) might help one make a good choice
between two plausible ‘‘corrections’’ of the input.

2.32 Give an example of an erroneous program fragment in which the ‘‘best’’
correction would require one to ‘‘back up’’ the parser (i.e., to undo recent
predictions/matches or shifts/reductions).

2.33 Extend your solution to exercise 2.21 to implement Wirth’s syntax error
recovery mechanism
(a) with global FOLLOW sets, as in Example C 2.45.
(b) with local FOLLOW sets, as in Example C 2.47.
(c) with avoidance of ‘‘starter symbol’’ deletion, as in Example C 2.48.

2.34 Extend your solution to exercise 2.21 to implement exception-based syntax
error recovery, as in Example C 2.49.

2.35 Prove that the grammars in Figure C 2.37 lie in the regions claimed.
2.36 (Difficult) Prove that the languages in Figure C 2.39 lie in the regions claimed.
2.37 Prove that regular expressions and left-linear grammars are equally powerful.

A left-linear grammar is a context-free grammar in which every right-hand
side contains at most one nonterminal, and then only at the left-most end.

C 25

C 26 Chapter 2 Programming Language Syntax

PREPRINT

PREPRINT

2Programming Language Syntax

2.7 Explorations

2.46 Experiment with syntax errors in your favorite compiler. Feed the compiler
deliberate errors and comment on the quality of the recovery or repair. How
often does it do the ‘‘right thing’’? How often does it generate cascading
errors? Speculate as to what sort of recovery or repair algorithm it might be
using.

2.47 Spelling mistakes (typos in keywords and identifiers) are a common source of
syntax and static semantic errors. Identifying such errors—and guessing what
the user meant to type—could result in significantly better error recovery.
Discuss how you might go about incorporating spelling correction into some
existing error recovery system. (Hint: You might want to consult Morgan’s
early paper on this subject [Mor70].)

C 27

C 28 Chapter 2 Programming Language Syntax

PREPRINT

PREPRINT

3Names, Scopes, and Bindings

3.4 Implementing Scope

For both static and dynamic scoping, a language implementation must keep track
of the name-to-object bindings in effect at each point in the program. The principal
difference is time: with static scope the compiler uses a symbol table to track bindings
at compile time; with dynamic scoping the interpreter or run-time system uses an
association list or central reference table to track bindings at run time.

3.4.1 Symbol Tables

In a language with static scoping, the compiler uses an insert operation to place a
name-to-object binding into the symbol table for each newly encountered declara-
tion. When it encounters the use of a name that should already have been declared,
the compiler uses a lookup operation to search for an existing binding. It is tempt-
ing to try to accommodate the visibility rules of static scoping by performing a
remove operation to delete a name from the symbol table at the end of its scope.
Unfortunately, several factors make this straightforward approach impractical:

The ability of inner declarations to hide outer ones in most languages with nested
scopes means that the symbol table has to be able to contain an arbitrary number
of mappings for a given name. The lookup operation must return the innermost
mapping, and outer mappings must become visible again at end of scope.
Records (structures) and classes have some of the properties of scopes, but do
not share their nicely nested structure. When it sees a record declaration, the
semantic analyzer must remember the names of the record’s fields (recursively, if
records are nested). At the end of the declaration, the field names must become
invisible. Later, however, whenever a variable of the record type appears in
the program text (as in my_rec.field_name), the record fields must suddenly
become visible again for the part of the reference after the dot. In object-oriented
languages, member (field and method) names must become visible throughout

C 29

C 30 Chapter 3 Names, Scopes, and Bindings

the methods of the class, even if (as in C++) the code for the methods can appear
outside the class declaration.
As noted in Section 3.3.3, names are sometimes used before they are declared.
Algol and C, for example, permit forward references to labels. Pascal permits for-
ward references in pointer declarations. Most object-oriented languages permit
forward references to class members. Modula-3 permits forward references of
all kinds.
As noted in Section 3.3.3, C, C++, and Ada distinguish between the declaration
of an object and its definition. Pascal has a similar mechanism for mutually
recursive subroutines. When it sees a declaration, the compiler must remember
any nonvisible details so that it can check the eventual definition for consistency.
This operation is similar to remembering the field names of records and classes.
While it may be desirable to forget names at the end of their scope, and even
to reclaim the space they occupy in the symbol table, information about them
may need to be saved for use by a symbolic debugger (Section 16.3.2). A debug-
ger allows the user to manipulate a running program: starting it, stopping it,
and reading and writing its data. In order to parse high-level commands, the
debugger must have access to the compiler’s symbol table, which the compiler
typically saves in a hidden portion of the final machine-language program.

To accommodate these concerns, most compilers never delete anything fromEXAMPLE 3.45
The LeBlanc-Cook symbol
table

the symbol table. Instead, they manage visibility using enter_scope and leave_

scope operations. Implementations vary from compiler to compiler; the approach
described here is due to LeBlanc and Cook [CL83].

Each scope, as it is encountered, is assigned a serial number. The outermost
scope (the one that contains the predefined identifiers) is given number 0. The
scope containing programmer-declared global names is given number 1. Additional
scopes are given successive numbers as they are encountered. All serial numbers
are distinct; they do not represent the level of lexical nesting, except in as much as
nested subroutines naturally end up with numbers higher than those of surrounding
scopes. If language rules specify that a declaration should be visible only in the
remainder of the current code block (not the preceding portion), we can even
allocate a serial number for each such declaration, to capture the scope that is the
remainder of the block.

All names, regardless of scope, are entered into a single large hash table, keyed
by name. Each entry in the table then contains the symbol name, its category
(variable, constant, type, procedure, field name, parameter, etc.), scope number,
type (a pointer to another symbol table entry), and additional, category-specific
fields.

In addition to the hash table, the symbol table has a scope stack that indicates,
in order, the scopes that compose the current referencing environment. As the
semantic analyzer scans the program, it pushes and pops this stack whenever it
enters or leaves a scope, respectively. Entries in the scope stack contain the scope
number, an indication of whether the scope is closed, and in some cases further
information.

PREPRINT

3.4.1 Symbol Tables C 31

procedure lookup(name)
pervasive := best := null
apply hash function to name to find appropriate chain
foreach entry e on chain

if e.name = name –– not something else with same hash value
if e.scope = 0

pervasive := e
else

foreach scope s on scope stack, top first
if s.scope = e.scope

best := e –– closer instance
exit inner loop

elsif best ̸= null and then s.scope = best.scope
exit inner loop –– won’t find better

if s.closed
exit inner loop –– can’t see farther

if best ̸= null
while best is an import or export entry

best := best.real_entry
return best

elsif pervasive ̸= null
return pervasive

else
return null –– name not found

Figure 3.17 LeBlanc-Cook symbol table lookup operation.

To look up a name in the table, we scan down the appropriate hash chain looking
for entries that match the name we are trying to find. For each matching entry, we
scan down the scope stack to see if the scope of that entry is visible. We look no
deeper in the stack than the top-most closed scope. Imports and exports are made
visible outside their normal scope by creating additional entries in the table; these
extra entries contain pointers to the real entries. We don’t have to examine the
scope stack at all for entries with scope number 0: they are pervasive. Pseudocode
for the lookup algorithm appears in Figure C 3.17.

The lower right portion of Figure C 3.18 contains the skeleton of a C++ program.EXAMPLE 3.46
Symbol table for a sample
program

The remainder of the figure shows the configuration of the symbol table for the
referencing environment of the grey arrow shown in function F2. At this point
in the code, the scope stack contains four entries, representing, respectively, the
(anonymous) type of structure S, function F2, namespace (module) M2, and the
global scope. The scope for the anonymous type indicates the specific variable (i.e.,
S) to which names (fields) in this scope belong. The outermost, pervasive scope is
not explicitly represented.

All of the entries for a given name appear on the same hash chain, since the
table is keyed on name. In this example, we assume that hash collisions have placed
M2 on the same chain as the Js, and the anonymous structure type (which will

PREPRINT

C 32 Chapter 3 Names, Scopes, and Bindings

// pervasive is scope 0
// outer is scope 1
namespace M1 { // scope 2
 struct { // scope 3
 char X;
 } S;
 ...
}
...
namespace M2 { // scope 4
 using M1::S;
 int J;
 ...
 char F1(int A,
 char B) { // scope 5
 ...

 char J;
 ...

 }
 ...
 void F2(char A) { // scope 6

 S.X = A;

 }
 ...
}

Hash table
Scope stack

Hash
 lin

k
Nam

e
Cate

go
ry

Sco
pe

Typ
e

Other

Closed
? (

NA in
 C++)

Other

—

—

—

—

—

—

—

—

—

—

—

parameters

M1 1

3 struct S

6
4
1

mod

�eld

void 0type

F1 4 (3)subr

J

J

M2

6 (3)var

4var

1mod

A 6 (3)param

S 4 importvar

A 5 (2)

(2)

param

record scope 32type

S 2var

int 0 (2)

(3)

type

char 0type

—X 3 (3)

B 5

(1)

(3) —param

F2 subr 4 parameters

(2)

S.
F2
M2
Globals

Sco
pe

(1)

Figure 3.18 LeBlanc-Cook symbol table for an example program in a language like C++. The scope stack represents the
referencing environment at the grey arrow shown in function F2. For the sake of clarity, the many pointers from type fields to
the symbol table entries for void, int, and char are shown as parenthesized (1)s, (2)s, and (3)s, rather than as arrows.

PREPRINT

3.4.1 Symbol Tables C 33

have some arbitrary internal name) on the same chain as the As. Variable S has
an extra entry, to make it directly visible inside M2, as requested by the using
statement. When we are inside F2, a lookup operation on J will find F2’s J; the J
in M2 will be hidden by virtue of F2 being above M2 on the scope stack. The entry
for the anonymous struct type indicates the scope number to be pushed onto
the scope stack while resolving references to fields within objects of that type. The
entry for each function contains the head pointer of a list that links together the
subroutine’s parameters, for use in analyzing calls (additional links of these chains
are not shown). During code generation, many symbol table entries would contain
additional fields, for such information as size and run-time address.

The second column of the scope stack is intended to indicate closed scopes.
While C++ doesn’t have any of these, we can imagine how they would work. For
example, if M2 were closed, then names in the global scope, which appears below M2
in the scope stack, would not be visible at the indicated point in the code. Anything
imported into M2 would be visible, because it would have an extra entry (like that
of S) within M2’s own scope.1 If our language had exports (again, C++ does not),
we would create extra entries in the outer scope, analogous to the ones we create in
inner scopes for imports.

Classes, which we did not use in Figure C 3.18, would be handled much like
a combination of namespaces and structures. Field and method names of the
class would be visible to the class’s methods, much as objects in a namespace are
visible to all the namespace’s code. Moreover, the entry for the class—like that of a
structure type—would indicate the scope to be pushed onto the scope stack when
the compiler has parsed a dot (.) or arrow (->) token and expects the next token
to name a field or method of the class.

It is tempting to suggest extending a LeBlanc-Cook style symbol table to handle
the visibility specifications common in object-oriented languages (e.g., the public,
private, protected keywords of C++, to which we will return in Section 10.2.2),
but this is probably a mistake. For one thing, such an extension would likely be quite
messy. It is easy to make all the names in a scope visible, by pushing that scope onto
the scope stack. It is also relatively easy to make a small number of names visible,
by creating extra entries in other scopes, as we did for imports and exports. An
intermediate option does not immediately present itself. More significantly, when
the programmer attempts to use a field or method inappropriately, we probably want
to generate an error message along the lines of ‘‘method m is private in class foo’’
instead of just ‘‘method name foo not found.’’ This observation suggests employing
a traditional lookup mechanism for class members, followed by a separate check
for visibility in the current context. We consider this possibility in Exercise C 3.27.

1 Recall that the using statement in C++ isn’t an import in the usual sense: it just gives a simpler
(unqualified) name to an already-visible object.

PREPRINT

C 34 Chapter 3 Names, Scopes, and Bindings

3.4.2 Association Lists and Central Reference Tables

Pictorial representations of the two principal implementations of dynamic scoping
appear in Figures C 3.19 and C 3.20. Association lists (A-lists) are simple and elegant,
but can be very inefficient. Central reference tables resemble a simplified LeBlanc-
Cook symbol table, without the separate scope stack; they require more work at
scope entry and exit than do association lists, but they make lookup operations
fast.

A-lists are widely used for dictionary abstractions in Lisp; they are supportedEXAMPLE 3.47
A-list lookup in Lisp by a rich set of built-in functions in most Lisp dialects. It is therefore natural for a

simple Lisp interpreter to use an A-list to keep track of name-value bindings, and
even to make this list explicitly visible to the running program. Since bindings are
created when entering a scope, and destroyed when leaving or returning from a
scope, the A-list functions as a stack. When execution enters a scope at run time,
the interpreter pushes bindings for names declared in that scope onto the top of
the A-list. When execution finally leaves a scope, these bindings are removed. To
look up the meaning of a name in an expression, the interpreter searches from
the top of the list until it finds an appropriate binding (or reaches the end of the
list, in which case an error has occurred). Each entry in the list contains whatever
information is needed to perform semantic checks (e.g., type checking, which we
will consider in Section 7.2) and to find variables and other objects that occupy
memory locations. In the left half of Figure C 3.19, the first (top) entry on the A-list
represents the most recently encountered declaration: the I in procedure P. The
second entry represents the J in procedure Q. Below these are the global symbols,
Q, P, J, and I, and (not shown explicitly) any predefined names provided by the
Lisp interpreter.

The problem with using an association list to represent a program’s referencing
environment is that it can take a long time to find a particular entry in the list,
particularly if it represents an object declared in a scope encountered early in the
program’s execution, and now buried deep in the list. A central reference table isEXAMPLE 3.48

Central reference table designed for faster access. It has one slot for every distinct name in the program.
The table slot in turn contains a list (stack) of declarations encountered at run
time, with the most recent occurrence at the beginning of the list. Looking up
a name is now easy: the current meaning is found at the beginning of the list in
the appropriate slot in the table. In the upper part of Figure C 3.20, the first entry
on the I list is the I in procedure P; the second is the global I. If the program is
compiled and the set of names is known at compile time, then each name can have
a statically assigned slot in the table, which the compiled code can refer to directly.
If the program is not compiled, or the set of names is not statically known, then a
hash function will need to be used at run time to find the appropriate slot.

When control enters a new scope at run time, entries must be pushed onto the
beginning of every list in the central reference table whose name is (re)declared
in that scope. When control leaves a scope for the final time, these entries must
be popped. The work involved is somewhat more expensive than pushing and
popping an A-list, but not dramatically more so, and lookup operations are now

PREPRINT

3.4.2 Association Lists and Central Reference Tables C 35

Referencing environment A-list

(predefined names)

I, J : integer

procedure P (I : integer)
 . . .

procedure Q
 J : integer
 . . .
 P (J)
 . . .

−− main program
. . .
Q

Referencing environment A-list

(predefined names)

other infoP

other infoJ

other infoI

other infoI

other infoJ

other info

global proc

global var

global var

param

local var

global procQ

other infoP

other infoJ

other infoI

other infoJ

other info

global proc

global var

global var

local var

global procQ

(newest declarations are at this end of the list)

Figure 3.19 Dynamic scoping with an association list. The left side of the figure shows the referencing environment at the
point in the code indicated by the adjacent grey arrow: after the main program calls Q and it in turn calls P. When searching for
I, one will find the parameter at the beginning of the A-list. The right side of the figure shows the environment at the other grey
arrow: after P returns to Q. When searching for I, one will find the global definition.

much faster. In contrast to the symbol table of a compiler for a language with static
scoping, central reference table entries for a given scope do not need to be saved
when the scope completes execution; the space can be reclaimed.

Within the Lisp community, implementation of dynamic scoping via an asso-
ciation list is sometimes called deep binding, because the lookup operation may
need to look arbitrarily deep in the list. Implementation via a central reference
table is sometimes called shallow binding, because it finds the current association
at the head of a given reference chain. Unfortunately, the terms ‘‘deep and shallow
binding’’ are also more widely used for a completely different purpose, discussed
in Section 3.6. To avoid potential confusion, some authors use ‘‘deep and shallow
access’’ [Seb19] or ‘‘deep and shallow search’’ [Fin96] for the implementations of
dynamic scoping.

Closures with Dynamic Scoping

(This subsection is best read after Section 3.6.1.)
If an association list is used to represent the referencing environment of a pro-EXAMPLE 3.49

A-list closures gram with dynamic scoping, the referencing environment in a closure can be
represented by a top-of-stack (beginning of A-list) pointer (Figure C 3.21). When

PREPRINT

C 36 Chapter 3 Names, Scopes, and Bindings

(other names)

Central reference table

P

I

Q

J

(each table entry points to the newest declaration of the given name)

I, J : integer

procedure P (I : integer)
 . . .

procedure Q
 J : integer
 . . .
 P (J)
 . . .

−− main program
. . .
Q

other info

other infoother info

global proc

global varparam

other infoglobal proc

other infoother info global varlocal var

(other names)

Central reference table

P

I

Q

J

other info

other info

global proc

global var

other infoglobal proc

other infoother info global varlocal var

Figure 3.20 Dynamic scoping with a central reference table. The upper half of the figure shows the referencing environment
at the point in the code indicated by the upper grey arrow: after the main program calls Q and it in turn calls P. When searching
for I, one will find the parameter at the beginning of the chain in the I slot of the table. The lower half of the figure shows the
environment at the lower grey arrow: after P returns to Q. When searching for I, one will find the global definition.

a subroutine is called through a closure, the main pointer to the referencing envi-
ronment A-list is temporarily replaced by the pointer from the closure, making any
bindings created since the closure was created (P’s I and J in the figure) temporar-
ily invisible. New bindings created within the subroutine (or in any subroutine it
calls) are pushed using the temporary pointer. Because the A-list is represented
by pointers (rather than an array), the effect is to have two lists—one representing
the caller’s referencing environment and the other the temporary referencing envi-
ronment resulting from use of the closure—that share their older entries. When Q
returns to P in our example, the original head of the A-list will be restored, making
P’s I and J visible again.

PREPRINT

3.4.2 Association Lists and Central Reference Tables C 37

procedure P(procedure C)
declare I, J
call C

procedure F
declare I

procedure Q
declare J
call F

−− main program
call P(Q)

Referencing environment A-listCentral Stack

main program

P
I, J
C == Q

Q J

I

M

P

Q

F

I

J

J

I

F

Figure 3.21 Capturing the A-list in a closure. Each frame in the stack has a pointer to the
current beginning of the A-list, which the run-time system uses to look up names. When the main
program passes Q to P with deep binding, it bundles its A-list pointer in Q’s closure (dashed
arrow). When P calls C (which is Q), it restores the bundled pointer. When Q elaborates its
declaration of J (and F elaborates its declaration of I), the A-list is temporarily bifurcated.

With a central reference table implementation of dynamic scoping, the creation
of a closure is more complicated. In the general case, it may be necessary to copy
the entire main array of the central table and the first entry on each of its lists.
Space and time overhead may be reduced if the compiler or interpreter is able to
determine that only some of the program’s names will be used by the subroutine in
the closure (or by things that the subroutine may call). In this case, the environment
can be saved by copying the first entries of the lists for only the names that will be
used. When the subroutine is called through the closure, these entries can then
be pushed onto the beginnings of the appropriate lists in the central reference
table. Additional code must be executed to remove them again after the subroutine
returns.

3CHECK YOUR UNDERSTANDING

43. List the basic operations provided by a symbol table.

44. Outline the implementation of a LeBlanc-Cook style symbol table.

45. Why don’t compilers generally remove names from the symbol table at the
ends of their scopes?

PREPRINT

C 38 Chapter 3 Names, Scopes, and Bindings

46. Describe the association list (A-list) and central reference table data structures
used to implement dynamic scoping. Summarize the tradeoffs between them.

47. Explain how to implement deep binding by capturing the referencing envi-
ronment A-list in a closure. Why are closures harder to build with a central
reference table?

PREPRINT

PREPRINT

3Names, Scopes, and Bindings

3.8 Separate Compilation

Probably the most straightforward mechanisms for separate compilation can be
found in module-based languages such as Modula-2, Modula-3, and Ada, which
allow a module to be divided into a declaration part (or header) and an implemen-
tation part (or body). As we noted in Section 3.3.4, the header contains all and
only the information needed by users of the module (or needed by the compiler in
order to compile such a user); the body contains the rest.

As a matter of software engineering practice, a design team will typically define
module interfaces early in the lifetime of a project, and codify these interfaces in
the form of module headers. Individual team members or subteams will then work
to implement the module bodies. While doing so, they can compile their code
successfully using the headers for the other modules. Using preliminary copies of
the bodies, they may also be able to undertake a certain amount of testing.

In a simple implementation, only the body of a module needs to be compiled into
runnable code: the compiler can read the header of module M when compiling the
body of M, and also when compiling the body of any module that uses M. In a more
sophisticated implementation, the compiler can avoid the overhead of repeatedly
scanning, parsing, and analyzing M’s header by translating it into a symbol table,
which is then accessed directly when compiling the bodies of M and its users.
Most Ada implementations compile their module headers. Implementations of
Modula-2 and 3 vary: some work one way, some the other.

As a practical matter, many languages allow the header of a module to be subdi-
vided into a ‘‘public’’ part, which specifies the interface to the rest of the program,
and a ‘‘private’’ part, which is not visible outside the module, but is needed by
the compiler, for example to determine the storage requirements of opaque types.
Ideally, one would include in the header of a module only that information that
the programmer needs to know to use the abstraction(s) that the module provides.
Restricted exports, and the public and private portions of headers, are compro-

C 39

C 40 Chapter 3 Names, Scopes, and Bindings

mises introduced to allow the compiler to generate code in the face of separate
compilation.

At some point prior to execution, modules that have been separately compiled
must be ‘‘glued together’’ to form a single program. This job is the task of the linker.
At the very least, the linker must resolve cross-module references (loads, stores,
jumps) and relocate any instructions whose encoding depends on the location of
certain modules in the final program. Typically it also checks to make sure that users
and implementors of a given interface agree on the version of the header file used
to define that interface. In some environments, the linker may perform additional
tasks as well, including certain kinds of interprocedural (whole-program) code
improvement. We will return to the subject of linking in Chapters 15 and 16.

3.8.1 Separate Compilation in C

The initial version of C was designed at Bell Laboratories around 1970. It has
evolved considerably over the years, but not, for the most part, in the area of sepa-
rate compilation. Here the language remains comparatively primitive. In particular,
there is in general no way for the compiler or the linker to detect inconsistencies
among declarations or uses of a name in different files. The C89 standards com-
mittee introduced a new explanation of separate compilation based on the notion
of linkage, but this served mainly to clarify semantics, not to change them. The
current rules can be summarized as follows (certain details and special cases are
omitted):

If the declaration of a global object (variable or function) contains the word
static, then the object has internal linkage, and is identified with (linked to)
any other internally linked declaration of the same name in the same file.
If the declaration of a function does not contain the keyword static, then it
has external linkage, and is identified with any other (nonstatic) declaration
of the same function in any file of the program. (A function declaration may
consist of just the header.)
If the declaration of a variable contains the keyword extern, then the variable
has the same linkage as any visible, internally or externally linked declaration of
the same name appearing earlier in the file. If there is no earlier declaration, then
the variable has external linkage, and is identified with any other declaration of
the same external variable in any file of the program. In other words, files in the
same program that contain matching external variable declarations actually share
the same variable. A global variable also has external linkage if its declaration
says neither static nor extern.
If an object is declared with both internal and external linkage, the behavior of
the program is undefined.
An object (variable or function) that is externally linked must have a definition
in exactly one file of a program. A variable is defined when it is given an initial

PREPRINT

3.8.1 Separate Compilation in C C 41

value, or is declared at the global level without the extern keyword. A function
is defined when its body (code) is given.

Many C implementations prior to C89 relaxed the final rule to permit zero or
one definitions of an external variable; some permitted more than one. In these
implementations, the linker unified multiple definitions, and created an implicit def-
inition for any variable (or set of linked variables) for which the program contained
only declarations.

The ‘‘linkage’’ rules of C89 provide a way to associate names in one file with
names in another file. The rules are most easily understood in terms of their
implementation. Most language-independent linkers are designed to deal with
symbols: character-string names for locations in a machine-language program. The
linker’s job is to assign every symbol a location in the final program, and to embed
the address of the symbol in every machine-language instruction that makes a
reference to it. To do this job, the linker needs to know which symbols can be used
to resolve unbound references in other files, and which are local to a given file. C89
rules suffice to provide this information. For the programmer, however, there is no
formal notion of interface, and no mechanism to make a name visible in some, but
not all files. Moreover, nothing ensures that the declarations of an external object
found in different files will be compatible: it is entirely possible, for example, to
declare an external variable as a multifield record in one file and as a floating-point
number in another. The compiler is not required to catch such errors, and the
resulting bugs can be very difficult to find.

Header Files

Fortunately, C programmers have developed conventions on the use of external
declarations that tend to minimize errors in practice. These conventions rely on
the file inclusion facility of a macro preprocessor. The programmer creates files
in pairs that correspond roughly to the interface and the implementation of a
module. The name of an interface file ends with.h; the name of the corresponding
implementation file ends with .c. Every object defined in the .c file is declared
in the.h file. At the beginning of the.c file, the programmer inserts a directive
that is treated as a special form of comment by the compiler, but that causes the
preprocessor to include a verbatim copy of the corresponding.h file. This inclusion
operation has the effect of placing ‘‘forward’’ declarations of all the module’s objects
at the beginning of its implementation file. Any inconsistencies with definitions
later in the file will result in error messages from the compiler. The programmer
also instructs the preprocessor at the top of each.c file to include a copy of the.h
files for all of the modules on which the.c file depends. As long as the preprocessor
includes identical copies of a given.h file in all the.c files that use its module, no
inconsistent declarations will occur. Unfortunately, it is easy to forget to recompile
one or more.c files when a.h file is changed, and this can lead to very subtle bugs.
Tools like Unix’s make utility help minimize such errors by keeping track of the
dependences among modules.

PREPRINT

C 42 Chapter 3 Names, Scopes, and Bindings

Namespaces

Even with the convention of header files, C89 still suffers from the lack of scoping
beyond the level of an individual file. In particular, all global names must be
distinct, across all files of a program, and all libraries to which it links. Some coding
standards encourage programmers to embed a module’s name in the name of each
of its external objects (e.g., scanner_nextSym), but this practice can be awkward,
and is far from universal.

To address this limitation, C++ introduced a namespace mechanism that gener-
alizes the scoping already provided for classes and functions, breaks the tie between
module and compilation unit, and strengthens the interface conventions of.h files.
Any collection of names can be declared inside a namespace:EXAMPLE 3.50

Namespaces in C++
namespace foo {

class foo_type_1; // declaration
...

}

Actual definitions of the objects within foo can then appear in any file:

class foo::foo_type_1 { ... // full definition

Definitions of objects declared in different namespaces can appear in the same file
if desired.

A C++ programmer can access the objects in a namespace using fully qualifiedEXAMPLE 3.51
Using names from another
namespace

names, or by importing (using) them explicitly:

foo::foo_type_1 my_first_obj;

or

using foo::foo_type_1;
...
foo_type_1 my_first_obj;

or

using namespace foo; // import everything from foo
...
foo_type_1 my_first_obj;

There is no notion of export; all objects with external linkage in a namespace are
visible elsewhere if imported or accessed with their qualified name. Note that
linkage remains the foundation for separate compilation: .h files are merely a
convention.

PREPRINT

3.8.2 Packages and Automatic Header Inference C 43

3.8.2 Packages and Automatic Header Inference

The separate compilation facilities of Java and C# eliminate.h files. Java introducesEXAMPLE 3.52
Packages in Java a formal notion of module, called a package. Every compilation unit, which may

be a file or (in some implementations) a record in a database, belongs to exactly
one package, but a package may consist of many compilation units, each of which
begins with an indication of the package to which it belongs:

package foo;
public class FooType1 { ...

Unless explicitly declared as public, a class in Java is visible in all and only those
compilation units that belong to the same package.

As in C++, a compilation unit that needs to use classes from another packageEXAMPLE 3.53
Using names from another
package

can access them using fully qualified names, or via name-at-a-time or package-at-
a-time import:

foo.FooType1 myFirstObj;

or

import foo.FooType1;
...
FooType1 myFirstObj;

or

import foo.*; // import everything from foo
...
FooType1 myFirstObj;

When asked to import names from package M, the Java compiler will search for
M in a standard (but implementation-dependent) set of places, and will recompile
it if appropriate (i.e., if only source code is found, or if the target code is out of date).
The compiler will then automatically extract the information that would have been
needed in a C++ .h file or an Ada or Modula-3 header. If the compilation of M
requires other packages, the compiler will search for them as well, recursively.

C# follows Java’s lead in extracting header information automatically from com-
plete class definitions. Its module-level syntax, however, is based on the namespaces
of C++, which allow a single file to contain fragments of multiple namespaces.
There is also no notion of standard search path in C#: to build a complete program,
the programmer must provide the compiler with a complete list of all the files
required.

To mimic the software engineering practice of early header file construction, a
Java or C# design team can create skeleton versions of (the public classes of) its
packages or namespaces, which can then be used, concurrently and independently,
by the programmers responsible for the full versions.

PREPRINT

C 44 Chapter 3 Names, Scopes, and Bindings

3.8.3 Module Hierarchies

In Modula and Ada, the programmer can create a hierarchy of modules within a
single compilation unit by means of lexical nesting (module C, for example, may
be declared inside of module B, which in turn is declared inside of module A).
In a similar vein, the Ada 95, Java, or C# programmer can create a hierarchy ofEXAMPLE 3.54

Multipart package names separately compiled modules by means of multipart names:

package A.B is ... -- Ada 95

package A.B; ... // Java

namespace A.B { ... // C#

In these examples package A.B is said to be a child of package A. In Ada 95 and C#
the child behaves as though it had been nested inside of the parent, so that all the
names in the parent are automatically visible. In Java, by contrast, multipart names
work by convention only: there is no special relationship between packages A and
A.B. If A.B needs to refer to names in A, then A must make them public, and A.B
must import them. Child packages in Ada 95 are reminiscent of derived classes in
C++, except that they support a module-as-manager style of abstraction, rather
than a module-as-type style (more on this in sidebar 10.3).

3CHECK YOUR UNDERSTANDING

48. What purpose(s) does separate compilation serve?

49. What does it mean for an external variable to be linked in C?

50. Summarize the C conventions for use of.h and.c files.

51. Describe the difference between a compilation unit and a C++ or C# namespace.

52. Explain why Ada and similar languages separate the header of a module from
its body. Explain how Java and C# get by without.

DESIGN & IMPLEMENTATION

3.12 Separate compilation
The evolution of separate compilation mechanisms from early C and Fortran,
through C++, Modula-3, Ada, and finally Java and C#, reflects a move from an
implementation-centric viewpoint to a more programmer-centric viewpoint.
Interestingly, the ability to have zero definitions of an externally linked variable
in certain early implementations of C is inherited from Fortran: the assembly
language mnemonic corresponding to a declaration without a definition is
.common (for a mechanism known as common blocks in Fortran).

PREPRINT

PREPRINT

3Names, Scopes, and Bindings

3.10 Exercises

3.24 Assuming a LeBlanc-Cook style symbol table, explain how the compiler finds
the symbol table information (e.g., the type) of a complicated reference such
as my_firm->revenues[1999].

3.25 Show the contents of a LeBlanc-Cook style symbol table that captures the
referencing environment of
(a) function F1 in Figure 3.4.
(b) procedure set_seed in Figure 3.7.

3.26 In Example C 3.45 we suggested that the implementor of a language in which
declarations are visible only in the remainder of the current code block might
choose to introduce a new nested scope for every declaration. This would, of
course, lead to a very deep scope stack. If that turned out to be a performance
problem for the compiler, explain how you might layer a caching mechanism
on top of the standard lookup algorithm to eliminate most of the slow-down.

3.27 Consider the visibility of class members (fields and methods) in an object-
oriented language, as discussed near the end of Section C 3.4.1. Describe
a mechanism that could be used to check visibility after first locating the
member in a more traditional symbol table. (You may want to look ahead to
Section 10.2.2.)

3.28 Show a trace of the contents of the referencing environment A-list during
execution of the program in
(a) Figure 3.9. Assume that a positive value is read at line 8.
(b) Exercise 3.14.

3.29 Repeat the previous exercise for a central reference table.
3.30 Consider the following tiny program in C:

C 45

C 46 Chapter 3 Names, Scopes, and Bindings

void hello() {
printf("Hello, world\n");

}

int main() {
hello();

}

(a) Split the program into two separately compiled files, tiny.c and
hello.c. Be sure to create a header file hello.h and include it cor-
rectly in tiny.c.

(b) Reconsider the program as C++ code. Put the hello function in a
separate namespace, and include an appropriate using declaration in
tiny.c.

(c) Rewrite the program in Java, with main and hello in separate packages.

3.31 Consider the following file from some larger C program:

int a;
extern int b;
static int c;

void foo() {
int a;
static int b;
extern int c;
extern int d;

}

static int b;
extern int c;

For each variable declaration, indicate whether the variable has external
linkage, internal (file-level) linkage, or no linkage (i.e., is local).

3.32 Modula-2 provides no way to divide the header of a module into a public
part and a private part: everything in the header is visible to the users of
the module. Is this a major shortcoming? Are there disadvantages to the
public/private division (e.g., as in Ada)? (For hints, see Section 10.2.)

PREPRINT

PREPRINT

3Names, Scopes, and Bindings

3.11 Explorations

3.44 Using your favorite compiler, generate assembly language for some simple
programs with debugger support enabled (on a Unix system, this will probably
require the -g and -S command-line switches). Look through the result for
debugger information. Can you decipher any of it? You may want to look
ahead to Section 16.3.2, and to consult a manual for your system’s object file
format (on a modern Unix system, look for documentation on DWARF).

3.45 Learn about the reflection mechanisms of Java, C#, Prolog, Perl, PHP, Tcl,
Python, or Ruby, all of which allow a program to inspect and reason about
its own symbol table at run time. How complete are these mechanisms?
(For example, can a program inspect symbols that aren’t currently in scope?)
What is reflection good for? What uses should be considered good or bad
programming practice? For more ideas, see Section 16.3.1.

3.46 Learn about the typeglob mechanism of Perl, which allows a program to
modify its own symbol table at run time. What are typeglobs good for?
(See Sidebar 14.9 for some initial pointers.)

3.47 Create a C program in which a variable is exported from one file and imported
by another, but the declarations in the files disagree with respect to type. You
should be able to arrange for the program to compile and link successfully,
but behave incorrectly. Try the same thing in Ada or C++. What happens?

3.48 Investigate the use of module hierarchies in the standard libraries of C++,
Java, and C#. How is each organized? How fine grain is the division into
separate headers or packages? Can you suggest an explanation for any major
differences you find?

C 47

C 48 Chapter 3 Names, Scopes, and Bindings

PREPRINT

PREPRINT

4Program Semantics

4.6 Attribute Grammars

In this section we examine attribute grammars, an alternate formalism for describ-
ing and implementing the semantics of a programming language. Intuitively, we
can think of attribute grammars as a generalization of action routines in which
the compiler designer no longer needs to specify exactly when to execute each
routine—and in which the execution need not necessarily be interleaved with
parsing. Alternatively, we can think of attribute grammars as a more imperative
alternative to inference rules: instead of providing rules that indicate what can be
inferred about the meaning of nodes in a syntax tree, we provide code to compute
the values of attributes (fields) of tree nodes, either in a syntax tree or in the original
parse tree.

As a starting point, in a parse tree context, consider an LR (bottom-up) grammarEXAMPLE 4.24
Bottom-up CFG for
constant expressions

for arithmetic expressions composed of constants with precedence and associativity,
adapted from Example 2.8:1

E −→ E + T
E −→ E - T
E −→ T
T −→ T * F
T −→ T / F
T −→ F
F −→ - F
F −→ (E)
F −→ const

1 The addition of semantic rules tends to make attribute grammars quite a bit more verbose than
context-free grammars. For the sake of brevity, many of the examples in this section use very short
symbol names: E instead of expr, TT instead of term_tail.

C 49

C 50 Chapter 4 Program Semantics

1. E1 −→ E2 + T ▷ E1.val := sum(E2.val, T.val)

2. E1 −→ E2 - T ▷ E1.val := difference(E2.val, T.val)

3. E −→ T ▷ E.val := T.val

4. T1 −→ T2 * F ▷ T1.val := product(T2.val, F.val)

5. T1 −→ T2 / F ▷ T1.val := quotient(T2.val, F.val)

6. T −→ F ▷ T.val := F.val

7. F1 −→ - F2 ▷ F1.val := additive_inverse(F2.val)

8. F −→ (E) ▷ F.val := E.val

9. F −→ const ▷ F.val := const.val

Figure 4.16 A simple attribute grammar for constant expressions, using the standard arith-
metic operations. Each semantic rule is introduced by a ▷ sign.

This grammar will generate all properly formed constant expressions over the
basic arithmetic operators, but it says nothing about their meaning. To tie these
expressions to mathematical concepts (as opposed to, say, floor tile patterns or
dance steps), we could use inference rules, as discussed in the main text, but we
can also use attributes. In our expression grammar, we associate a val attributeEXAMPLE 4.25

Bottom-up AG for constant
expressions

with each E, T, F, and const in the grammar. The intent is that for any symbol
S, S.val will be the meaning, as an arithmetic value, of the token string derived
from S. We assume that the val of a const is provided to us by the scanner. We
must then invent a set of rules for each production, to specify how the vals of
different symbols are related. The resulting attribute grammar (AG) is shown in
Figure C 4.16.

In this simple grammar, every production has a single rule. We shall see more
complicated grammars later, in which productions can have several rules. The
rules come in two forms. Those in productions 3, 6, 8, and 9 are known as copy
rules; they specify that one attribute should be a copy of another. The other rules
invoke semantic functions (sum, quotient, additive_inverse, etc.). In this example,
the semantic functions are all familiar arithmetic operations. In general, they
can be arbitrarily complex functions specified by the language designer. Each
semantic function takes an arbitrary number of arguments (each of which must
be an attribute of a symbol in the current production—no global variables are
allowed), and each computes a single result, which must likewise be assigned into
an attribute of a symbol in the current production. When more than one symbol
of a production has the same name, subscripts are used to distinguish them. These
subscripts are solely for the benefit of the semantic functions; they are not part of
the context-free grammar itself.

In a strict definition of attribute grammars, copy rules and semantic function
calls are the only two kinds of permissible rules. In our examples we use a ▷ symbol
to introduce each code fragment corresponding to a single rule. In practice, it is
common to allow rules to consist of small fragments of code in some well-defined
notation (e.g., the language in which a compiler is being written), so that simple

PREPRINT

4.6.1 Evaluating Attributes C 51

semantic functions can be written out ‘‘in-line.’’ In this relaxed notation, the rule
for the first production in Figure C 4.16 might be simply E1.val := E2.val + T.val. AsEXAMPLE 4.26

Top-down AG to count the
elements of a list

another example, suppose we wanted to count the elements of a comma-separated
list:

L −→ id LT ▷ L.c := 1 + LT.c
LT −→ , L ▷ LT.c := L.c
LT −→ ε ▷ LT.c := 0

Here the rule on the first production sets the c (count) attribute of the left-hand side
to one more than the count of the tail of the right-hand side. Like explicit semantic
functions, in-line rules are not allowed to refer to any variables or attributes outside
the current production. We will relax this restriction when we relate attribute
grammars to action routines in Subsection C 4.6.2.

Neither the notation for semantic functions (whether in-line or explicit) nor the
types of the attributes themselves is intrinsic to the notion of an attribute grammar.
The purpose of the grammar is simply to associate meaning with the nodes of a
parse tree or syntax tree. Toward that end, we can use any notation and types whose
meanings are already well defined. In Examples C 4.25 and C 4.26, we associated
numeric values with the symbols in a CFG—and thus with parse tree nodes—using
semantic functions drawn from ordinary arithmetic. In a compiler or interpreter
for a full programming language, the attributes of tree nodes might include

for an identifier, a reference to information about it in the symbol table
for an expression, its type
for a statement or expression, a reference to corresponding code in the compiler’s
intermediate form
for almost any construct, an indication of the file name, line, and column where
the corresponding source code begins
for any internal node, a list of semantic errors found in the subtree below

For purposes other than translation—for example, in a theorem prover or
machine-independent language definition—attributes might be drawn from the
disciplines of denotational, operational, or axiomatic semantics. Operational se-
mantics were discussed in Section 4.3; interested readers can find references to
other alternatives in the Bibliographic Notes at the end of the chapter.

4.6.1 Evaluating Attributes

The process of evaluating attributes is called annotation or decoration of the parse
tree (it also applies to syntax trees, as we shall see in Section C 4.6.3). Figure C 4.17EXAMPLE 4.27

Decoration of a parse tree shows how to decorate the parse tree for the expression (1 + 3) * 2, using the AG
of Figure C 4.16. Once decoration is complete, the value of the overall expression
can be found in the val attribute of the root of the tree.

PREPRINT

C 52 Chapter 4 Program Semantics

8E

T

* F

const

8

4T

F

E)(

T

F

const

E

T

F

const

+

4

4

1

1

1

1

3

3

3

2

2

Figure 4.17 Decoration of a parse tree for (1 + 3) * 2, using the attribute grammar of
Figure C 4.16. The val attributes of symbols are shown in boxes. Curving arrows show the
attribute flow, which is strictly upward in this case. Each box holds the output of a single semantic
rule; the arrow(s) entering the box indicate the input(s) to the rule. At the second level of the
tree, for example, the two arrows pointing into the box with the 8 represent application of the
rule T1.val := product(T2.val, F.val).

Synthesized Attributes

The attribute grammar of Figure C 4.16 is very simple. Each symbol has at most
one attribute (the punctuation marks have none). Moreover, they are all so-called
synthesized attributes: their values are calculated (synthesized) only in productions
in which their symbol appears on the left-hand side. For annotated parse trees like
the one in Figure C 4.17, this means that the attribute flow—the pattern in which
information moves from node to node—is entirely bottom-up.

An attribute grammar in which all attributes are synthesized is said to be S-
attributed. The arguments to semantic functions in an S-attributed grammar are
always attributes of symbols on the right-hand side of the current production,
and the return value is always placed into an attribute of the left-hand side of the
production. Tokens (terminals) often have intrinsic properties (e.g., the character-
string representation of an identifier or the value of a numeric constant); in a
compiler these are synthesized attributes initialized by the scanner.

PREPRINT

4.6.1 Evaluating Attributes C 53

Inherited Attributes

When we considered the construction of syntax trees during top-down parsing
(Example 4.6 and Figure 4.6), we found that we needed to place action routines
within the right-hand sides of productions, so that the left operands of an arithmetic
operator could be passed into the subtree that would contain the right operand.
In a similar vein—and for similar reasons—we will encounter situations in which
attribute values will need to be calculated when their symbol is on the right-hand
side of the current production. Such attributes are said to be inherited. They allow
contextual information to flow into a symbol from above or from the side, so
that the rules of that production can be enforced in different ways (or generate
different values) depending on surrounding context. Symbol table information
is commonly passed from symbol to symbol by means of inherited attributes.
Inherited attributes of the root of the parse tree can also be used to represent
the external environment (characteristics of the target machine, command-line
arguments to the compiler, etc.).

As a simple example of inherited attributes, consider the following fragment ofEXAMPLE 4.28
Top-down CFG and parse
tree for subtraction

an LL(1) expression grammar (here covering only subtraction):

expr −→ const expr_tail
expr_tail −→ - const expr_tail | ε

For the expression 9 - 4 - 3, we obtain the following parse tree:

ε

expr

9

4

expr_tail

expr_tail-

3 expr_tail-

If we want to create an attribute grammar that accumulates the value of the
overall expression into the root of the tree, we have a problem: because subtraction
is left associative, we cannot summarize the right subtree of the root with a single
numeric value. If we want to decorate the tree bottom-up, with an S-attributed
grammar, we must be prepared to describe an arbitrary number of right operands
in the attributes of the top-most expr_tail node (see Exercise C 4.23). This is indeed
possible, but it defeats the purpose of the formalism: in effect, it requires us to
embed the entire tree into the attributes of a single node, and do all the real work
inside a single semantic function at the root.

If, however, we are allowed to pass attribute values not only bottom-up butEXAMPLE 4.29
Decoration with
left-to-right attribute flow

also left-to-right in the tree, then we can pass the 9 into the top-most expr_tail
node, where it can be combined (in proper left-associative fashion) with the 4. The

PREPRINT

C 54 Chapter 4 Program Semantics

resulting 5 can then be passed into the middle expr_tail node, combined with the 3
to make 2, and then passed upward to the root:

ε

9 2

5 2

2

9

expr

const

4const

expr_tail

expr_tail-

2 23const expr_tail-

To effect this style of decoration, we need the following attribute rules:EXAMPLE 4.30
Top-down AG for
subtraction expr −→ const expr_tail

▷ expr_tail.st := const.val
▷ expr.val := expr_tail.val

expr_tail1 −→ - const expr_tail2
▷ expr_tail2.st := expr_tail1.st − const.val
▷ expr_tail1.val := expr_tail2.val

expr_tail −→ ε
▷ expr_tail.val := expr_tail.st

In each of the first two productions, the first rule serves to copy the left context
(value of the expression so far) into a ‘‘subtotal’’ (st) attribute; the second rule
copies the final value from the right-most leaf back up to the root. In the expr_tail
nodes of the picture in Example C 4.29, the left box holds the st attribute; the right
holds val.

We can flesh out the grammar fragment of Example C 4.28 to produce a moreEXAMPLE 4.31
Top-down AG for constant
expressions

complete expression grammar, as shown (with shorter symbol names) in Fig-
ure C 4.18. The underlying CFG for this grammar accepts the same language as the
one in Figure C 4.16, but where that one was SLR(1), this one is LL(1). Attribute
flow for a parse of (1 + 3) * 2, using the LL(1) grammar, appears in Figure C 4.19.
As in the grammar fragment of Example C 4.30, the value of the left operand of each
operator is carried into the TT and FT productions by the st (subtotal) attribute.
The relative complexity of the attribute flow arises from the fact that operators are
left associative, but the grammar cannot be left recursive: the left and right operands
of a given operator are thus found in separate productions. Grammars to perform
semantic analysis for practical languages generally require some non-S-attributed
flow.

PREPRINT

4.6.1 Evaluating Attributes C 55

1. E −→ T TT
▷ TT.st := T.val ▷ E.val := TT.val

2. TT1 −→ + T TT2
▷ TT2.st := TT1.st + T.val ▷ TT1.val := TT2.val

3. TT1 −→ - T TT2
▷ TT2.st := TT1.st − T.val ▷ TT1.val := TT2.val

4. TT −→ ε
▷ TT.val := TT.st

5. T −→ F FT
▷ FT.st := F.val ▷ T.val := FT.val

6. FT1 −→ * F FT2
▷ FT2.st := FT1.st × F.val ▷ FT1.val := FT2.val

7. FT1 −→ / F FT2
▷ FT2.st := FT1.st ÷ F.val ▷ FT1.val := FT2.val

8. FT −→ ε
▷ FT.val := FT.st

9. F1 −→ - F2
▷ F1.val := − F2.val

10. F −→ (E)
▷ F.val := E.val

11. F −→ const
▷ F.val := const.val

Figure 4.18 An attribute grammar for constant expressions based on an LL(1) CFG. In this
grammar several productions have two semantic rules.

Attribute Flow

Just as a context-free grammar does not specify how it should be parsed, an attribute
grammar does not specify the order in which attribute rules should be invoked. Put
another way, both notations are declarative: they define a set of valid parse trees, but
they don’t say how to build or decorate them. Among other things, this means that
the order in which attribute rules are listed for a given production is immaterial;
attribute flow may require them to execute in any order. If, in Figure C 4.18, we
were to reverse the order in which the rules appear in productions 1, 2, 3, 5, 6,
and/or 7 (listing the rule for symbol.val first), it would be a purely cosmetic change;
the grammar would not be altered.

We say an attribute grammar is well defined if its rules determine a unique set
of values for the attributes of every possible parse tree. An attribute grammar is
noncircular if it never leads to a parse tree in which there are cycles in the attribute
flow graph—that is, if no attribute, in any parse tree, ever depends (transitively)
on itself. (A grammar can be circular and still be well defined if attributes are
guaranteed to converge to a unique value.) As a general rule, practical attribute
grammars tend to be noncircular.

PREPRINT

C 56 Chapter 4 Program Semantics

ε

ε

ε ε

ε

8

8 8

4 8

8 8

1 4

1 1

3 3

4 4

8

2

2

3

3

3

4

4

1

1

1

F

E

T

F

()

FT

F

const

const FT

T

TT

T

*

TT

E

FT

F

const

FT

TT+

Figure 4.19 Decoration of a top-down parse tree for (1 + 3) * 2, using the AG of Figure C 4.18. Curving arrows again
indicate attribute flow; the arrow(s) entering a given box represent the application of a single semantic rule. Flow in this case is
no longer strictly bottom-up, but it is still left-to-right. At FT and TT nodes, the left box holds the st attribute; the right holds
val.

An algorithm that decorates parse trees by invoking the rules of an attribute
grammar in an order consistent with the tree’s attribute flow is called a translation
scheme. Perhaps the simplest scheme is one that makes repeated passes over a
tree, invoking any semantic function whose arguments have all been defined, and
stopping when it completes a pass in which no values change. Such a scheme is
said to be oblivious, in the sense that it exploits no special knowledge of either the
parse tree or the grammar. It will halt only if the grammar is well defined. Better
performance, at least for noncircular grammars, may be achieved by a dynamic
scheme that tailors the evaluation order to the structure of a given parse tree—for
example, by constructing a topological sort of the attribute flow graph and then
invoking rules in an order consistent with the sort.

The fastest translation schemes, however, tend to be static—based on an analysis
of the structure of the attribute grammar itself, and then applied mechanically
to any tree arising from the grammar. Like LL and LR parsers, linear-time static
translation schemes can be devised only for certain restricted classes of grammars.
S-attributed grammars, such as the one in Figure C 4.16, form the simplest such
class. Because attribute flow in an S-attributed grammar is strictly bottom-up,

PREPRINT

4.6.1 Evaluating Attributes C 57

attributes can be evaluated by visiting the nodes of the parse tree in exactly the
same order that those nodes are generated by an LR-family parser. In fact, the
attributes can be evaluated on the fly during a bottom-up parse, thereby interleaving
parsing and semantic analysis (attribute evaluation).

The attribute grammar of Figure C 4.18 is a good bit messier than that of Fig-
ure C 4.16, but it is still L-attributed: its attributes can be evaluated by visiting the
nodes of the parse tree in a single left-to-right, depth-first traversal (the same order
in which they are visited during a top-down parse—see Figure C 4.19). If we say
that an attribute A.s depends on an attribute B.t if B.t is ever passed to a semantic
function that returns a value for A.s, then we can define L-attributed grammars
more formally with the following two rules: (1) each synthesized attribute of a
left-hand-side symbol depends only on that symbol’s own inherited attributes or
on attributes (synthesized or inherited) of the production’s right-hand-side sym-
bols, and (2) each inherited attribute of a right-hand-side symbol depends only on
inherited attributes of the left-hand-side symbol or on attributes (synthesized or
inherited) of symbols to its left in the right-hand side.

Because L-attributed grammars permit rules that initialize attributes of the
left-hand side of a production using attributes of symbols on the right-hand side,
every S-attributed grammar is also an L-attributed grammar. The reverse is not the
case: S-attributed grammars do not permit the initialization of attributes on the
right-hand side, so there are L-attributed grammars that are not S-attributed.

S-attributed attribute grammars are the most general class of attribute grammars
for which evaluation can be implemented on the fly during an LR parse. L-attributed
grammars are the most general class for which evaluation can be implemented
on the fly during an LL parse. If we interleave semantic analysis (and possibly
intermediate code generation) with parsing, then a bottom-up parser must in
general be paired with an S-attributed translation scheme; a top-down parser must
be paired with an L-attributed translation scheme. (Depending on the structure
of the grammar, it is often possible for a bottom-up parser to accommodate some
non-S-attributed attribute flow; we consider this possibility in Section C 4.6.4.)
If we choose to separate parsing and semantic analysis into separate passes, then
the code that builds the parse tree or syntax tree must still use an S-attributed or
L-attributed translation scheme (as appropriate), but the semantic analyzer can
use a more powerful scheme if desired. There are certain tasks that are easiest to
accomplish with a non-L-attributed scheme. Examples include the generation of
code for ‘‘short-circuit’’ Boolean expressions (to be discussed in Sections 6.1.5
and 6.4.1) and the type checking of mutually recursive functions (Section 3.3.3).

Building a Syntax Tree

If we choose not to interleave parsing and semantic analysis, we still need to
add attribute rules to the context-free grammar, but they serve only to create
the syntax tree—not to enforce semantic rules or generate code. Figures C 4.20EXAMPLE 4.32

Bottom-up and top-down
AGs to build a syntax tree

and C 4.21 contain bottom-up and top-down attribute grammars, respectively, to
build a syntax tree for constant expressions. The attributes in these grammars hold
neither numeric values nor target code fragments; instead they point to nodes

PREPRINT

C 58 Chapter 4 Program Semantics

E1 −→ E2 + T
▷ E1.ptr := bin_op(E2.ptr, ‘‘+’’, T.ptr)

E1 −→ E2 - T
▷ E1.ptr := bin_op(E2.ptr, ‘‘−’’, T.ptr)

E −→ T
▷ E.ptr := T.ptr

T1 −→ T2 * F
▷ T1.ptr := bin_op(T2.ptr, ‘‘×’’, F.ptr)

T1 −→ T2 / F
▷ T1.ptr := bin_op(T2.ptr, ‘‘÷’’, F.ptr)

T −→ F
▷ T.ptr := F.ptr

F1 −→ - F2
▷ F1.ptr := un_op(‘‘+/−’’, F2.ptr)

F −→ (E)
▷ F.ptr := E.ptr

F −→ const
▷ F.ptr := int_lit(const.val)

Figure 4.20 Bottom-up (S-attributed) attribute grammar to construct a syntax tree. The
symbol +/− is used (as it is on calculators) to indicate change of sign.

of the syntax tree. Function int_lit returns a pointer to a newly allocated syntax
tree node containing the value of a constant. Functions un_op and bin_op return
pointers to newly allocated syntax tree nodes containing a unary or binary operator,
respectively, and pointers to the supplied operand(s). Bottom-up and top-down
construction of syntax trees for (1 + 3) * 2 is analogous to that of Figures 4.5
and 4.8, respectively, in the main text.

4.6.2 Action Routines and Attribute Grammars

The astute reader will have noticed the similarity between Figures 4.4 and C 4.20,
and between Figures 4.6 and C 4.21. Indeed, the action routines we introduced
in Section 4.2 are simply an implementation, provided by most parser-generator
tools, of attribute grammars with a manually specified static translation scheme.
Each action routine is a semantic function that the programmer (grammar writer)
instructs the compiler to execute at a particular point in the parse.

One difference between the action routines of Figures 4.4 and 4.6 and the se-
mantic functions of attribute grammars is that the former just return a value, while
the former can set multiple attributes. While some tools (e.g., the University of
Minnesota’s attribute grammar-based Silver system) allow an action routine to
modify multiple attributes, many popular parser generators, including yacc/bison

PREPRINT

4.6.2 Action Routines and Attribute Grammars C 59

E −→ T TT
▷ TT.st := T.ptr
▷ E.ptr := TT.ptr

TT1 −→ + T TT2
▷ TT2.st := bin_op(TT1.st, ‘‘+’’, T.ptr)
▷ TT1.ptr := TT2.ptr

TT1 −→ - T TT2
▷ TT2.st := bin_op(TT1.st, ‘‘−’’, T.ptr)
▷ TT1.ptr := TT2.ptr

TT −→ ε
▷ TT.ptr := TT.st

T −→ F FT
▷ FT.st := F.ptr
▷ T.ptr := FT.ptr

FT1 −→ * F FT2
▷ FT2.st := bin_op(FT1.st, ‘‘×’’, F.ptr)
▷ FT1.ptr := FT2.ptr

FT1 −→ / F FT2
▷ FT2.st := bin_op(FT1.st, ‘‘÷’’, F.ptr)
▷ FT1.ptr := FT2.ptr

FT −→ ε
▷ FT.ptr := FT.st

F1 −→ - F2
▷ F1.ptr := un_op(‘‘+/−’’, F2.ptr)

F −→ (E)
▷ F.ptr := E.ptr

F −→ const
▷ F.ptr := int_lit(const.val)

Figure 4.21 Top-down (L-attributed) attribute grammar to construct a syntax tree. Here the
st attribute, like the ptr attribute (and unlike the st attribute of Figure C 4.18), is a pointer to a
syntax tree node.

and JavaCC, provide only the simpler return-value mechanism. In these tools, an
action routine that needs to modify more than one attribute can return a record
with a separate field for each.

3CHECK YOUR UNDERSTANDING

39. What is an attribute grammar?

40. What is the difference between synthesized and inherited attributes?

41. Give two examples of information that is typically passed through inherited
attributes.

PREPRINT

C 60 Chapter 4 Program Semantics

42. What is attribute flow?

43. What does it mean for an attribute grammar to be S-attributed? L-attributed?
Noncircular? What is the significance of these grammar classes?

44. What is the difference between a semantic function and an action routine?

4.6.3 Semantic Analysis with Attribute Grammars

In our discussion so far we have used attribute grammars solely to decorate parse
trees. Attribute grammars can also be used, however, to decorate syntax trees.
To define semantic analyses over syntax trees using attribute grammars, we can
simply attach semantic rules to the productions of an abstract grammar. These
rules define the attribute flow of a syntax tree in exactly the same way that semantic
rules attached to the productions of a context-free grammar are used to define the
attribute flow of a parse tree. We will use an abstract grammar in the remainder of
this section to perform static semantic checking. Additional semantic rules could
be used to generate intermediate code.

A complete abstract attribute grammar for our calculator language with typesEXAMPLE 4.33
Abstract AG for the
calculator language with
types

can be constructed using the node classes, variants, and attributes shown in Fig-
ure C 4.22. The grammar itself appears in Figure C 4.23. Once decorated, the
program node at the root of the syntax tree will contain a list, in a synthesized
attribute, of all static semantic errors in the program. (The list will be empty if the
program is free of such errors.) Each stmt or expr node has an inherited attribute
symtab that contains a list, with types, of all identifiers declared to the left in the
tree. Each stmt node also has an inherited attribute errors_in that lists all static
semantic errors found to its left in the tree, and a synthesized attribute errors_out to
propagate the final error list back to the root. Each expr node has one synthesized
attribute that indicates its type and another that contains a list of any static semantic
errors found inside. To avoid cascading messages when an error is found early in

DESIGN & IMPLEMENTATION

4.6 Attribute evaluators
Automatic evaluators based on formal attribute grammars are popular in lan-
guage research projects because they save developer time when the language
definition changes. They are popular in syntax-based editors and incremental
compilers because they save execution time: when a small change is made to a
program, the evaluator may be able to ‘‘patch up’’ tree decorations significantly
faster than it could rebuild them from scratch. For the typical compiler, however,
semantic analysis based on a formal attribute grammar is overkill: it has higher
overhead than action routines or ad-hoc traversal of a syntax tree, and doesn’t
really save the compiler writer that much work.

PREPRINT

4.6.3 Semantic Analysis with Attribute Grammars C 61

Attributes
Class of node Variants Inherited Synthesized

program — — location, errors
stmt int_decl, real_decl, symtab, errors_in location, errors_out

assign, read, write, null
expr int_lit, real_lit, symtab location, type, errors

var, bin_op, float, trunc name (var only)

Figure 4.22 Classes of nodes for the abstract attribute grammar of Figure C 4.23. All variants
of a given class have all the class’s attributes.

our pass over the syntax tree, we adopt the technique introduced in Section 4.4.2:
we associate a pseudotype called error with any symbol table entry or expression
for which we have already generated a message.

Though it takes a bit of checking to verify the fact, our attribute grammar is
noncircular and well defined. No attribute is ever assigned a value more than once.
(The helper routines at the end of Figure C 4.23 should be thought of as macros,
rather than semantic functions. For the sake of brevity we have passed them entire
tree nodes as arguments. Each macro calculates the values of two different attributes.
Under a strict formulation of attribute grammars each macro would be replaced by
two separate semantic functions, one per calculated attribute.)

Figure C 4.24 uses the grammar of Figure C 4.23 to decorate the syntax treeEXAMPLE 4.34
Decorating a tree with the
AG of the previous
Example

of Figure 4.2. The pattern of attribute flow appears considerably messier than in
previous examples in this section, but this is simply because type checking is more
complicated than calculating constants or building a syntax tree. Symbol table
information flows along the chain of stmts and down into expr trees. The int_decl
and real_decl nodes add new information; other nodes simply pass the table along.
Ideally, when an undeclared identifier is encountered, we would enter it into the
symbol table with an ‘‘error’’ designation, to suppress further messages about the
same identifier; we have not shown that code here.

Type information is synthesized at var, assign, and expr leaves by looking up an
identifier’s name in the symbol table. The information then propagates upward
within an expression tree, and is used to type-check operators and assignments (the
latter don’t appear in this example). Error messages flow along the chain of stmts
via the errors_in attributes, and then back to the root via the errors_out attributes.
Messages also flow up out of expr trees. Wherever a type check is performed, the
type attribute may be used to help create a new message to be appended to the
growing message list.

In our example grammar we accumulate error messages into a synthesized
attribute of the root of the syntax tree. In an ad hoc attribute evaluator we might be
tempted to print these messages on the fly as the errors are discovered. In practice,
however, particularly in a multipass compiler, it makes sense to buffer the messages,
so they can be interleaved with messages produced by other phases of the compiler,
and printed in program order at the end of compilation.

PREPRINT

C 62 Chapter 4 Program Semantics

program −→ stmt
▷ stmt.symtab := null
▷ program.errors := stmt.errors_out
▷ stmt.errors_in := null

stmt1 −→ int id stmt2
▷ declare_name(id.name, stmt1, stmt2, int)
▷ stmt1.errors_out := stmt2.errors_out

stmt1 −→ real id stmt2
▷ declare_name(id.name, stmt1, stmt2, real)
▷ stmt1.errors_out := stmt2.errors_out

stmt1 −→ read id stmt2
▷ stmt2.symtab := stmt1.symtab
▷ if ⟨id.name, ?⟩ ∈ stmt1.symtab

stmt2.errors_in := stmt1.errors_in
else

stmt2.errors_in := stmt1.errors_in + [id.name ‘‘undefined at’’ id.location]
▷ stmt1.errors_out := stmt2.errors_out

stmt1 −→ write expr stmt2
▷ expr.symtab := stmt1.symtab
▷ stmt2.symtab := stmt1.symtab
▷ stmt2.errors_in := stmt1.errors_in + expr.errors
▷ stmt1.errors_out := stmt2.errors_out

stmt1 −→ id := expr stmt2
▷ expr.symtab := stmt1.symtab
▷ stmt2.symtab := stmt1.symtab
▷ if ⟨id.name, A⟩ ∈ stmt1.symtab –– for some type A

if A ̸= error and expr.type ̸= error and A ̸= expr.type
stmt2.errors_in := stmt1.errors_in + [‘‘type clash at’’ :=.location]

else
stmt2.errors_in := stmt1.errors_in + expr.errors

else
stmt2.errors_in := stmt1.errors_in + [id.name ‘‘undefined at’’ id.location]

+ expr.errors
▷ stmt1.errors_out := stmt2.errors_out

null : stmt −→ ε
▷ stmt.errors_out := stmt.errors_in

Figure 4.23 Attribute grammar to decorate an abstract syntax tree for the calculator language
with types. We use square brackets to delimit error messages and pointed brackets to delimit
symbol table entries. Juxtaposition indicates concatenation within error messages; the ‘+’ and ‘−’
operators indicate insertion and removal in lists. We assume that every node has been initialized
by the scanner or by action routines in the parser to contain an indication of the location (line
and column) at which the corresponding construct appears in the source (see Exercise C 4.36).
The ‘?’ symbol is used as a ‘‘wild card’’; it matches any type. (continued)

PREPRINT

4.6.3 Semantic Analysis with Attribute Grammars C 63

expr −→ var
▷ if ⟨var.name, A⟩ ∈ expr.symtab –– for some type A

expr.errors := null
expr.type := A

else
expr.errors := [var.name ‘‘undefined at’’ var.location]
expr.type := error

expr −→ n
▷ expr.type := int

expr −→ r
▷ expr.type := real

expr1 −→ expr2 op expr3
▷ expr2.symtab := expr1.symtab
▷ expr3.symtab := expr1.symtab
▷ check_types(expr1, expr2, op, expr3)

expr1 −→ float(expr2)
▷ expr2.symtab := expr1.symtab
▷ convert_type(expr2, expr1, int, real, ‘‘float of non-int’’)

expr1 −→ trunc(expr2)
▷ expr2.symtab := expr1.symtab
▷ convert_type(expr2, expr1, real, int, ‘‘trunc of non-real’’)

Figure 4.23 (continued on next page)

One could convert our attribute grammar into executable code using an au-
tomatic attribute evaluator generator. Alternatively, one could create an ad hoc
evaluator in the form of mutually recursive subroutines (Exercise C 4.35). In the
latter case attribute flow would be explicit in the calling sequence of the routines.
We could then choose if desired to keep the symbol table in global variables, rather
than passing it from node to node through attributes. Most compilers employ the
ad hoc approach.

3CHECK YOUR UNDERSTANDING

45. What patterns of attribute flow can be captured easily with action routines?

46. Some compilers perform all semantic checks and intermediate code genera-
tion in action routines. Others use action routines to build a syntax tree and
then perform semantic checks and intermediate code generation in separate
traversals of the syntax tree. Discuss the tradeoffs between these two strategies.

47. What sort of information do action routines typically keep in global variables,
rather than in attributes?

48. How can a semantic analyzer avoid the generation of cascading error messages?

PREPRINT

C 64 Chapter 4 Program Semantics

macro declare_name(name, cur_stmt, next_stmt : syntax_tree_node; t : type)
if ⟨name, ?⟩ ∈ cur_stmt.symtab

next_stmt.errors_in := cur_stmt.errors_in + [‘‘redefinition of’’ name ‘‘at’’ cur_stmt.location]
next_stmt.symtab := cur_stmt.symtab − ⟨name, ?⟩ + ⟨name, error⟩

else
next_stmt.errors_in := cur_stmt.errors_in
next_stmt.symtab := cur_stmt.symtab + ⟨name, t⟩

macro check_types(result, operand1, op, operand2)
if operand1.type = error or operand2.type = error

result.type := error
result.errors := operand1.errors + operand2.errors

else if operand1.type ̸= operand2.type
result.type := error
result.errors := operand1.errors + operand2.errors + [‘‘type clash at’’ op.location]

else
result.type := operand1.type
result.errors := operand1.errors + operand2.errors

macro convert_type(old_expr, new_expr : syntax_tree_node; from_t, to_t : type; msg : string)
if old_expr.type = from_t or old_expr.type = error

new_expr.errors := old_expr.errors
new_expr.type := to_t

else
new_expr.errors := old_expr.errors + [msg ‘‘at’’ old_expr.location]
new_expr.type := error

Figure 4.23 (continued)

4.6.4 Space Management for Attributes

Any attribute evaluation method requires space to hold the attributes of the gram-
mar symbols. In an attribute grammar based on the abstract grammar of explicit
syntax trees, the obvious approach is to store attributes in the nodes of the tree
themselves. In a context-free grammar with action routines, the analogous ap-
proach applies only if we are building an explicit parse tree—and usually we’re not.
This means we need to find a way to keep track of the attributes of symbols we have
seen (or predicted) but not yet finished parsing. The details differ in bottom-up
and top-down parsers.

For a bottom-up parser with an S-attributed grammar, it is straightforward to
maintain an attribute stack that directly mirrors the parse stack: next to every state
number on the parse stack is an attribute record for the symbol we shifted when we
entered that state. Entries in the attribute stack are pushed and popped automati-
cally by the parser driver; space management is not an issue for the writer of action
routines. Complications arise if we try to achieve the effect of inherited attributes,
but these can be accommodated within the basic attribute-stack framework.

For a top-down parser with an L-attributed grammar, we have two principal
options. The first option is automatic, but more complex than for bottom-up

PREPRINT

4.6.4 Space Management for Attributes C 65

program

int_decl

read

read_decl

read

write

a

null

real_lit(2.0)

float

bin_op

e

ei

eo

e

s

t

n

= errors_in

= errors_out

= errors

= symtab

= type

= name

s ei eo

s ei eo

s ei eo

s ei eo

s ei eo

s ei eo

n

n

n

n

location attribute not shown

s t e

s t e s t e

s t e s t en

s t en

a

b

b

var(a)

var(b)

bin_op

+

÷

Figure 4.24 Decoration of the syntax tree of Figure 4.2, using the grammar of Figure C 4.23.
Location information, which we assume has been initialized in every node by the parser, contributes
to error messages, but does not otherwise propagate through the tree.

grammars. It still uses an attribute stack, but one that does not mirror the parse
stack, because it must store information about symbols that have already been
parsed. The second option has lower space overhead, and saves time by ‘‘short-
cutting’’ copy rules, but requires action routines to allocate and deallocate space
for attributes explicitly.

In both bottom-up and top-down parsers, it is common for some of the contex-
tual information for action routines to be kept in global variables. The symbol table
in particular is usually global. Rather than pass its full contents through attributes
from one production to the next, we pass an indication of the currently active

PREPRINT

C 66 Chapter 4 Program Semantics

1. (
2. (1
3. (F1
4. (T1
5. (E1
6. (E1 +
7. (E1 + 3
8. (E1 + F3
9. (E1 + T3

10. (E4
11. (E4)
12. F4
13. T4
14. T4 *
15. T4 * 2
16. T4 * F2
17. T8
18. E8

Figure 4.25 Parse/attribute stack trace for (1 + 3) * 2, using the grammar of Figure C 4.16.
Subscripts represent val attributes; they are not meant to distinguish among instances of a symbol.

scope. Lookups in the global table then use this scope information to obtain the
right referencing environment.

In this subsection, we consider attribute space management in more detail.
Using bottom-up and top-down grammars for arithmetic expressions, we illustrate
automatic management for both bottom-up and top-down parsers, as well as the
ad hoc option for top-down parsers.

Bottom-Up Evaluation

Figure C 4.25 shows a trace of the parse and attribute stack for (1 + 3) * 2, usingEXAMPLE 4.35
Stack trace for bottom-up
parse, with action routines

the attribute grammar of Figure C 4.16. For the sake of clarity, we show a single,
combined stack for the parser and attribute evaluator, and we omit the CFSM state
numbers.

It is easy to evaluate the attributes of symbols in this grammar, because the
grammar is S-attributed. In an automatically generated parser, such as those pro-
duced by yacc/bison, the attribute rules associated with the productions of the
grammar in Figure C 4.16 would constitute action routines, to be executed when
their productions are recognized. For yacc/bison, they would be written in C,
with ‘‘pseudostructs’’ to name the attribute records of the symbols in each produc-
tion. Attributes of the left-hand side symbol would be accessed as fields of the
pseudostruct $$. Attributes of right-hand side symbols would be accessed as fields
of the pseudostructs $1, $2, etc. To get from line 9 to line 10, for example, in the
trace of Figure C 4.25, we would use an action routine version of the first rule of
the grammar in Figure C 4.16: $$.val = $1.val + $3.val.

PREPRINT

4.6.4 Space Management for Attributes C 67

When a bottom-up action routine is executed, the attribute records for symbols
on the right-hand side of the production can be found in the top few entries of
the attribute stack. The attribute record for the symbol on the left-hand side of
the production (i.e., $$) will not yet lie in the stack: it is the task of the action
routine to initialize this record. After the action routine completes, the parser pops
the right-hand side records off the attribute stack and replaces them with $$. In
yacc/bison, if no action routine is specified for a given production, the default
action is to ‘‘copy’’ $1 into $$. Since $$ will occupy the same location, once pushed,
that $1 occupied before being popped, this ‘‘copy’’ can be effected without doing
any work.

Inherited Attributes. Unfortunately, it is not always easy to write an S-attributedEXAMPLE 4.36
Finding inherited attributes
in ‘‘buried’’ records

grammar. A simple example in which inherited attributes are desirable arises in C
or Fortran-style variable declarations, in which a type name precedes the list of
variable names:

dec −→ type id_list
id_list −→ id
id_list −→ id_list , id

Let us assume that type has a synthesized attribute tp that contains a pointer to
the symbol table entry for the type in question. Ideally, we should like to pass this
attribute into id_list as an inherited attribute, so that we may enter each newly
declared identifier into the symbol table, complete with type indication, as it is
encountered. When we recognize the production id_list −→ id , we know that the
top record on the attribute stack will be the one for id. But we know more than
this: the next record down must be the one for type. To find the type of the new
entry to be placed in the symbol table, we may safely inspect this ‘‘buried’’ record.
Though it does not belong to a symbol of the current production, we can count on
its presence because there is no other way to reach the id_list −→ id production.

Now what about the id in id_list −→ id_list , id? This time the top three
records on the attribute stack will be for the right-hand symbols id, ,, and id_list.
Immediately below them, however, we can still count on finding the entry for
type, waiting for the id_list to be completed so that dec can be recognized. Using
nonpositive indices for pseudostructs below the current production, we can write
action routines as follows:

dec −→ type id_list
id_list −→ id { declare_id ($1.name, $0.tp) }
id_list −→ id_list , id { declare_id ($3.name, $0.tp) }

Records deeper in the attribute stack could be accessed as $–1, $–2, and so on.
While id_list appears in two places in this grammar fragment, both occurrences
are guaranteed to lie above a type record in the attribute stack, the first because it
lies next to type in a right-hand side, and the second by induction, because it is the
beginning of the yield of the first.

PREPRINT

C 68 Chapter 4 Program Semantics

Unfortunately, there are grammars in which a symbol that needs inherited
attributes occurs in productions in which the underlying symbols are not the same.
We can still handle inherited attributes in such cases, but only by modifying the
underlying context-free grammar. An example can be found in languages like Perl,EXAMPLE 4.37

Grammar fragment
requiring context

in which the meaning of an expression (and of the identifiers and operators within
it) depends on the context in which that expression appears. Some Perl contexts
expect arrays. Others expect numbers, strings, or Booleans. To correctly analyze an
expression, we must pass the expectations of the context into the expression subtree
as inherited attributes. Here is a grammar fragment that captures the problem:

stmt −→ id := expr
−→ . . .
−→ if expr then stmt

expr −→ . . .

Within the production for expr, the parser doesn’t know whether the surround-
ing context is an assignment or the condition of an if statement. If it is a condition,
then the expected type of the expression is Boolean. If it is an assignment, then
the expected type is that of the identifier on the assignment’s left-hand side. This
identifier can be found two records below the current production in the attribute
stack.

Semantic Hooks. To allow these cases to be treated uniformly, we can addEXAMPLE 4.38
Semantic hooks for context semantic hook, or ‘‘marker’’ symbols to the grammar. Semantic hooks generate ε,

and thus do not alter the language defined by the grammar; their only purpose is
to hold inherited attributes:

stmt −→ id := A expr
−→ . . .
−→ if B expr then stmt

A −→ ε { $$.tp := $–1.tp }
B −→ ε { $$.tp := Boolean }
expr −→ . . . { if $0.tp = Boolean then . . .}

Since the epsilon production for a semantic hook can provide an action routine,
it is tempting to think of semantic hooks as a general technique to insert action
routines in the middle of bottom-up productions. Unfortunately this is not the
case: semantic hooks can be used only in places where the parser can be sure that
it is in a given production. Placing a semantic hook anywhere else will break the
‘‘LR-ness’’ of the grammar, causing the parser generator to reject the modified
grammar. Consider the following example:EXAMPLE 4.39

Semantic hooks that break
an LR CFG 1. stmt −→ l_val := expr

2. −→ id args
3. l_val −→ id quals

PREPRINT

4.6.4 Space Management for Attributes C 69

4. quals −→ quals . id
5. −→ quals (expr_list)
6. −→ ε
7. args −→ (expr_list)
8. −→ ε

An l-value in this grammar is a ‘‘qualified’’ identifier: an identifier followed by
optional array subscript and record field qualifiers.2 We have assumed that the
language follows the notation of Fortran and Ada, in which parentheses delimit
both procedure call arguments and array subscripts. In the case of procedure calls,
it would be natural to want an action routine to pass the symbol-table index of the
subroutine into the argument list as an inherited attribute, so that it can be used to
check the number and types of arguments:

stmt −→ id A args
A −→ ε { $$.proc_index := lookup ($0.name) }

If we try this, however, we will run into trouble, because the procedure call

foo(1, 2, 3);

and the array element assignment

foo(1, 2, 3) := 4;

begin with the same sequence of tokens. Until it sees the token after the closing
parenthesis, the parser cannot tell whether it is working on production 1 or pro-
duction 2. The presence of A in production 2 will therefore lead to a shift-reduce
conflict; after seeing an id, the parser will not know whether to recognize A or
shift (.

Left Corners. In general, the right-hand side of a production in a context-free
grammar is said to consist of the left corner and the trailing part. In the left corner we
cannot be sure which production we are parsing; in the trailing part the production
is uniquely determined. In an LL(1) grammar, the left corner is always empty. In
an LR(1) grammar, it can consist of up to the entire right-hand side. Semantic
hooks can safely be inserted in the trailing part of a production, but not in the left
corner. Yacc/bison recognizes this fact explicitly by allowing action routines toEXAMPLE 4.40

Action routines in the
trailing part

be embedded in right-hand sides. It automatically converts the production

2 In general, an l-value in a programming language is anything to which a value can be assigned (i.e.,
anything that can appear on the left-hand side of an assignment). From a low-level point of view,
this is basically an address. An r-value is anything that can appear on the right-hand side of an
assignment. From a low-level point of view, this is a value that can be stored at an address. We will
discuss l-values and r-values further in Section 6.1.2.

PREPRINT

C 70 Chapter 4 Program Semantics

S −→ α { your code here } β

to

S −→ α A β
A −→ ε { your code here }

for some new, distinct symbol A. If the action routine is not in the trailing part,
the resulting grammar will not be LALR(1), and yacc/bison will produce an error
message.

In our procedure call and array subscript example, we cannot place a semanticEXAMPLE 4.41
Left factoring in lieu of
semantic hooks

hook before the args of production 2 because this location is in the left corner. If we
wish to look up a procedure name in the symbol table before we parse the arguments,
we will need to combine the productions for statements that can begin with an
identifier, in a manner reminiscent of the left factoring discussed in Section 2.3.2:

stmt −→ id A quals assign_opt
A −→ ε { $$.id_index := lookup ($0.name) }
quals −→ quals . id

−→ quals (expr_list)
−→ ε

assign_opt −→ := expr
−→ ε

This change eliminates the shift-reduce conflict, but at the expense of combining
the entire grammar subtrees for procedure call arguments and array subscripts. To
use the modified grammar we shall have to write action routines for quals that work
for both kinds of constructs, and this can be a major nuisance. Users of LR-family
parser generators often find that there is a tension between the desire for grammar
clarity and parsability on the one hand and the need for semantic hooks to set
inherited attributes on the other.

Top-Down Evaluation

Top-down parsers, as discussed in Chapter 2, come in two principal varieties: recur-
sive descent and table driven. Attribute management in recursive descent parsers
is almost trivial: inherited attributes of symbol foo take the form of parameters
passed into the parsing routine named foo; synthesized attributes are the return
parameters. These synthesized attributes can then be passed as inherited attributes
to symbols later in the current production, or returned as synthesized attributes of
the current left-hand side.

Attribute space management for automatically generated top-down parsers is
somewhat more complex. Because they allow action routines at arbitrary locations
in a right-hand side, top-down parsers avoid the need to modify the grammar in
order to insert semantic hooks. (Of course, because they must have empty left
corners, top-down grammars can be harder to write in the first place.) Because the
parse stack describes the future, instead of the past, we cannot employ an attribute

PREPRINT

4.6.4 Space Management for Attributes C 71

E −→ T { TT.st := T.val }1 TT { E.val := TT.val }2

TT1 −→ + T { TT2.st := TT1.st + T.val }3 TT2 { TT1.val := TT2.val }4

TT1 −→ - T { TT2.st := TT1.st − T.val }5 TT2 { TT1.val := TT2.val }6

TT −→ ε { TT.val := TT.st }7

T −→ F { FT.st := F.val }8 FT { T.val := FT.val }9

FT1 −→ * F { FT2.st := FT1.st × F.val }10 FT2 { FT1.val := FT2.val }11

FT1 −→ / F { FT2.st := FT1.st ÷ F.val }12 FT2 { FT1.val := FT2.val }13

FT −→ ε { FT.val := FT.st }14

F1 −→ - F2 { F1.val := − F2.val }15

F −→ (E) { F.val := E.val }16

F −→ const { F.val := C.val }17

Figure 4.26 LL(1) grammar for constant expressions, with action routines. The boldface
superscripts are for reference in Figure C 4.27.

stack that simply mirrors the parse stack. Our two principal options are to equip
the parser with a (more complicated) algorithm for automatic space management,
or to require action routines to manage space explicitly.

Automatic Management. Automatic management of attribute space for top-
down parsing is more complicated than it is for bottom-up parsing. It is also more
space intensive. We can still use an attribute stack, but it has to contain all of the
symbols in all of the productions between the root of the (hypothetical) parse tree
and the current point in the parse. All of the right-hand side symbols of a given
production are adjacent in the stack; the left-hand side is buried in the right-hand
side of a deeper (closer to the root) production.

Figure C 4.26 contains an LL(1) grammar for constant expressions, with actionEXAMPLE 4.42
Operation of an LL
attribute stack

routines. Figure C 4.27 uses this grammar to trace the operation of a top-down
attribute stack on the sample input (1 + 3) * 2. The left-hand column shows the
parse stack. The right-hand column shows the attribute stack. Three global pointers
index into the attribute stack. One (shown as an ‘‘arrow-boxed’’ L in the trace)
identifies the record in the attribute stack that holds the attributes of the left-hand
side symbol of the current production. The second (shown as an arrow-boxed R in
the trace) identifies the first symbol on the right-hand side of the production. L
and R allow the action routines to find the attributes of the symbols of the current
production. The third pointer (shown as an arrow-boxed N in the trace) identifies
the first symbol within the right-hand side that has not yet been completely parsed.
It allows the parser to update L correctly when a production is predicted.

At any given time, the attribute stack contains all symbols of all productions on
the path between the root of the parse tree and the symbol currently at the top of
the parse stack. Figure C 4.28 identifies these symbols graphically at the point in
Figure C 4.27 immediately above the eight elided lines. Symbols to the left in the
parse tree have already been reclaimed; those to the right have yet to be allocated.

PREPRINT

C 72 Chapter 4 Program Semantics

E $ E?

T 1TT 2 : $ E? T? TT?,?

F 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,?

(E) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?)
E) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?)
T 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,?

F 8 FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F? FT?,?

C 17 : 8 FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F? FT?,? C1
17 : 8 FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F? FT?,? C1
: 8 FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F1 FT?,? C1
8 FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F1 FT?,?

FT 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F1 FT1,?
14 : 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F1 FT1,?
: 9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F1 FT1,1
9 : 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T? TT?,? F1 FT1,1
: 1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT?,? F1 FT1,1
1TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT?,?

TT 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,?

+T 3TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T? TT?,?

T 3TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T? TT?,?

F 8 FT 9 : 3TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T? TT?,? F? FT?,?

C 17 : 8 FT 9 : 3TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T? TT?,? F? FT?,? C3

⟨ eight lines omitted ⟩
3TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T3 TT?,?

TT 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T3 TT4,?
7 : 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T3 TT4,?
: 4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T3 TT4,4
4 : 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,? + T3 TT4,4
: 2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,4 + T3 TT4,4
2 :) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E?) T1 TT1,4
:) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E4) T1 TT1,4

) 16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E4)
16 : 8 FT 9 : 1TT 2 : $ E? T? TT?,? F? FT?,? (E4)
: 8 FT 9 : 1TT 2 : $ E? T? TT?,? F4 FT?,? (E4)
8 FT 9 : 1TT 2 : $ E? T? TT?,? F4 FT?,?

FT 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,?

* F 10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F? FT?,?

F 10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F? FT?,?

C 17 : 10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F? FT?,? C2
17 : 10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F? FT?,? C2
: 10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F2 FT?,? C2
10 FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F2 FT?,?

FT 11 : 9 : 1TT 2 : $ E? T? TT?,? F4 FT4,? * F2 FT8,?

⟨ six lines omitted ⟩
1TT 2 : $ E? T8 TT?,?

TT 2 : $ E? T8 TT8,?
7 : 2 : $ E? T8 TT8,?
: 2 : $ E? T8 TT8,8
2 : $ E? T8 TT8,8
: $ E8 T8 TT8,8

$ E8

Figure 4.27 Trace of the parse stack (left) and attribute stack (right) for (1 + 3) * 2, using the grammar (and action
routine numbers) of Figure C 4.26. Subscripts in the attribute stack indicate the values of attributes. For symbols with two
attributes, st comes first.

PREPRINT

4.6.4 Space Management for Attributes C 73

E

T

T

F

() F

FT

FT

TT

TT

T TT+

E *

const (2)

const (3)

F

Fconst (1)

FT

FTε

ε

ε

ε

ε

Figure 4.28 Productions with symbols currently in the attribute stack during a parse of (1 +
3) * 2 (using the grammar of Figure C 4.26), at the point where we are about to parse the 3.
In Figure C 4.27 this point corresponds to the line immediately above the eight elided lines.

At start-up, the attribute stack contains a record for the start symbol, pointed
at by N. When we push the right-hand side of a predicted production onto the
parse stack, we add an ‘‘end-of-production’’ marker, represented by a colon in the
trace. At the same time, we push records for the right-hand-side symbols onto
the attribute stack. (These are added to the attribute stack; they do not replace the
left-hand side.) Prior to pushing these entries, we save the current L and R pointers
in another stack (not shown). We then set L to the old N, and make R and N point
to the newly pushed right-hand side.

When we see an action symbol at the top of the parse stack (shown in the trace
as a small bold number), we pop it and execute the corresponding action routine.
When we match a terminal at the top of the parse stack, we pop it and move
N forward one record in the attribute stack. When we see an end-of-production
marker at the top of the parse stack, we pop it, set N to the attribute record following
the one currently pointed at by L, pop everything from R forward off of the attribute
stack, and restore the most recently saved values of L and R.

PREPRINT

C 74 Chapter 4 Program Semantics

E −→ T TT
TT −→ + T { bin_op (‘‘+’’) } TT
TT −→ - T { bin_op (‘‘−’’) } TT
TT −→ ε
T −→ F FT
FT −→ * F { bin_op (‘‘×’’) } FT
FT −→ / F { bin_op (‘‘÷’’) } FT
FT −→ ε
F −→ - F { un_op (‘‘+/−’’) }
F −→ (E)
F −→ const { push_leaf (cur_tok.val) }

Figure 4.29 Ad hoc management of attribute space in an LL(1) grammar to build a syntax
tree.

It should be emphasized that while the trace is long and tedious, its complexity is
completely hidden from the writer of action routines. Once the space management
routines are integrated with the driver for a top-down parser generator, all the
compiler writer sees is the grammar of Figure C 4.26. When the compiler writer
refers to attributes of the symbol on the left-hand side of a production, the parser
generator will access entry L in the attribute stack; when the compiler writer refers
to attributes of the kth symbol on the right-hand side, the parser generator will
access entry R−k−1. In comparing Figures C 4.25 and C 4.27, one should also
note that reduction and execution of a production’s action routine are shown as a
single step in the LR trace; they are shown separately in the LL trace, making that
trace appear more complex than it really is.

Ad Hoc Management. One drawback of automatic space management for top-
down grammars is the frequency with which the compiler writer must specify copy
routines. Of the 17 action routines in Figure C 4.26, 12 simply move information
from one place to another. The time required to execute these routines can be
minimized by copying pointers, rather than large records, but compiler writers
may still consider the copies a nuisance.

An alternative is to manage space explicitly within the action routines, pushingEXAMPLE 4.43
Ad hoc management of a
semantic stack

and popping an ad hoc semantic stack only when information is generated or
consumed. Using this technique, we can replace the action routines of Figure C 4.26
with the simpler version shown in Figure C 4.29. Variable cur_tok is assumed to
contain the synthesized attributes of the most recently matched token. The semantic
stack contains pointers to syntax tree nodes. The push_leaf routine creates a node
for a specified constant and pushes a pointer to it onto the semantic stack. The
un_op routine pops the top pointer off the stack, makes it the child of a newly
created node for the specified unary operator, and pushes a pointer to that node
back on the stack. The bin_op routine pops the top two pointers off the semantic
stack and pushes a pointer to a newly created node for the specified binary operator.

PREPRINT

4.6.4 Space Management for Attributes C 75

When the parse of E is completed, a pointer to a syntax tree describing its yield
will be found in the top-most record on the semantic stack.

The advantage of ad hoc space management is clearly the smaller number of rules
and the elimination of the inherited attributes used to represent left context. The
disadvantage is that the compiler writer must be aware of what is in the semantic
stack at all times, and must remember to push and pop it when appropriate.

One further advantage of an ad hoc semantic stack is that it allows action routines
to push or pop an arbitrary number of records. With automatic space management,
the number of records that can be seen by any one routine is limited by the number
of symbols in the current production. The difference is particularly important in
the case of productions that generate lists. In Example C 4.36 we saw an SLR(1)
grammar for declarations in the style of C and Fortran, in which the type name
precedes the list of identifiers. Here is an LL(1) grammar fragment for a languageEXAMPLE 4.44

Processing lists with an
attribute stack

in the style of Pascal and Ada, in which the variables precede the type:

dec −→ id_list : type
id_list −→ id id_list_tail
id_list_tail −→ , id_list

−→ ε

Without resorting to non-L-attributed flow (see Exercise C 4.41), we cannot
pass the declared type into id_list as an inherited attribute. Instead, we must save
up the list of identifiers and enter them into the symbol table en masse when the
type is finally encountered. With automatic management of space for attributes,
the action routines would look something like this:

dec −→ id_list : type { declare_vars(id_list.chain, type.tp) }
id_list −→ id id_list_tail { id_list.chain := append(id.name, id_list_tail.chain) }
id_list_tail −→ , id_list { id_list_tail.chain := id_list.chain }

−→ ε { id_list_tail.chain := null }

With ad hoc management of space, we can get by without the linked list:EXAMPLE 4.45
Processing lists with a
semantic stack dec −→ { push(marker) }

id_list : type
{ pop(tp)

pop(name)
while name ̸= marker

declare_var(name, tp)
pop(name) }

id_list −→ id { push(cur_tok.name) } id_list_tail
id_list_tail −→ , id_list

−→ ε

Neither automatic nor ad hoc management of attribute space in top-down
parsers is clearly superior to the other. The ad hoc approach eliminates the need

PREPRINT

C 76 Chapter 4 Program Semantics

for many copy rules and inherited attributes, and is consequently somewhat more
time and space efficient. It also allows lists to be embedded in the semantic stack.
On the other hand, it requires that the programmer who writes the action routines
be continually aware of what is in the stack and why, in order to push and pop it
appropriately. In the final analysis, the choice is an engineering tradeoff driven by
the particular needs of the project.

3CHECK YOUR UNDERSTANDING

49. Explain how to manage space for synthesized attributes in a bottom-up parser.

50. Explain how to manage space for inherited attributes in a bottom-up parser.

51. Define left corner and trailing part.

52. Under what circumstances can an action routine be embedded in the right-
hand side of a production in a bottom-up parser? Equivalently, under what
circumstances can a marker symbol be embedded in a right-hand side without
rendering the grammar non-LR?

53. Summarize the tradeoffs between automatic and ad hoc management of space
for attributes in a top-down parser.

54. At any given point in a top-down parse, which symbols will have attribute
records in an automatically managed attribute stack?

PREPRINT

PREPRINT

4Program Semantics

4.8 Exercises

4.22 Basic results from automata theory tell us that the language L = an bn cn =
{ε, abc, aabbcc, aaabbbccc, . . . } is not context free. It can be captured,
however, using an attribute grammar. Give an underlying CFG and a set of
attribute rules that associates a Boolean attribute ok with the root R of each
parse tree, such that R.ok = true if and only if the string corresponding to
the fringe of the tree is in L.

4.23 Write an S-attributed attribute grammar, based on the CFG of Example C 4.28,
that accumulates the value of the overall expression into the root of the tree.
You will need to use dynamic memory allocation so that individual attributes
can hold an arbitrary amount of information.

4.24 Suppose that we want to translate constant expressions into the postfix, or
‘‘reverse Polish’’ notation of logician Jan Łukasiewicz. Postfix notation does
not require parentheses. It appears in stack-based languages such as Postscript,
Forth, and the P-code and Java bytecode intermediate forms mentioned in
Section 1.4. It also served, historically, as the input language of certain hand-
held calculators made by Hewlett-Packard. When given a number, a postfix
calculator would push the number onto an internal stack. When given an
operator, it would pop the top two numbers from the stack, apply the operator,
and push the result. The display would show the value at the top of the stack.
To compute 2 × (15 − 3)/4, for example, one would push 2 E 1 5 E 3 E

- * 4 E / (here E is the ‘‘enter’’ key, used to end the string of digits that
constitute a number).

Using the underlying CFG of Figure C 4.16, write an attribute grammar
that will associate with the root of the parse tree a sequence of postfix cal-
culator button pushes, seq, that will compute the arithmetic value of the
tokens derived from that symbol. You may assume the existence of a function
buttons(c) that returns a sequence of button pushes (ending with E on a

C 77

C 78 Chapter 4 Program Semantics

postfix calculator) for the constant c. You may also assume the existence of a
concatenation function for sequences of button pushes.

4.25 Repeat the previous exercise using the underlying CFG of Figure C 4.18.
4.26 Consider the following grammar for reverse Polish arithmetic expressions:

E −→ E E op | id
op −→ + | - | * | /

Assuming that each id has a synthesized attribute name of type string, and
that each E and op has an attribute val of type string, write an attribute
grammar that arranges for the val attribute of the root of the parse tree to
contain a translation of the expression into conventional infix notation. For
example, if the leaves of the tree, left to right, were ‘‘A A B - * C /’’, then
the val field of the root would be ‘‘((A * (A - B)) / C)’’. As an extra
challenge, write a version of your attribute grammar that exploits the usual
arithmetic precedence and associativity rules to use as few parentheses as
possible.

4.27 To reduce the likelihood of typographic errors, the digits comprising most
credit card numbers are designed to satisfy the so-called Luhn formula, stan-
dardized by ANSI in the 1960s, and named for IBM mathematician Hans
Peter Luhn. Starting at the right, we double every other digit (the second-
to-last, fourth-to-last, etc.). If the doubled value is 10 or more, we add the
resulting digits. We then sum together all the digits. In any valid number the
result will be a multiple of 10. For example, 1234 5678 9012 3456 becomes
2264 1658 9022 6416, which sums to 64, so this is not a valid number. If the
last digit had been 2, however, the sum would have been 60, so the number
would potentially be valid.

Give an attribute grammar for strings of digits that accumulates into the
root of the parse tree a Boolean value indicating whether the string is valid
according to Luhn’s formula. Your grammar should accommodate strings of
arbitrary length.

4.28 Consider the following CFG for floating-point constants, without exponen-
tial notation. (Note that this exercise is somewhat artificial: the language
in question is regular, and would be handled by the scanner of a typical
compiler.)

C −→ digits . digits
digits −→ digit more_digits
more_digits −→ digits | ε
digit −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Augment this grammar with attribute rules that will accumulate the value
of the constant into a val attribute of the root of the parse tree. Your answer
should be S-attributed.

PREPRINT

4.8 Exercises C 79

4.29 One potential criticism of the obvious solution to the previous problem is
that the values in internal nodes of the parse tree do not reflect the value,
in context, of the fringe below them. Create an alternative solution that
addresses this criticism. More specifically, create your grammar in such a way
that the val of an internal node is the sum of the vals of its children. Illustrate
your solution by drawing the parse tree and attribute flow for 12.34. (Hint:
You will probably want a different underlying CFG, and non-L-attributed
flow.)

4.30 Consider the following attribute grammar for variable declarations, based on
the CFG of Exercise 2.11:

decl −→ ID decl_tail
▷ decl.t := decl_tail.t
▷ decl_tail.in_tab := insert (decl.in_tab, ID.n, decl_tail.t)
▷ decl.out_tab := decl_tail.out_tab

decl_tail −→ , decl
▷ decl_tail.t := decl.t
▷ decl.in_tab := decl_tail.in_tab
▷ decl_tail.out_tab := decl.out_tab

decl_tail −→ : ID ;
▷ decl_tail.t := ID.n
▷ decl_tail.out_tab := decl_tail.in_tab

Show a parse tree for the string A, B : C;. Then, using arrows and textual
description, specify the attribute flow required to fully decorate the tree.
(Hint: Note that the grammar is not L-attributed.)

4.31 A CFG-based attribute evaluator capable of handling non-L-attributed at-
tribute flow needs to take a parse tree as input. Explain how to build a parse
tree automatically during a top-down or bottom-up parse (i.e., without ex-
plicit action routines).

4.32 Write an LL(1) grammar with action routines and automatic attribute space
management that generates the reverse Polish translation described in Exer-
cise C 4.24.

4.33 (a) Write a context-free grammar for case or switch statements in the style
of Pascal or C. Add semantic functions to ensure that the same label does
not appear on two different arms of the construct.

(b) Replace your semantic functions with action routines that can be evalu-
ated during parsing.

4.34 Write an algorithm to determine whether the rules of an arbitrary attribute
grammar are noncircular. (Your algorithm will require exponential time in
the worst case [JOR75].)

4.35 Rewrite the attribute grammar of Figure C 4.23 in the form of an ad hoc
tree traversal consisting of mutually recursive subroutines in your favorite
programming language. Keep the symbol table in a global variable, rather
than passing it through arguments.

PREPRINT

C 80 Chapter 4 Program Semantics

4.36 Augment the attribute grammar of Figure C 4.20, Figure C 4.21 to initialize
a synthesized attribute in every syntax tree node that indicates the location
(line and column) at which the corresponding construct appears in the source
program. You may assume that the scanner initializes the location of every
token.

4.37 Modify the CFG and attribute grammar of Figures 4.1 and C 4.23 to permit
mixed integer and real expressions, without the need for float and trunc.
You will want to add an annotation to any node that must be coerced to the
opposite type, so that the code generator will know to generate code to do
so. Be sure to think carefully about your coercion rules. In the expression
my_int + my_real, for example, how will you know whether to coerce the
integer to be a real, or to coerce the real to be an integer?

4.38 A potential objection to the abstract attribute grammar of Example C 4.33 is
that it repeatedly copies the entire symbol table from one node to another.
In this particular tiny language, it is easy to see that the referencing environ-
ment never shrinks: the symbol table changes only with the addition of new
identifiers. Exploiting this observation, show how to modify the pseudocode
of Figure C 4.23 so that it copies only pointers, rather than the entire symbol
table.

4.39 Your solution to the previous exercise probably doesn’t generalize to lan-
guages with nontrivial scoping rules. Explain how an AG such as that in
Figure C 4.23 might be modified to use a global symbol table similar to the
one described in Section C 3.4.1. Among other things, you should consider
nested scopes, the hiding of names in outer scopes, and the requirement (not
enforced by the table of Section C 3.4.1) that variables be declared before they
are used.

4.40 Repeat Exercise C 4.32 using ad hoc attribute space management. Instead of
accumulating the translation into a data structure, write it to a file on the fly.

4.41 Rewrite the grammar for declarations of Example C 4.44 without the require-
ment that your attribute flow be L-attributed. Try to make the grammar as
simple and elegant as possible (you shouldn’t need to accumulate lists of
identifiers).

4.42 Fill in the missing lines in Figure C 4.27.
4.43 Consider the following grammar with action routines:

params −→ mode ID par_tail
{ params.list := insert(⟨mode.val, ID.name⟩, par_tail.list) }

par_tail −→ , params { par_tail.list := params.list }
−→ { par_tail.list := null }

mode −→ IN { mode.val := IN }
−→ OUT { mode.val := OUT }
−→ IN OUT { mode.val := IN_OUT }

PREPRINT

4.8 Exercises C 81

Suppose we are parsing the input IN a, OUT b, and that our compiler
uses an automatically maintained attribute stack to hold the active slice of
the parse tree. Show the contents of this attribute stack immediately before
the parser predicts the production par_tail −→ ε . Be sure to indicate where

and point in the attribute stack. Also show the stack of saved and
values, showing where each points in the attribute stack. You may ignore

the pointer.
4.44 One problem with automatic space management for attributes in a top-down

parser occurs in lists and sequences. Consider for example the following
grammar:

block −→ begin stmt_list end
stmt_list −→ stmt stmt_list_tail
stmt_list_tail −→ ; stmt_list | ε
stmt −→ . . .

After predicting the final statement of an n-statement block, the attribute
stack will contain the following (line breaks and indentation are for clarity
only):

block begin stmt_list end
stmt stmt_list_tail ; stmt_list
stmt stmt_list_tail ; stmt_list
stmt stmt_list_tail ; stmt_list
{ n times }

If the attribute stack is of finite size, it is guaranteed to overflow for some
long but valid block of straight-line code. The problem is especially unfortu-
nate since, with the exception of the accumulated output code, none of the
repeated symbols in the attribute stack contains any useful attributes once its
substructure has been parsed.

Suggest a technique to ‘‘squeeze out’’ useless symbols in the attribute
stack, dynamically. Ideally, your technique should be amenable to automatic
implementation, so it does not constitute a burden on the compiler writer.

Also, suppose you are using a compiler with a top-down parser that em-
ploys an automatically managed attribute stack, but does not squeeze out
useless symbols. What could you do if your program caused the compiler to
run out of stack space? How could you modify your program to ‘‘get around’’
the problem?

PREPRINT

C 82 Chapter 4 Program Semantics

PREPRINT

PREPRINT

4Program Semantics

4.9 Explorations

4.50 One of the most influential applications of attribute grammars was the Cor-
nell Synthesizer Generator [Rep84, RT88]. Learn how the Generator used
attribute grammars not only for incremental update of semantic information
in a program under edit, but also for automatic creation of language based
editors from formal language specifications. How general is this technique?
What applications might it have beyond syntax-directed editing of computer
programs?

4.51 The attribute grammars used in this chapter are all quite simple. Most are
S- or L-attributed. All are noncircular. Are there any practical uses for more
complex attribute grammars? How about automatic attribute evaluators?
Using the Bibliographic Notes as a starting point, conduct a survey of attribute
evaluation techniques. Where is the line between practical techniques and
intellectual curiosities?

4.52 As described in Section C 4.6.4, yacc/bison will refuse to accept action
routines in the left corner of a production. Is there any way around this
problem? Can you imagine implementing an extended version of the tool
that would permit action routines in arbitrary locations? What would be the
challenges? The cost?

4.53 Learn how attribute space is managed in the ANTLR parser generator. How
does it compare to the techniques described in Section C 4.6.4 for top-down
parsing?

C 83

C 84 Chapter 4 Program Semantics

PREPRINT

PREPRINT

5Target Machine Architecture

Processor implementations change over time, as people invent better ways
of doing things, and as technological advances (e.g., increases in the number of
transistors that will fit on one chip) make things feasible that were not feasible before.
Processor architectures also change, for at least two reasons. Some technological
advances can be exploited only by changing the hardware/software interface—for
example by increasing the number of bits that can be added or multiplied in a single
instruction. In addition, experience with compilers and applications sometimes
suggests that certain new instructions would make programs simpler or faster.

Occasionally, technological and intellectual trends converge to produce a revolu-
tionary change in both architecture and implementation. We will discuss four such
changes in Section C 5.4: the development of microprogramming in the early 1960s,
the development of the microprocessor in the early to mid-1970s, the development
of reduced instruction set computing (RISC) in the early 1980s, and the move to
multithreaded and multicore processors in the first decade of the 21st century. A
fifth major change has occurred with the proliferation of general-purpose graphical
processing units (GPUs) and other accelerators; these are beyond the scope of this
text.

This chapter provides a quick overview of those aspects of computer architecture
most essential to the task of compiler construction. In Sections C 5.1–C 5.3 we
consider the hierarchical organization of memory, the types (formats) of data found
in memory, and the instructions used to manipulate those data. The coverage is
necessarily somewhat cursory and high-level; much more detail can be found in
books on computer architecture or organization (e.g., Chapters 2–5 of Patterson
and Hennessy’s outstanding text [PH20]).1

1 John L. Hennessey (1952–) and David A. Patterson (1947–) are primarily known for work in
computer architecture, but have also made important contributions to programming languages
and implementation techniques. Hennessey is currently Chairman of Alphabet, Inc. (the parent
company of Google) and was previously President of Stanford University. Patterson is a Professor
at the University of California, Berkeley; he also served as President of the Association for Com-
puting Machinery (ACM) from 2004–2006. Among many other accomplishments, Hennessey
and Patterson pioneered the design of reduced instruction set computers (RISC), for which they
shared the ACM Turing Award in 2017.

C 85

C 86 Chapter 5 Target Machine Architecture

Typical access time Typical capacity

Registers 0.2–0.4 ns 0.5–3 K bytes
Primary (L1) cache 0.4–1 ns 32 K–256 K bytes
last-level (typically L3) cache 4–40 ns 1–32 M bytes
Main memory 80–250 ns 1 G byte to 1 T byte
Flash (SSD) 10–40 µs 120 G bytes to 16 T bytes
Disk (HDD) 3–10 ms 1–16 T bytes
Tape 1–50 s up to 30 T bytes per cartridge

Figure 5.1 The memory hierarchy of a workstation-class computer. Access times and capacities
are approximate, based on 2023 technology. Registers are accessed within a single clock cycle;
primary cache takes 2 to 4 cycles. Main memory typically resides on the far side of a bus or
other communication channel and is consequently slower. Flash times vary with manufacturing
technology, and are longer for writes than reads. Disk and tape times are constrained by the
movement of physical parts.

We consider the interplay between architecture and implementation in Sec-
tion C 5.4. As illustrative examples, we consider the widely used x86 and Arm
instruction sets. Finally, in Section C 5.5, we consider some of the issues that make
compiling for modern processors a challenging task.

5.1 The Memory Hierarchy

Memory on most machines consists of a numbered sequence of 8-bit bytes. The
size of the sequence—the number of distinct locations—is limited by the number
of bits used to represent an address. This is a sufficiently important number that it
is often used to categorize machines. Programs on a ‘‘32-bit machine’’ can address
no more than 232 bytes (4 GB) of memory. Programs on a ‘‘64-bit machine’’ can
(at least in principle) address 4 billion times as much.

It is not uncommon for modern workstations to contain tens of gigabytes of
memory—much too much to fit on the same chip as the processor. The time it takes
to reach memory depends on its distance from the processor. Off-chip memory—
particularly when located on the other side of an interconnection network shared
by other processors and devices—is particularly slow. Most computers therefore
employ a memory hierarchy, in which things that are used more often are kept close
at hand. A typical memory hierarchy, with access times and capacities, is shown inEXAMPLE 5.1

Memory hierarchy stats Figure C 5.1.
Only three of the levels of the memory hierarchy—registers, memory, and

devices—are a visible part of the hardware/software interface. Compilers manage
registers explicitly, loading them from memory when needed and storing them
back to memory when done, or when the registers are needed for something else.
Caches are managed by the hardware. Devices are generally accessed only by the
operating system.

PREPRINT

5.1 The Memory Hierarchy C 87

Registers hold small amounts of data that can be accessed very quickly. A typical
modern machine has two sets of registers—one to hold integer operands, the other
floating-point. Additional sets may be used for special purposes—for example,
vector instructions, which operate, in parallel, on a sequence of shorter values
packed into a longer register. There are usually several special-purpose registers
as well, including the program counter (PC) and the processor status register. The
program counter holds the address of the next instruction to be executed. It is
incremented automatically when fetching most instructions; branches work by
changing it explicitly. The processor status register contains a variety of bits of
importance to the operating system (privilege level, interrupt priority level, trap
enable bits) and, on some machines, a few bits of importance to the compiler writer.
Principal among these are condition codes, which indicate whether the most recent
arithmetic or logical operation resulted in a zero, a negative value, and/or arithmetic
overflow. (We will consider condition codes in more detail in Section C 5.3.2.)

Because registers can be accessed every cycle, while memory, generally, cannot,
good compilers expend a great deal of effort trying to make sure that the data
they need most often are in registers, and trying to minimize the amount of time
spent moving data back and forth between registers and memory. We will consider
algorithms for register management in Section C 5.5.2.

Caches are generally smaller but faster than main memory. They are designed
to exploit locality: the tendency of most computer programs to access the same or
nearby locations in memory repeatedly. By automatically moving the contents of
these locations into cache, a hierarchical memory system can dramatically improve
performance. The idea makes intuitive sense: loops tend to access the same local
variables in every iteration, and to walk sequentially through arrays. Instructions,
likewise, tend to be loaded from consecutive locations, and code that accesses one
element of a structure (or member of a class) is likely to access another.

Cache architecture varies quite a bit across machines. Primary caches, also
known as level-1 (L1) caches, are invariably located on the same chip as the processor,
and usually come in pairs: one for instructions (the L1 I-cache) and another for
data (the L1 D-cache), both of which can be accessed every cycle. Secondary (L2)
and tertiary (L3) caches are larger and slower, but still faster than main memory.

DESIGN & IMPLEMENTATION

5.2 The processor/memory gap
For roughly 50 years, from the 1950s until about 2004, processor speed increased
much faster than memory speed. As a result, the number of processor cycles
required to access memory grew dramatically, and caches became increasingly
critical to performance. To improve the effectiveness of caching, programmers
need to choose algorithms whose data access patterns have a high degree of
locality. High-quality compilers, likewise, need to consider locality of access
when choosing among the many possible translations of a given program.

PREPRINT

C 88 Chapter 5 Target Machine Architecture

In a modern desktop or laptop system they are typically also on the same chip as
the processor.

Most processors today have more than one processing core on a single chip.
L1 caches are almost always private to a single core. L2 caches may be private or
shared by 2–4 cores. L3 caches are generally shared by all cores on a chip. Caches
are managed entirely in hardware on most machines, but compilers can increase
their effectiveness by generating code with a high degree of locality.

A memory access that finds its data in the cache is said to be a cache hit. An
access that does not find its data in the cache is said to be a cache miss. On a miss,
the hardware automatically loads a line of the cache with a contiguous block of
data containing the requested location, obtained from the next lower level of cache
or main memory. Cache lines vary from as few as 16 to as many as 512 bytes in
length. Assuming that the cache was already full, the load will displace some other
line, which is written back to memory if it has been modified.

A final characteristic of memory that is important to the compiler is known as
data alignment. Most machines are able to manipulate operands of several sizes—
typically one, two, four, or eight bytes. Most modern instruction sets refer to these
as byte, half-word, word, and double-word operands, respectively; on the x86 they
are byte, word, double-word, and quad-word operands. Many recent architectures
require n-byte operands to appear in memory at addresses that are evenly divisible
by n (at least for n ≤ 4). A 4-byte integer, for example, must typically appear at
a location whose address is evenly divisible by four. This restriction occurs for
two reasons. First, buses are designed in such a way that data are delivered to the
processor over bit-parallel, aligned communication paths. Loading an integer from
an odd address would require that the bits be shifted, adding logic (and time) to
the load path. The x86 and Arm, which allow most operands to appear at arbitrary
addresses, run faster if those operands are properly aligned. Second, on machines
with fixed-size instructions, there are generally not enough bits to specify both
an operation (e.g., load) and a full address. As we shall see in Section C 5.3.1,
it is typical to specify an address in terms of an offset from some base location
specified by a register. Requiring that integers be word-aligned allows the offset to
be specified in words, rather than in bytes, quadrupling the amount of memory
that can be accessed using offsets from a given base register.

5.2 Data Representation

Data in the memory of most computers are untyped: bits are simply bits. Operations
are typed, in the sense that different operations interpret the bits in memory in
different ways. Typical data formats include instructions, addresses, binary integers
of various lengths, floating-point (real) numbers of various lengths, and characters.

Integers typically come in half-word, word, and double-word lengths. Float-
ing-point numbers typically come in word and double-word lengths, commonly
referred to as single- and double-precision. Some machines store the least-significantEXAMPLE 5.2

Big- and little-endian

PREPRINT

5.2 Data Representation C 89

Big-endian

Little-endian Increasing addresses

432

(a)

(b)

436

432 436

00 00 00 37 12 34 56 78

37 00 00 00 78 56 34 12

Big-endian Little-endian

Increasing addresses Increasing addresses

432

436

432

436

435

439

435

439

3700 00 00

7812 34 56

3700 00 00

7812 34 56

Figure 5.2 Big-endian and little-endian byte orderings. (a) Two 4-byte quantities, the numbers
3716 and 12 34 56 7816 , stored at addresses 432 and 436, respectively. (b) The same situation,
with memory visualized as a byte-addressable array of words.

byte of a multiword datum at the address of the datum itself, with bytes of increasing
numeric significance at higher-numbered addresses. Other machines store the
bytes in the opposite order. The first option is called little-endian; the second is
called big-endian. In either case, an n-byte datum stored at address t occupies
bytes t through t + n− 1. The advantage of a little-endian organization is that it is
tolerant of variations in operand size. If the value 37 is stored as a word and then a
byte is read from the same location, the value 37 will be returned. On a big-endian
machine, the value 0 will be returned (the upper eight bits of the number 37, when
stored in 32 bits). The problem with the little-endian approach is that it seems
to scramble the bytes of integers, when read from left to right (see Figure C 5.2a).
Little-endian-ness makes a bit more sense if one thinks of memory as a (byte-
addressable) array of words (Figure C 5.2b). The x86 is little-endian. IBM’s z Series
(mainframe) machines are big-endian. Most other common processors, including
the Arm, MIPS, Power, and RISC-V families, can run in either mode, at the choice
of the operating system.

Support for characters varies widely. A few machines can perform arbitrary
arithmetic and logical operations on 1-byte quantities. Most can load and store
bytes from or to memory, but operate only on longer quantities in registers. Some
legacy machines, including the x86, provide instructions that perform operations
on strings of characters, such as copying, comparing, or searching. On more

PREPRINT

C 90 Chapter 5 Target Machine Architecture

0 0 0 0 0 1 0 0 0 8
0 0 0 1 1 1 0 0 1 9
0 0 1 0 2 1 0 1 0 a
0 0 1 1 3 1 0 1 1 b
0 1 0 0 4 1 1 0 0 c
0 1 0 1 5 1 1 0 1 d
0 1 1 0 6 1 1 1 0 e
0 1 1 1 7 1 1 1 1 f

Figure 5.3 The hexadecimal digits.

modern machines (again including the x86), vector instructions can also be used
to operate on strings.

5.2.1 Integer Arithmetic

Binary integers are almost universally represented in two related formats: straight-
forward binary place-value for unsigned numbers, and two’s complement for signed
numbers. An n-bit unsigned integer has a value in the range 0 . . . 2n−1, in-
clusive. An n-bit two’s complement integer has a value in the range −2n−1 . . .
2n−1 − 1, inclusive. Most instruction sets provide two forms of most of the arith-
metic operators: one for unsigned numbers and one for signed numbers. Even for
languages in which integers are always signed, unsigned arithmetic is important
for the manipulation of addresses (e.g., pointers).

An n-bit unsigned integer with binary representation bn−1 bn−2 . . . b2 b1 b0
has the value

∑
0≤i<n b i2i . Because the bit pattern corresponding to a given dec-

imal value is non-obvious, and because bit patterns written as strings of 0’s and
1’s are cumbersome, computer scientists commonly represent integer values in
hexadecimal, or base-16 notation. Hexadecimal uses the letters a to f as six addi-EXAMPLE 5.3

Hexadecimal numbers tional digits, representing the values 10 to 15 in decimal (see Figure C 5.3). Because
24 = 16, every digit in a hexadecimal number corresponds to exactly four bits
of binary, making conversions between hexadecimal and binary trivial. In tex-
tual contexts, hexadecimal values are often written with a leading 0x. Referring
to Figure C 5.3, the hexadecimal value 0xabcd corresponds to the binary value
1010 1011 1100 1101 = 4398110. Similarly, 0x400 = 210 = 102410, commonly
written 1K, and 0x100000 = 220 = 104857610, commonly written 1M.

Perhaps the most obvious representation for signed integers would reserve one
bit to indicate the sign (+ or −) and use the remaining n − 1 bits to represent
the magnitude, as in unsigned numbers. Unfortunately, this approach requires
different algorithms (and hence separate circuits) for addition and subtraction.
The almost universally adopted alternative is called two’s complement arithmetic.
It capitalizes on the observation that arithmetic on unsigned n-digit numbers,
when we ignore carries out of the left-most place, is actually arithmetic on what
mathematicians call the ring of integers modulo 2n . The sum A + B, for example, is

PREPRINT

5.2.1 Integer Arithmetic C 91

really (A + B) mod 2n . There is no particular reason, however, why we need to
interpret the bit patterns on which we are doing our arithmetic as the numbers
0 . . 2n − 1. We can actually pick any contiguous range of 2n integers, anywhere on
the number line, and say that we’re doing wrap-around arithmetic on them instead.
In particular, we can pick the range−2n−1 . . . 2n−1 − 1.

The smallest n-digit two’s complement value,−2n−1, is represented by a one
followed by n−1 zeros. Successive values are obtained by repeatedly adding one,
using ordinary place-value addition. This choice of representation has several
desirable properties:

1. Non-negative numbers have the same bit patterns as they do in unsigned format.
2. The most significant bit of every negative number is one; the most significant

bit of every non-negative number is zero.
3. A single addition algorithm works for all combinations of negative and non-

negative numbers.

A list of 4-bit two’s complement numbers appears in Figure C 5.4.EXAMPLE 5.4
Two’s complement The addition algorithm for both unsigned and two’s complement binary num-

bers is the obvious binary analogue of the familiar right-to-left addition of decimal
numbers. Given a fixed word size, however we must consider the issue of overflow.
By definition we should see overflow whenever the sum of two integers (not the
bit patterns, but the actual integers they represent) is outside the range of values
that can be represented in 2n bits. For unsigned integers, this is easy: overflow
occurs when we have a carry out of the most significant (left-most) place. For two’s
complement numbers, detection is somewhat trickier. First, note that the sum of a
negative and a positive number can never overflow: the result is guaranteed to be
closer to zero than the larger-magnitude addend. But if the sum is positive (it has a
zero left-most bit), then there must have been a carry out of the left-most place,
because one of the addends had a 1 in that place.

DESIGN & IMPLEMENTATION

5.3 How much is a megabyte?
The fact that 210 ≈ 103 facilitates ‘‘back-of-the-envelope’’ approximations, but
can sometimes lead to confusion when precision is required. Which meaning
is intended when we see 1 K and 1 M? The answer, sadly, depends on context.
Main memory sizes and addresses are typically measured with powers of two,
while other quantities are measured with powers of ten. Thus a 1 GHz, 1 GB
embedded computer may start a new instruction 1,000,000,000 times per second,
but have 1,073,741,824 bytes of memory. Its 100 GB SSD will hold 1011 bytes.
When precision is important, careful writers will use alternative units in which
‘‘bi’’ (for ‘‘binary’’) is substituted into the second syllable and the letter ’i’ is
inserted into the abbreviation. Our hypothetical machine would be said to have
1 gibibyte (GiB) of memory.

PREPRINT

C 92 Chapter 5 Target Machine Architecture

0 1 1 1 7 1 1 1 1 −1
0 1 1 0 6 1 1 1 0 −2
0 1 0 1 5 1 1 0 1 −3
0 1 0 0 4 1 1 0 0 −4
0 0 1 1 3 1 0 1 1 −5
0 0 1 0 2 1 0 1 0 −6
0 0 0 1 1 1 0 0 1 −7
0 0 0 0 0 1 0 0 0 −8

Figure 5.4 Four-bit two’s complement numbers. Note that there is a negative number (−8)
that doesn’t have a positive equivalent. There is only one zero, however.

If we discard carries out of the left-most place (i.e., we stay within the ring
of integers mod 2n), then we can decree that two’s complement overflow has
occurred when we add two non-negative numbers and get an apparently negative
result (because we wrapped past the largest positive number), or when we add two
negative numbers and get an apparently non-negative result (because we wrapped
past the smallest [largest magnitude] negative number). For example, with 4-bitEXAMPLE 5.5

Overflow in two’s
complement addition

two’s complement numbers, 1100+ 0110 (−4+ 6) does not overflow, even though
there is a carry out of the left-most place (which we discard). On the other hand,
0101+ 0100 (5+ 4) yields 1001, an apparently negative result for positive addends,
and 1011+ 1100 (−5+−4) yields 0111 in the low four bits, an apparently positive
result for negative addends. Both of these cases indicate overflow.2

Different machines handle overflow in different ways. Some generate a fault
(a hardware exception) on overflow. Some set a bit that can be tested in software.
Some provide two add instructions, one for each option. Some provide a single
add that can be made to do either, depending on the value of a bit in a special
register.

It turns out that one can obtain the additive inverse of a two’s complement
number by flipping all the bits, adding one, and discarding any carry out of the
left-most place (we defer a proof to Exercise C 5.7). Subtraction can thus be im-
plemented almost trivially using an adder, by flipping the bits of the subtrahend,
providing a one as the ‘‘carry’’ into the least-significant place, and ‘‘adding’’ as
usual. Multiplication and division of signed numbers are a bit trickier than addition
and subtraction, but still more or less straightforward.

Note that if we take any two’s complement number and its additive inverse and
add them together as if they were unsigned values, keeping the final carry bit, the
sum will be 2n . This observation is the source of the name ‘‘two’s complement.’’
Of course if we discard the carry bit we get zero, which is what one would expect
of k + (−k).

2 Exercise C 5.6 considers an alternative but equivalent overflow detection mechanism, which is
particularly easy to implement in hardware.

PREPRINT

5.2.2 Floating-Point Arithmetic C 93

5.2.2 Floating-Point Arithmetic

Floating-point numbers are the computer equivalent of scientific notation: they
consist of a mantissa or significand, sig, an exponent, exp, and (usually) a sign bit, s.
The value of a (binary) floating-point number is then −1s × sig × 2exp. Prior
to the mid-1980s, floating-point formats and semantics tended to vary greatly
across brands and even models of computers. Different manufacturers made
different choices regarding the number of bits in each field, their order, and their
internal representation. They also made different choices regarding the behavior
of arithmetic operators with respect to rounding, overflow, underflow,3 invalid
operations, and the representation of numbers that are almost—but not quite—too
small to represent. With the completion in 1985 of IEEE standard number 754
(extended in 2008), the situation changed dramatically. Most processors developed
in subsequent years conform to the formats and semantics of this standard.

The 1985 version of the IEEE 754 standard defines two sizes of floating-point
numbers. Single-precision numbers have a sign bit, eight bits of exponent, and 23
bits of significand. They are capable of representing numbers whose magnitudes
vary from roughly 10−38 to 1038. Double-precision numbers have 11 bits of exponent
and 52 bits of significand. They represent numbers whose magnitudes vary from
roughly 10−308 to 10308. The exponent is biased by subtracting the most negative
possible value from it, so that it may be represented by an unsigned number. InEXAMPLE 5.6

Biased exponents single-precision, for example, the exponent 12 is represented by the value 12 −
(−127) = 139 = 0x8b. The exponent−12 is represented by the value−12− (−127)
= 115 = 0x73.

Most values in the IEEE standard are normalized by shifting the significand
until it is greater than or equal to 1, and less than 2. (The exponent is adjusted
accordingly, so that the value represented doesn’t change.) After normalization,
we know that the leading bit of the significand will always be one, and need not be
stored explicitly: to represent the value 1.something×2exp, we only need bits for the
fractional part and the exponent. Exceptions to this rule occur near zero: very small
numbers can be represented (with reduced precision) as 0.something × 2min+1,
where min is the smallest (most negative) exponent available in the format. Many
older floating-point standards disallow such subnormal numbers, leading to a gap
between zero and the smallest representable positive number that is larger than the
gap between the two smallest representable positive numbers. Because it includes
subnormals, the IEEE standard is said to provide for gradual underflow. Subnormal
numbers are represented with a zero in the exponent field (denoting a maximally
negative exponent) together with a nonzero fraction. (In the 1985 version of the
standard, subnormal numbers were referred to as denormal.)

Key conventions of the IEEE 754 standard are summarized in Figure C 5.5.EXAMPLE 5.7
IEEE floating-point In addition to the single- and double-precision formats shown here, the 2008

3 Underflow occurs when the result of a computation is too close to zero to represent—that is, when
its exponent is a negative number whose magnitude is too large to represent in the number of
available bits.

PREPRINT

C 94 Chapter 5 Target Machine Architecture

Single precision

Exponent bias b = 127

s e
8

f
23 bits

Double precision

Zero
In�nity
Normalized
Denormalized
NaN

0
2b + 1

1 ≤ e ≤ 2b
0

2b + 1

0
0

<any>
≠ 0
≠ 0

± 0
± 1

± 1.f × 2e–b

± 0.f × 21–b

NaN

Exponent bias b = 1023

s e

e f Value

f

1

11 52 bits1

Figure 5.5 The IEEE 754 floating-point standard. For normalized numbers, the exponent is
e− 127 or e− 1023, depending on precision. The significand is (1+ f)× 2−23 or (1+ f)× 2−52 ,
again depending on precision. Field f is called the fractional part, or fraction. Bit patterns in which
e is all ones (255 for single-precision, 2047 for double-precision) are reserved for infinities and
NaNs. Bit patterns in which e is zero but f is not are used for subnormal (gradual underflow)
numbers.

revision of the standard defines 16-bit half-precision and 128-bit quad-precision
binary formats, as well as decimal (power-of-ten) formats in 32-, 64-, and 128-
bit lengths. Both the old and new versions of the standard also permit vendor-
defined ‘‘extended’’ formats that exceed the precision of some standard format (this
accommodates, among other things, the 80-bit internal format of legacy floating
point in x86 processors). We focus here on the single- and double-precision binary
formats, which remain the most widely used.

Floating-point arithmetic is sufficiently complicated that entire books have been
written about it. Some of the characteristics of the IEEE standard of particular
interest to compiler writers include:

Zero is represented by a bit pattern consisting entirely of zeros. There is also
(confusingly) a ‘‘negative zero,’’ consisting of a sign bit of one and zeros in all
other positions.
Two bit patterns are reserved to represent positive and negative infinity. These
values behave in predictable ways. For example, any positive number divided by
zero yields positive infinity. Similarly, the arctangent of positive infinity is π/2.
Certain other bit patterns are reserved for special ‘‘not-a-number’’ (NaN) values.
These values are generated by nonsensical operations, such as square root of a

PREPRINT

5.3 Instruction Set Architecture (ISA) C 95

negative number, addition of positive and negative infinity, or division of zero by
zero. Almost any operation on an NaN produces another NaN. As a result, many
algorithms can dispense with internal error checks: they can follow the steps that
make sense in the absence of errors, and then check the final result to make sure
it’s not an NaN. Some NaNs, not normally generated by arithmetic operations,
can be set by the compiler explicitly to represent uninitialized variables or other
special situations; these signaling NaNs produce a hardware exception if used.
The bit patterns used to represent non-negative, non-NaN floating-point num-
bers are ordered in the same way as integers. As a result, an ordinary integer
comparison operation can (in certain contexts) be used to determine which of
two numbers is larger.

An excellent introduction to both integer and floating-point arithmetic, together
with suggestions for further reading, can be found in David Goldberg’s appendix
to Hennessy and Patterson’s architecture text [HP17, App. J].

3CHECK YOUR UNDERSTANDING

1. Explain how to compute the additive inverse (negative) of a two’s complement
number.

2. Explain how to detect overflow in two’s complement addition.

3. Do two’s complement numbers use a bit to indicate their sign? Explain.

4. Summarize the key features of IEEE 754 floating-point arithmetic.

5. What is the approximate range of single- and double-precision floating-point
values? What is the precision (in bits) of each?

6. What is a floating-point NaN?

5.3 Instruction Set Architecture (ISA)

The instructions available on a given machine, and their encoding in machine
language, are referred to as the instruction set architecture (ISA). Existing ISAs vary
quite a lot, but all include instructions for:

Computation — arithmetic and logical operations, tests, and comparisons on values
held in registers (and possibly in memory)

Data movement — loads from memory to registers, stores from registers to mem-
ory, copies from one register (or memory location) to another

Control flow — conditional and unconditional branches (gotos), subroutine calls
and returns, traps into the operating system

PREPRINT

C 96 Chapter 5 Target Machine Architecture

As we shall see in Section C 5.4, there have been several points in history at which
the dominant style of instruction set design has undergone significant change. In
particular, in the early to mid-1980s, designers shifted from an emphasis on com-
plex instruction set computing (CISC), which sought to maximize the useful work
performed per machine instruction, to reduced instruction set computing (RISC),
which sought to maximize the number of instructions that could be completed per
second. Some of the largest differences among machines today can be seen in those
whose ISAs began their evolution before and after 1980. In Section C 5.4.5 we will
consider one ISA in each camp: the x86, begun in 1976, and Arm, begun in 1983.

Among ISAs still in widespread use, significant differences can be seen in ad-
dressing modes, which specify the locations of operands; condition testing and
branching; and the bit-level encoding of instructions. We will consider the first two
of these in Sections C 5.3.1 and C 5.3.2 below. In the area of encoding, the most
important design decision is whether to specify each instruction and its operands in
a fixed, constant number of bits (typically 32), or whether to use different numbers
of bits for different instructions or different numbers of arguments. Fixed-length
instructions have the benefit of uniformity: they make it easier to locate and decode
successive instructions, thereby facilitating the construction of pipelined processors
(to be discussed in Section C 5.4). At the same time, certain natural operations
require more than 32 bits of encoding, and thus cannot be captured in a single
instruction, and certain common operations are sufficiently simple that 32 bits may
constitute a waste of space. As we shall see in Section C 5.4.5, many Arm processors
support an optional ‘‘Thumb mode’’ with shorter (16-bit) instructions. The RISC-V
standard includes optional 16-bit ‘‘compressed’’ instructions that interoperate with
standard 32-bit instructions.

From an architectural and performance perspective, the distinction between
CISC and RISC ISAs is no longer of great concern: modern implementations of
CISC ISAs (e.g., all recent x86 and z Series processors) incorporate a hardware
‘‘front end’’ that translates the legacy ISA, on the fly, into a RISC-like internal form
amenable to heavily pipelined execution.

5.3.1 Addressing Modes

One can imagine many different ways in which a computational or data movement
instruction might specify the location of its operand(s)—its address, in a broad
sense of the word. A given operand might be in a register, in memory, or, in the
case of read-only constants, in the instruction itself (these latter are referred to as
immediate values).

One of the standard features of RISC machines is that computational instructions
operate only on values held in registers or the instruction: a load instruction must
be used to bring a value from memory into a register before it can be used as an
operand. CISC machines usually allow all or most computational instructions to
access operands directly in memory. RISC machines are therefore said to provide
a load-store or register-register architecture; CISC machines are said to provide a
register-memory architecture.

PREPRINT

5.3.2 Conditions and Branches C 97

For binary operations, instructions on many machines can specify three
addresses—two sources and a destination. Others, including the x86, provide
only two-address instructions—one of the operands is always overwritten by the
result. Two-address instructions are more compact, but three-address instructions
are more flexible—they allow both operands to be reused in subsequent operations.

If an operand is in memory, its address might be found in a register, in memory,
or in the instruction, or it might be derived from some combination of values
in various locations. Instruction sets differ greatly in the addressing modes they
provide to capture these various options. On a simple RISC machine, load and store
instructions may support only the displacement addressing mode, in which the
operand’s address is found by adding some small constant (the displacement) to the
value found in a specified register (the base). The displacement is contained in the
instruction. Displacement addressing with respect to the frame pointer provides
an easy way to access local variables. Displacement addressing with a displacement
of zero is sometimes called register indirect addressing.

Some ISAs, including the Power family, SPARC, and Arm, also allow load and
store instructions to use an indexed addressing mode, in which the operand’s
address is found by adding the values in two registers. Indexed addressing is useful
for arrays: one register (the base) contains the address of the array; the second (the
index) contains the offset of the desired element.

CISC machines typically provide the richest set of addressing modes, and allow
them to be used in computational instructions, as well as in loads and stores. On
the x86, for example, the address of an operand can be calculated by multiplying
the value in one register by a small constant, adding the value found in a second
register, and then adding another small constant, all in one instruction.

5.3.2 Conditions and Branches

All instruction sets provide a branching mechanism to update the program counter
under program control. Branches allow compilers to implement conditional state-
ments, subroutines, and loops. Conditional branches may be controlled in several
ways. On many machines they use condition codes. As mentioned in Section C 5.1,
condition codes are usually implemented as a set of bits in a special processor status
register. All or most of the arithmetic, logical, and data-movement instructions
update the condition codes as a side effect. The exact number of bits varies from
machine to machine, but three and four are common: one bit each to indicate
whether the instruction produced a zero value, a negative value, and/or an overflow
or carry. To implement the following test, for example,EXAMPLE 5.8

An if statement in x86
assembly A := B + C

if A = 0 then
body

a compiler for the x864 might generate

PREPRINT

C 98 Chapter 5 Target Machine Architecture

movl C, %eax ; move long-word C into register eax
addl B, %eax ; add
movl %eax, A ; and store
jne L1 ; branch (jump) if result not equal to zero
body

L1:

The first three instructions all set the condition codes. The fourth (jne) tests the
codes in the wake of the movl that stores to A. It branches if the codes indicate that
the value was not zero.

For cases in which the outcome of a branch depends on a value that has not justEXAMPLE 5.9
Compare and test
instructions

been computed or moved, most machines provide compare and test instructions.
Again on the x86:

if A ≤ B then
body

if A > 0 then
body

movl A, %eax ; move long-word A into register eax
cmpl B, %eax ; compare to B
jg L1 ; branch (jump) if greater
body

L1:

testl %eax, %eax ; compare %eax (A) to 0
jle L2 ; branch if less than or equal
body

L2:

The x86 cmpl instruction subtracts its source operand from its destination
operand and sets the condition codes according to the result; it does not, however,
overwrite the destination operand. The testl instruction ands its two operands
together and compares the result to zero. Most often, as shown here, the two
operands are the same. When they are different, one is typically a mask value that
allows the programmer or compiler to test individual bits or bits fields in the other
operand.

Unfortunately, traditional condition codes make it difficult to implement impor-
tant performance enhancements, in both the compiler and the hardware. Because
the codes are set by almost every instruction, the compiler must avoid placing unre-
lated instructions between the code that evaluates a condition and the branch that
relies on the outcome of that evaluation. The hardware, similarly, must preserve the
codes across any unrelated instructions that are executed out of order. To address
these problems, the Arm and SPARC architectures make setting of the condition
codes optional on an instruction-by-instruction basis. The Power architecture

4 Readers familiar with the x86 should be warned that this example uses the assembler syntax of
the GNU compiler collection (gcc) and its assembler, gas. This syntax differs in several ways
from Microsoft and Intel assembly. Most notably, it specifies operands in the opposite order. The
instruction addl B, %eax, for example, adds the value in B to the value in register %eax and
leaves the result in %eax: in GNU assembly the destination operand is listed second. In Intel and
Microsoft assembly it’s the other way around: addl B, %eax would add the value in register %ebx
to the value in B and leave the result in B.

PREPRINT

5.3.2 Conditions and Branches C 99

provides eight separate sets of condition codes; compare and branch instructions
can specify the set to use. MIPS and RISC-V machines eliminate condition codes
entirely; instead, they provide instructions to compare two registers and branch
based on the outcome.

Several ISAs, including Power, SPARC, and recent generations of the x86, pro-EXAMPLE 5.10
Conditional move vide a conditional move instruction that copies one register into another if and

only if the condition codes are appropriately set. On the x86, the code fragment
C := max(A, B) might naively be translated

movl A, %ecx
movl B, %edx
cmpl %edx, %ecx ; compare %edx (A) to %ecx (B)
jle L1 ; branch if less than or equal
movl %ecx, C ; store A to C
jmp L2

L1:
movl %edx, C ; store B to C

L2:

With a conditional move instruction it can become the following instead:

movl B, %ecx
movl A, %edx
cmpl %ecx, %edx ; compare %edx (A) to %ecx (B)
cmovgl %edx, %ecx ; move A into %ecx if greater
movl %ecx, C ; store to C

A few ISAs, including 32-bit Arm and IA-64 (Itanium), allow almost any in-
struction to be marked as conditional. This more general mechanism is known as
predication. It allows an if. . . then . . . else construct to be translated into straight-
line (branch-less) code: instructions in the then and else paths are prefixed with
complementary conditions, causing one path to take effect and the other to func-
tion as a sequence of no-ops—instructions that have no effect. When both paths are
short, it may be cheaper (at least in some processor implementations) to execute
the no-ops than it would have been to execute a branch.

3CHECK YOUR UNDERSTANDING

7. What is the most popular instruction set architecture for desktop and server
machines?

8. What is the most popular instruction set architecture for tablets and cell phones?

9. What is the difference between big-endian and little-endian addressing?

10. What is the purpose of a cache?

11. Why do many machines have more than one level of cache?

PREPRINT

C 100 Chapter 5 Target Machine Architecture

12. How many processor cycles does it typically take to access primary (level-1)
cache? How many cycles does it typically take to access main memory?

13. What is data alignment? Why do many processors insist upon it?

14. List four common formats (interpretations) for bits in memory.

15. What is IEEE standard number 754? Why is it important?

16. What are the tradeoffs between two-address and three-address instruction
formats?

17. Describe at least five different addressing modes. Which of these are commonly
supported on RISC machines?

18. What are condition codes? Why do some architectures not provide them?
What do they provide instead?

5.4 Architecture and Implementation

The typical processor implementation consists of a collection of functional units,
one (or more) for each logically separable facet of processor activity: instruction
fetch, instruction decode, operand fetch from registers, arithmetic computation,
memory access, write-back of results to registers, and so on. One could imagine an
implementation in which all of the work for a particular instruction is completed
before work on the next instruction begins, and in fact this is how the earliest
computers were constructed. The problem with this organization is that most of
the functional units are idle most of the time. Modern processor implementations
have a substantially more complicated organization, in which the executions of
many instructions overlap one another in time. To generate fast code, a compiler
must understand the details of this organization.

Pipelining is the most fundamental form of instruction overlap. Originally
developed for supercomputers of the 1960s, it moved into single-chip processors
with the RISC revolution of the 1980s. On a pipelined machine, functional units
work like the stations on an assembly line, with different instructions passing
through different pipeline stages concurrently. Pipelining appears today in even
the most inexpensive personal computers, and in all but the simplest processors
for the embedded market. A simple processor may have 3–6 pipeline stages. The
Arm Cortex-A78 (used in many cell phones) and the Intel Core i7 (used in many
laptops) have 13 and 14 stages, respectively. The ‘‘superpipelined’’ Intel Pentium 4E
had 31.

By allowing (parts of) multiple instructions to execute in parallel, pipelining can
dramatically increase the number of instructions that can be completed per second,
but it is not a panacea. In particular, a pipeline will stall if the same functional unit
is needed in two different instructions simultaneously, or if an earlier instruction
has not yet produced a result by the time it is needed in a later instruction, or if the

PREPRINT

5.4.1 Microprogramming C 101

outcome of a conditional branch is not known (or guessed) by the time the next
instruction needs to be fetched.

We shall see in Section C 5.5 that many stalls can be avoided by adding a little
extra hardware and then choosing carefully among the various ways of translating
a given construct into target code. A typical example occurs in the case of floating-
point arithmetic, which tends to be much slower than integer arithmetic. Rather
than stall the entire pipeline while executing a floating-point instruction, we can
build a separate functional unit for floating-point math, and arrange for it to operate
on a separate set of floating-point registers. In effect, this strategy leads to a pair
of pipelines—one for integers and one for floating-point—that share their first
few stages. The integer branch of the pipeline can continue to execute while the
floating-point unit is busy, so long as subsequent instructions do not require the
floating-point result. The need to reorder, or schedule, instructions so that those
that conflict with or depend on one another are separated in time is one of the
principal reasons why compiling for modern processors is hard.

5.4.1 Microprogramming

As technology advances, there are occasionally times when it becomes feasible to
design machines in a very different way. During the 1950s and the early 1960s,
the instruction set of a typical computer was implemented by soldering together
large numbers of discrete components (transistors, capacitors, etc.) that performed
the required operations. To build a faster computer, one generally designed new,
more powerful instructions, which required extra hardware. This strategy had
the unfortunate effect of requiring assembly language programmers (or compiler
writers, though there weren’t many of them back then) to learn a new language
every time a new and better computer came along.

A fundamental breakthrough occurred in the early 1960s, when IBM hit upon
the idea of microprogramming. Microprogramming allowed a company to provide
the same instruction set across a whole line of computers, from inexpensive slow
machines to expensive fast machines. The basic idea was to build a ‘‘microengine’’
in hardware that executed an interpreter program in ‘‘firmware.’’ The interpreter in
turn implemented the ‘‘machine language’’ of the computer—in this case, the IBM
360 instruction set. More expensive machines had fancier microengines, with more
direct support for the instructions seen by the assembly-level programmer. The
top-of-the-line machines had everything in hardware. In effect, the architecture
of the machine became an abstract interface behind which hardware designers
could hide implementation details, much as the interfaces of modules in modern
programming languages allow software designers to limit the information available
to users of an abstraction.

In addition to allowing the introduction of computer families, microprogram-
ming made it comparatively easy for architects to extend the instruction set. Nu-
merous studies were published in which researchers identified some sequence of
instructions that commonly occurred together (e.g., the instructions that jump to

PREPRINT

C 102 Chapter 5 Target Machine Architecture

a subroutine and update bookkeeping information in the stack), and then intro-
duced a new instruction to perform the same function as the sequence. The new
instruction was usually faster than the sequence it replaced, and almost always
shorter (and code size was more important then than now).

5.4.2 Microprocessors

A second architectural breakthrough occurred in the mid-1970s, when very large
scale integration (VLSI) chip technology reached the point at which a simple mi-
croprogrammed processor could be implemented entirely on one inexpensive chip.
The chip boundary is important because it takes much more time and power to
drive signals across macroscopic output pins than it does across intrachip connec-
tions, and because the number of pins on a chip is limited by packaging issues. With
an entire processor on one chip, it became feasible to build a commercially viable
personal computer. Processor architectures of this era include the MOS Technology
6502, used in the Apple II and the Commodore 64, and the Intel 8080 and Zilog
Z80, used in the Radio Shack TRS-80 and various CP/M machines. Continued im-
provements in VLSI technology led, by the mid-1980s, to 32-bit microprogrammed
microprocessors such as the Motorola 68000, used in the original Apple Macintosh,
and the Intel 80386, used in the first 32-bit IBM PCs.

From an architectural standpoint, the principal impact of the microprocessor
revolution was to constrain, temporarily, the number of registers and the size of
operands. Where the IBM 360 (not a single-chip processor) operated on 32-bit
data, with 16 general-purpose 32-bit registers, the Intel 8080 operated on 8-bit
data, with only seven 8-bit registers and a 16-bit stack pointer. Over time, as VLSI
density increased, registers and instruction sets expanded as well. Intel’s 32-bit
80386 was introduced in 1985.

5.4.3 RISC

By the early 1980s, several factors converged to make possible a third architectural
breakthrough. First, VLSI technology reached the point at which a pipelined 32-
bit processor with a sufficiently simple instruction set could be implemented on
a single chip, without microprogramming. Second, improvements in processor
speed were beginning to outstrip improvements in memory speed, increasing
the relative penalty for accessing memory, and thereby increasing the pressure to
keep things in registers. Third, compiler technology had advanced to the point at
which compilers could often match (and sometimes exceed) the quality of code
produced by the best assembly language programmers. Taken together, these
factors suggested a reduced instruction set computer (RISC) architecture with a fast,
all-hardware implementation, a comparatively low-level instruction set, a large
number of registers, and an optimizing compiler.

The advent of RISC machines ran counter to the ever-more-powerful-instruc-
tions trend in processor design, but was to a large extent consistent with established

PREPRINT

5.4.4 Multithreading and Multicore C 103

trends for supercomputers. Supercomputer instruction sets had always been rela-
tively simple and low-level, in order to facilitate pipelining. Among other things,
effective pipelining depends on having most instructions take the same, constant
number of cycles to execute, and on minimizing dependences that would prevent
a later instruction from starting execution before its predecessors have finished.

The most basic rule of processor performance holds that total execution time on
any machine equals the number of instructions executed times the length in time
of a cycle times the average number of (non-overlapped) cycles per instruction
(CPI). What we might call the ‘‘CISC design philosophy’’ is to minimize execution
time by reducing the number of instructions, letting each instruction do more
work. What we might call the ‘‘RISC design philosophy’’ is to reduce the length
of the cycle and average number of cycles between the initiations of consecutive
instructions. Though once cast as design alternatives, these philosophies are not
mutually exclusive: complex instructions can successfully be added to a RISC
design, so long as their implementation does not compromise IPC or cycle time.

High performance processors attempt to minimize CPI by executing as many
instructions as possible in parallel. One core of an IBM Power10, for example,
can have over 1000 instructions simultaneously ‘‘in flight’’ (and each processor
chip has 8 cores). Some processors have very deep pipelines, allowing the work
of an instruction to be divided into very short cycles. Many are superscalar: they
have multiple parallel pipelines, and start more than one instruction each cycle.
(This requires, of course, that the compiler and/or hardware identify instructions
that do not depend on one another, so that parallel execution is semantically
indistinguishable from sequential execution.) To minimize artificial dependences
between instructions (as, for instance, when one instruction must finish using
a register as an operand before another instruction overwrites that register with
a new value), many machines perform register renaming, dynamically assigning
logically independent uses of the same architectural register to different locations in
a larger set of physical (implementation) registers. A high performance processor
may actually execute mutually independent instructions out of order when it can
increase instruction-level parallelism by doing so. These techniques dramatically
increase implementation complexity but not architectural complexity; in fact, it is
architectural simplicity that makes them possible.

5.4.4 Multithreading and Multicore

For 50 years, improvements in silicon fabrication technology have fueled a seem-
ingly inexorable increase in the density of integrated circuits. This trend, first
observed by Gordon Moore in 1965, has seen the number of transistors on a chip
double roughly every two years since the mid 1960s—a million-fold increase since
the early 1970s. Processor designers have used this amazing windfall in several
major ways:

PREPRINT

C 104 Chapter 5 Target Machine Architecture

Faster clocks. Since smaller transistors can charge and discharge more quickly,
higher-density chips can run at a higher clock rate. The Intel 8080 ran at 2 MHz
in 1974. Rates in excess of 2 GHz (1000× faster) are commonplace today.

Instruction-level parallelism (ILP). As noted in the previous subsection, modern
processors employ pipelined, superscalar, and out-of-order execution to keep a
very large number of instructions ‘‘in flight,’’ and to execute those instructions
as soon as their operands become available.

Speculation. To keep the pipeline full, a modern processor guesses which way
control will go at every branch, and speculatively executes instructions along the
predicted control path. Some processors employ additional forms of speculation
as well: they may, for example, guess the value that will be returned by a read
that misses in the cache. So long as guesses are right, the processor avoids
‘‘unnecessary’’ waiting. It must always check after the fact, however, and be
prepared to undo any erroneous operations in the event that a guess was wrong.

Larger caches. As noted in Sidebar C 5.2, caches play a critical role in coping with
the processor-memory gap induced by higher clock rates. Higher VLSI density
makes room for larger caches.

Unfortunately, by roughly 2004, the first three of these standard techniques had
pretty much hit a dead end. Both faster clocks and speculation lead to very high
energy consumption. To first approximation, a chip’s energy requirements are
proportional to its physical area and clock frequency. While caches take less energy
than average (they’re comparatively passive), the bookkeeping circuits required for
speculation are very power-hungry. Where the 8080 consumed about 1.3 W, a desk-
top processor today may consume 150 W—more heat per unit area than the burner
of a hot plate, and essentially at the limit of what we can cool without refrigeration.
Simultaneously, ILP exploitation and speculative execution have approached the
inherent limits of traditional sequential code. Bluntly put, modern single-core
processors execute as many instructions in parallel as traditional programs will
allow.

Robbed of the ability to run a single program faster, processor designers began
building multithreaded and multicore chips that can run more than one program at
once. Multithreading was introduced first. It allows several programs (threads),
represented by several sets of registers and instruction fetching logic, to share the
back end (execution units) of a single processor. In effect, the extra threads serve to
fill ‘‘bubbles’’ (stalls) in the processor’s pipeline. A multicore processor, by contrast,
has the equivalent of two or more complete processors (cores) on a single chip (by
convention, a single chip is referred to as ‘‘a processor,’’ regardless of the number
of cores). Compared to a high-end turn-of-the-century uniprocessor (a single-core
machine), the cores of a modern chip may run at a somewhat slower clock rate,
and expend less energy on speculation and ILP discovery, in order to maximize
performance per watt.

In moving to multicore processors, the computer industry effectively gave up
on running conventional programs faster, and is banking instead on running
better programs. This makes the multicore revolution very different from previous

PREPRINT

5.4.4 Multithreading and Multicore C 105

changes in design philosophy. Where previous changes were mostly invisible to
programmers (code might perhaps have to be recompiled to make the best use of a
new machine), the multicore revolution has required programs to be rewritten in
explicitly concurrent languages.

Unfortunately, parallel programming is hard. In practice, programs that can
make effective use of hundreds or thousands or cores tend to be highly regular,
applying the same operations concurrently to elements of some very large data set.
For such calculations, traditional CPU architectures are overkill. As a result, we are
now in the throes of yet another revolutionary change in computer architecture—
one that relies on massively parallel hardware accelerators for big-data calculations.
This revolution began with the development of general-purpose graphical process-
ing units (GPUs), and has continued with accelerators for image processing, media
transcoding, encryption, compression, and neural network training and execution.
Efforts to use accelerators more frequently and effectively will be a major focus
of systems research over the coming decade, but we can already see the point of
diminishing returns. What will come next is currently very unclear.

3CHECK YOUR UNDERSTANDING

19. What is microprogramming? What breakthroughs did its invention make
possible?

20. What technological threshold was crossed in the mid-1970s, enabling the
introduction of microprocessors? What subsequent threshold, crossed in the
early 1980s, made RISC machines possible?

21. What is pipelining?

22. Summarize the difference between the CISC and RISC philosophies in instruc-
tion set design.

23. Why do RISC machines allow only load and store instructions to access mem-
ory?

24. Name three CISC architectures. Name three RISC architectures. (If you’re
stumped, see the Summary and Concluding Remarks [Section C 5.6].)

25. How can the designer of a pipelined machine cope with instructions (e.g.,
floating-point arithmetic) that take much longer than others to compute?

26. Why are microprocessor clock rates no longer increasing?

27. Explain the difference between multithreaded and multicore processors.

28. How does the multicore revolution differ from major previous changes in
computer architecture? What special problems does it pose?

PREPRINT

C 106 Chapter 5 Target Machine Architecture

5.4.5 Two Example Architectures: The x86 and Arm

We can illustrate much of the variety in ISA design—including the CISC and
RISC philosophies—by examining a pair of representative architectures. The x86 isEXAMPLE 5.11

The x86 ISA the most widely used ISA in the server, desktop, and laptop markets. The original
implementation, the 8086, was announced in 1978. Major changes were introduced
in Intel’s 8087, 80286, 80386, Pentium Pro, Pentium/MMX, Pentium III, and
Pentium 4, and in AMD’s K8 (Opteron). Though technically backward compatible,
these changes were often out of keeping with the philosophy of earlier generations.
The result is an architecture with numerous stylistic inconsistencies and special
cases. While both AMD and Intel have trade names for the instruction set, the
name ‘‘x86’’ is widely used to refer to it generically. When necessary, ‘‘x86-32’’
and ‘‘x86-64’’ are used to refer to the 32- and 64-bit versions, both of which are in
widespread use today. Some vendors use ‘‘x64’’ to refer to the 64-bit version.

Early generations of the x86 were extensively microprogrammed. More recent
generations still use microprogramming for the more complex portions of the
instruction set, but simpler instructions are translated directly (in hardware) into
between one and four microinstructions that are in turn fed to a heavily pipelined,
RISC-like computational core.

The original version of the Arm architecture, developed by Acorn Computers ofEXAMPLE 5.12
The Arm ISA Cambridge, England, was announced in 1983. Acorn’s contemporary descendant,

Arm Holdings, oversees the evolution of the instruction set, and designs—but does
not fabricate—implementations. The company licenses both the instruction set
and the designs to scores of partner firms, which incorporate Arm processors in
everything from toasters and fuel injectors to cell phones and tablet computers—
and, increasingly, to desktops and servers as well.

Like the x86, Arm has evolved considerably over time, and given its wide range
of applications, it is available in a bewildering array of versions; these vary not
only in speed and cost, but also in feature set. Unlike the x86, Arm never had 8-
or 16-bit versions: until recently it was 32-bit only. A 64-bit extension, Arm v8,
designed to compete in the desktop and server markets, was announced in 2011;
the first commercial implementations became available in 2013.

Among the most significant differences between the x86 and Arm are their
memory access mechanisms, their register sets, and the variety of instructions they
provide. Like all RISC architectures, Arm allows only load and store instructions to
access memory; all computation is done with values in registers (or in immediate
fields of the current instruction). Like most CISC architectures, the x86 allows
computational instructions to operate on values in either registers or memory. Like
most RISC architectures, 64-bit Arm has 32 integer registers and 32 floating-point
registers. On 32-bit Arm machines, there are only 16 integer registers (and only 16
are visible on a 64-bit machine when running in 32-bit mode). The x86, by contrast,
has 16 registers of each kind when running in 64-bit mode, and only 8 in 32-bit
mode. (There is also a separate set of 8 floating-point registers, 80 bits in length.
These are used by an older set of floating-point instructions; they are increasingly
ignored by modern compilers.) Arm provides many fewer distinct instructions

PREPRINT

5.4.5 Two Example Architectures: The x86 and Arm C 107

than does the x86, and its instruction set is much more internally consistent; the
x86 has a huge number of special cases. Arm instructions are normally 4 bytes
long, though there is a special version of 32-bit mode called ‘‘Thumb’’ that provides
2-byte encodings of the most commonly used instructions. Instructions on the x86
vary from 1 to 15 bytes in length.

Memory Access and Addressing Modes

Although Arm is a register-register architecture, while the x86 is register-memory,
the addressing modes of the two machines are actually quite similar: Arm has a
richer set of options than many other RISC designs.

In 32-bit mode, an Arm address is formed by adding an offset to the value in a
specified base register. The offset can be either an immediate displacement or the
value in a second, index register. In the latter case, the offset can be shifted (scaled)
up to 31 bit positions, effectively multiplying it by an arbitrary power of 2. With
either kind of offset, the base register can optionally be updated (either before or
after using its value), by adding or subtracting the (already shifted) offset. This
pre- or post-indexing mechanism facilitates iteration through arrays. To economize
on encoding bits, some of the addressing combinations are unavailable in 64-bit
mode.

As we shall see under ‘‘Registers’’ below, 32-bit Arm assigns a register number to
the program counter (PC), allowing that register to be used at the base in load and
store instructions. This convention makes it easy to read values from the code of the
running program—a trick that facilitates the construction of position-independent
code (to be discussed in Section C 15.7.1). It also means that a branch is simply a
write to the PC.

On the x86, an address is also formed by adding an offset to the value in a base
register, but in this case the offset can reflect both an immediate displacement and
the (possibly scaled) value in an index register. Scaling factors are less general than
on Arm: possible values are 1, 2, 4, and 8. Pre- and post-increment options are also
unavailable, though there are separate push and pop instructions that use the stack
pointer (SP) as a base register, and automatically update it. A special PC-relative
addressing mode is available in 64-bit mode, but not in 32-bit mode.

X86 instructions are two-address: the result of a computation overwrites one
of the operands, which may be in either a register or memory. Computation is
normally three-address on Arm (two sources and a destination can all be separate
registers), but two-address when running in Thumb mode.

Registers

The user-visible registers of the two architectures are illustrated pictorially in Fig-EXAMPLE 5.13
x86 and Arm register sets ure C 5.6. As is immediately obvious, the Arm registers are both more numerous

and more regular in structure than those of the x86. To a large extent this reflects
the designs’ respective histories. The 8086 was introduced in 1978 with 16-bit
integer registers. (It was source-code compatible, though not binary compatible,
with the earlier 8-bit 8080.) Intel expanded the registers to 32 bits in 1985 with the
80386, and AMD expanded them again to 64 bits in 2000. Arm, by contrast, has

PREPRINT

C 108 Chapter 5 Target Machine Architecture

Floating-point/MMX registers

Program counter

Integer registers

Floating-point
control/status,
condition code,
and tag registers

SSE control/status register

Integer condition
codes and �ags

Stack pointer and program counter

Condition codes and �ags

Integer registers

Floating-point/SSE registers

Floating-point/SIMD registers

Figure 5.6 User-visible registers of the x86-64 (top) and Arm v8 (bottom). For both architectures, shaded areas indicate the
subset visible in 32-bit mode. The last of the integer registers on Arm (shown with a dotted line) is virtual; it behaves as if it
always contained a zero. The cross-hatched area indicates ‘‘banked’’ copies of the 32-bit registers, which are mapped into the
bottom halves of the higher-numbered 64-bit registers. Other special registers, of use only in privileged code, are omitted for
both architectures. Also omitted are the AVX registers of recent high-end x86 processors and the eight segment registers of the
x86, which support the obsolete 80286 addressing system, and are not (for the most part) employed by modern compilers.

PREPRINT

5.4.5 Two Example Architectures: The x86 and Arm C 109

seen less re-engineering. It was introduced with 32-bit registers in 1983, and was
extended once, to 64 in 2011.

The x86-32 has eight 32-bit integer registers, plus the program counter and the
processor status word, which includes the condition codes. For historical reasons,
the integer registers are named eax, ebx, ecx, edx, esi, edi, esp, and ebp. They
can be used interchangeably in most instructions, but certain instructions use them
in special ways. Registers eax and edx, for example, are implicitly the destination
registers for integer multiplication and division operations. Register ecx is read
and updated implicitly by certain loop-control instructions. Registers esi and
edi are used implicitly by instructions that copy, search, or compare strings of
characters in memory. Register esp is used as a stack pointer; it is read and written
implicitly by push, pop, and subroutine call/return instructions. Register ebp is
typically used as a frame pointer; it is manipulated by instructions designed to
allocate and deallocate stack frames.

For backward compatibility with 16-bit code, there are separate names for the
lower halves of all eight integer registers: ax, bx, cx, dx, si, di, sp, and bp. Four
of these (ax, bx, ax, and ax) have separate names for their upper and lower halves:
ah, al, bh, bl, ch, cl, dh, and dl. The x86-64 doubles the length of the 32-bit
registers, naming them rax, rbx, rcx, rdx, rsi, rdi, rsp, and rbp. It then adds
another 8, named r8 through r15. Register rbp is no longer used as a frame
pointer in 64-bit mode.

Floating-point instructions were originally designed (in the 8087) to operate on
a stack of eight additional registers, each 80 bits in length. Three 16-bit companion
registers hold IEEE floating-point status and control, floating-point condition
codes, and ‘‘tag’’ bits that indicate whether the values in the various floating-point
registers are normal, subnormal, NaN, or garbage. All computation in this legacy
‘‘x87’’ portion of the instruction set is performed in extended precision; values
are converted to and from IEEE single- and double-precision floating-point when
written to or read from memory.

Vector instructions were added to the x86 with the Pentium/MMX in 1997.
To avoid requiring the operating system to save additional state when switching
between processes, MMX instructions were designed to share the x87 registers.
In practice the arrangement proved less than ideal: the extra internal precision
of x87 floating point could cause programs to behave differently than they did on
other IEEE 754-compliant machines, and stack-based addressing impeded code
improvement. Moreover MMX lacked support for floating-point vectors, and the
small total number of registers made it difficult to use vectors and floating point in
the same program. To a large degree, both x87 floating point and MMX have been
supplanted by a series of extensions known as SSE (Streaming SIMD Extensions)
and AVX (Advanced Vector Extensions), begun in 1999. These extensions employ
a separate set of 128, 256, or 512–bit registers—8 of them in 32-bit mode, 16 in
64-bit mode—and provide full support for IEEE floating point. While some 32-bit
compilers continue to use the older instructions and register file, 64-bit compilers
typically use only SSE and AVX.

PREPRINT

C 110 Chapter 5 Target Machine Architecture

Arm v7 has a total of 48 registers: 16 integer and 32 floating-point, named
r0–r15 and d0–d31. Registers r13, r14, and r15 double as the stack pointer (SP),
link register (return address—LR), and program counter (PC), respectively. All of
the integer registers are 32 bits wide. There is also a 32-bit processor status register
that includes the condition codes.

To facilitate fast, low-power interrupt handling in embedded applications, with
minimal saving and restoring of state, Arm provides separate ‘‘banked’’ copies
of the SP and LR register for each of several different interrupt (privilege) levels.
A so-called ‘‘fast interrupt’’ level has additional copies of r8–r12. While these
banked copies are generally of interest only to systems software, they need to be
mentioned in order to fully understand the 64-bit version of the ISA.

For Arm v8, designers increased the number of integer registers to 31, doubled
their width, and named them x0–x30. In a convention common to RISC machines,
a 32nd ‘‘virtual register’’ behaves as if it always contained a zero. As shown in Fig-
ure C 5.6, the lower halves of x0–x15 overlap r0–r15. In x16–x30, the designers
took the opportunity to overlap the banked copies of the 32-bit registers. This
convention allows high-privilege-level 64-bit code (e.g., a virtual machine monitor)
to more easily manipulate the state of medium-privilege-level 32-bit code (e.g., a
guest operating system). To avoid security leaks, 64-bit code is never permitted
to run at a lower privilege level than 32-bit code. The floating-point registers, for
their part, were simply doubled in length, from 64 to 128 bits each. As in x86 SSE,
they double as vector registers.

Register Conventions Beyond the special treatment given some registers in hard-
ware, the designers of both the x86 and Arm recommend additional conventions
to be enforced by software. On x86-32, register ebp is generally used for a frame
pointer, whether or not the compiler makes use of special frame management
instructions. Function values are returned in register eax (or in the pair eax:edx
in the case of 64-bit return values). Any subroutine that modifies registers ebx, esi,
or edi must save their old values in memory, and restore them before returning.
Any caller that needs the values in eax, ecx, or edx must save them before making
a call.

Additional conventions apply on x86-64. There is generally no frame pointer—
rsp is used as the base when accessing data in the stack, and rbp is just an ordinary
register. Moreover, the first six integer arguments to a subroutine are passed in
registers rdi, rsi, rdx, rcx, r8, and r9, respectively. If there are fewer arguments,
these registers must be saved by the caller if their contents are needed later. Registers
rbx, rbp, r13, r14, and r15 must be saved by the callee. (Calling sequences will
be discussed in more detail in Section 9.2.)

Conventions on Arm are similar. In 32-bit mode, in addition to r13, r14, and
r15 (SP, LR, and PC), which are special-cased in hardware, registers r0–r3 are
used by convention to hold the first four subroutine arguments and the return
value, if any. Register r9 is reserved for ‘‘platform-specific’’ purposes; r12 is used
as a scratch register for complex calls involving dynamic linking (to be discussed in
Section C 15.7). In 64-bit mode, x0–x7 are used for arguments and returns, r18 is

PREPRINT

5.4.5 Two Example Architectures: The x86 and Arm C 111

platform-specific, and r16 and r17 are call-time scratch registers. In both modes,
registers without special purposes are divided roughly 50-50 into caller-saves and
callee-saves groups.

Instructions

While it can be difficult to count the instructions in a given instruction set (the x86
can branch on any of 16 different combinations of the condition codes; does this
mean it has 16 conditional branch instructions, or one with 16 variants?), it is still
clear that the x86 has more, and more complex, instructions than does Arm. Some
of the features of the x86 not found on Arm include:

Binary-coded decimal arithmetic (see Sidebar 7.4).
Character-string search, compare, and copy operations.
Bit string search and copy operations.
Miscellaneous ‘‘combination’’ instructions. These perform the same task as
some multi-instruction sequence, but require less code space and presumably
run faster. Examples include subroutine calls and returns, stack operations, and
loop control.
Instructions to support the obsolete 80286 segmented memory system.

On the other hand, Arm provides:

‘‘Building-block’’ instructions that perform part of some operation too complex
to propagate through the pipeline as a single instruction.
‘‘Saturating’’ arithmetic, which ‘‘holds’’ at the extreme values of a given integer
type on overflow, rather than ‘‘rolling around’’ mod 2wordsize.
Combination shift-and-Φ instructions, for most arithmetic operations Φ.
Predication.
Pre- and post-decrement addressing.

More important than any difference in the number or types of instructions,
however, is the difference in how those instructions are encoded. Like most CISC
machines, the x86 places a heavy premium on minimizing code size (and thus the
need for memory at run time), at the expense of comparatively difficult instruction
decoding. Instructions range from 1 to 15 bytes in length, with a multitude of
internal formats. Similar fields do not necessarily have the same length, or appear
at the same offset, in different instructions. Operand specifiers vary in length
depending on the choice of addressing mode. In 64-bit (16-register) mode, the 4th
bit required to name a register is not contiguous with the other 3. One-byte prefix
codes can be prepended to certain instructions to modify their behavior, causing
them to repeat multiple times, access operands in a different segment of the 80286
address space, or lock the bus for atomic access to main memory.

The instruction encodings for Arm are substantially more regular, but they have
their own peculiarities. In particular, where the myriad versions of the x86 share a

PREPRINT

C 112 Chapter 5 Target Machine Architecture

single, common encoding, a 64-bit Arm machine supports three separate, quite
different encodings, called A32, T32, and A64. (All three can be generated from a
common assembly language.)

Like most RISC ISAs, A32 devotes 32 bits to every machine instruction. Its most
unusual characteristic is the reservation of 4 bits in most instructions to encode
predication conditions, and a 5th to indicate whether to set the condition codes.
Operations that cannot be encoded in 32 bits (e.g., because they would require a
32-bit immediate value) must be expressed with multiple instructions. To load a
32-bit value into a register, for example, one might use a MOV instruction to load
the lower half from a 16-bit intermediate value, followed by a MOVT (move top)
instruction to load the upper half.

Uniform instruction length has the desirable property of simplifying the con-
struction of a pipelined processor. A shortcoming is that easily encoded (e.g.,
single-operand) instructions contain unneeded bits. Because it can capture such
instructions in a smaller number of bytes, x86 code tends to be significantly denser
than equivalent A32 code. To address this relative weakness, Arm introduced the
T32 instruction set, also known as ‘‘Thumb.’’ The most commonly executed, easily
encoded instructions are specified in 16 bits in Thumb. Certain other instructions
are encoded in 32 bits (though not with the same encoding as in A32). Because it
lacks predication and some of the less common instructions, Thumb code tends to
run slightly less quickly than equivalent A32 code. It is substantially more dense,
however—a property of significant value in some embedded applications, where
memory space or bandwidth may be scarce. A common practice for such applica-
tions is to compile the most performance-critical code to A32 and the rest to T32.
The running program can switch from one instruction set to the other simply by
executing a special branch instruction.

When designing x86-64, AMD was able to accommodate longer register names
and new operations by adding an extra byte to existing instruction encodings.
For Arm, fixed instruction lengths made this strategy infeasible. In a manner
reminiscent of the previous design of Thumb, the company instead developed an
entirely new encoding for A64—one that captures most preexisting instructions, a
variety of new instructions (for 64-bit computation), and an extra bit per operand
to accommodate expansion of the integer register set from 16 to 32. The key to
making all of this fit in 32 bits was to reclaim the 4 bits devoted to predication in
A32. The resulting instruction set and encoding are reminiscent of MIPS, Power,
and SPARC, and RISC-V, all of which have always had 32 integer registers each.

As noted under ‘‘Registers’’ above, Arm designers chose to identify the new
integer registers of A64 with the ‘‘banked’’ register copies reserved for (privileged)
exception handling code in A32. To prevent 64-bit applications from using this
capability to ‘‘spy’’ on more privileged code, transitions between A64 and the
existing A32 and T32 encodings occur only on exceptions, when they can be
mediated by the operating system—user-level code cannot change into or out of
64-bit mode the way it can transition back and forth between A32 and T32.

PREPRINT

5.5 Compiling for Modern Processors C 113

3CHECK YOUR UNDERSTANDING

29. Describe the most general (complex) addressing modes of the x86 and Arm
architectures.

30. How many integer and floating-point registers are provided by each machine
in 32-bit mode? In 64-bit mode? How wide are these registers?

31. Summarize the register usage conventions of the x86 and Arm.

32. Explain the utility of A64’s ‘‘virtual’’ 32nd integer register.

33. List at least three ‘‘complex’’ instructions provided by the x86 instruction set
but not provided by the Arm instruction set.

34. List at least two mechanisms provided by Arm but not by the x86.

35. Describe how floating-point support in the x86 has evolved over time.

36. Summarize the most important difference in how instructions are encoded on
the x86 and Arm.

37. What is the purpose of Arm’s T32 (Thumb) instruction encoding?

38. Contrast the strategies adopted by AMD and Arm in extending their respective
architectures from 32 to 64 bits.

5.5 Compiling for Modern Processors

Programming a modern machine by hand, in assembly language, is a tedious un-
dertaking. Values must constantly be shuffled back and forth between registers and
memory, and operations that seem simple in a high-level language often require
multiple instructions. With the rise of RISC-style instruction sets and implemen-
tations, complexity that was once hidden in microcode has been exported to the
compiler. Fortunately, compilers don’t get bored or make careless mistakes, and
can easily deal with comparatively primitive instructions. In fact, when compiling
for recent implementations of the x86, compilers generally limit themselves to a
small, RISC-like subset of the instruction set, which the processor can pipeline
effectively. Old programs that make use of more complex instructions still run, but
not as fast; they don’t take full advantage of the hardware.

The real difficulty in compiling for modern processors lies not in the need to use
primitive instructions, but in the need to keep the pipeline full and to make effective
use of registers. Early in this century, a user who traded in, say, a Pentium III PCEXAMPLE 5.14

Performance ̸= clock rate for one with a Pentium 4 would typically find that while old programs ran faster
on the new machine, the speed improvement was nowhere near as dramatic as
the difference in clock rates would have led one to expect. Improvements would
generally be better if one could obtain new program versions that were compiled
with the newer processor in mind.

PREPRINT

C 114 Chapter 5 Target Machine Architecture

5.5.1 Keeping the Pipeline Full

Four main problems may cause a pipelined processor to stall:

1. Cache misses. A load instruction or an instruction fetch may miss in the cache.
2. Resource hazards. Two concurrently executing instructions may need to use the

same functional unit at the same time.
3. Data hazards. An instruction may need an operand that has not yet been

produced by an earlier but still executing instruction.
4. Control hazards. Until the outcome (and target) of a branch instruction is

determined, the processor does not know the location from which to fetch
subsequent instructions.

All of these problems are amenable, at least in part, to both hardware and
software solutions. On the hardware side, misses can generally be reduced by
building larger or more highly associative caches.5 Resource hazards, likewise, can
be addressed by building multiple copies of the various functional units (though
most processors don’t provide enough to avoid all possible conflicts). Misses,
resource hazards, and data hazards can all be addressed by out-of-order execution,
which allows a processor (at the cost of significant design complexity, chip area, and
power consumption) to consider a lengthy ‘‘window’’ of instructions, and make
progress on any of them for which operands and hardware resources are available.

Branches constitute something like 10% of all instructions in typical programs,6
so even a one-cycle stall on every branch could be expected to slow down execution
by 9% on average. On a deeply pipelined machine one might naively expect to stall
for more like five or even ten cycles while waiting for a new program counter to be
computed. To avoid such intolerable delays, most high-performance processors
incorporate hardware to predict the outcome of each branch, based on past behavior,
and to execute speculatively down the predicted path, in a way that can be ‘‘rolled
back’’ in the event of misprediction. To the extent that it predicts correctly, such a
processor can avoid control hazards altogether.

On the software side, the compiler has a major role to play in keeping the pipeline
full. For any given source program, there is an unbounded number of possible
translations into machine code. In general we should prefer shorter translations
over longer ones, but we must also consider the extent to which various transla-
tions will utilize the pipeline. On an in-order processor (one that always executes

5 The degree of associativity of a cache is the number of distinct lines in the cache in which the
contents of a given memory location might be found. In a one-way associative (direct-mapped)
cache, each memory location maps to only one possible line in the cache. If the program uses two
locations that map to the same line, the contents of these two locations will keep evicting each
other, and many misses will result. More highly associative caches are slower, but suffer fewer such
conflicts.

6 This is a very rough number. For the SPEC2000 benchmarks, Hennessy and Patterson report
percentages varying from 1 to 25 [HP17, 3rd ed., pp. 138–139].

PREPRINT

5.5.1 Keeping the Pipeline Full C 115

instructions in the order they appear in the machine language program), a stall will
inevitably occur whenever a load is followed immediately by an instruction that
needs the loaded value, because even first-level cache requires at least one extra
cycle to respond. A stall may also occur when the result of a slow-to-complete
floating-point operation is needed too soon by another instruction, when two con-
currently executing instructions need the same functional unit in the same cycle, or,
on a superscalar processor, when an instruction that uses a value is executed con-
currently with the instruction that produces it. In all these cases performance may
improve significantly if the compiler chooses a translation in which instructions
appear in a different order.

The general technique of reordering instructions at compile time so as to maxi-
mize processor performance is known as instruction scheduling. On an in-order
processor the goal is to identify a valid order that will minimize pipeline stalls at
run time. To achieve this goal the compiler requires a detailed model of the pipeline.
On an out-of-order processor the goal is simply to maximize instruction-level par-
allelism (ILP): the degree to which unrelated instructions lie near one another in
the instruction stream (and thus are likely to fall within the processor’s instruction
window). A compiler for such an out-of-order machine may be able to make do
with a less detailed pipeline model. At the same time, it may need to ensure a higher
degree of ILP, since out-of-order execution tends to be found on machines with
several pipelines.

DESIGN & IMPLEMENTATION

5.4 Delayed branch instructions
Successful pipelining depends on knowing the address of the next instruction
before the current instruction has completed, or has even been fully decoded.
With fixed-size instructions a processor can infer this address easily for straight-
line code, but not for the code that follows a branch. In an attempt to minimize
the impact of branch delays, several early RISC machines provided delayed
branch instructions: with these, the instruction immediately after the branch
would be executed regardless of the outcome of the branch.

Unfortunately, as architects moved to more aggressive, deeply pipelined
processor implementations, the number of cycles required to correctly resolve a
branch became more than one could cover with a single additional instruction.
A few processors were designed with an architecturally visible branch delay of
more than one cycle, but this proved not to be a viable strategy: it was simply
too difficult for the compiler to find enough unrelated instructions to schedule
into the slots. Instead, modern processors invariably rely on a hardware branch
predictor to guess the outcome and targets of branches early, so that the pipeline
can continue execution. That said, even when hardware is able to predict the
outcome of branches, it can be useful for the compiler to do so also, in order to
schedule instructions to minimize load delays on the most likely cross-branch
code paths.

PREPRINT

C 116 Chapter 5 Target Machine Architecture

Instruction scheduling can have a major impact on resource and data hazards.
We will consider the topic of instruction scheduling in some detail in Section C 17.6.
In the remainder of the current subsection we focus on the case of loads, where even
an access that hits in the cache has the potential to delay subsequent instructions.

Software techniques to reduce the incidence of cache misses typically require
large-scale restructuring of control flow or data layout. Though aggressive optimiz-
ing compilers may reorganize loops for better cache locality, especially in scientific
programs (a topic we will consider in Section C 17.7.2), most simply assume that
every memory access will hit in the L1 cache, and aim to tolerate the delay that
such a hit entails. The hit assumption is generally a good one: most programs on
most machines find their data in (some level of) the cache more than 90% of the
time (often over 99%). The goal of the compiler is to make sure that the pipeline
can continue to operate during the time that it takes the cache to respond.

Consider a load instruction that hits in the L1 cache. The number of cycles that
must elapse before a subsequent instruction can use the result is known as the
load delay. Even the fastest caches induce a one-cycle load delay. If the instruction
immediately after a load attempts to use the loaded value, a one-cycle load penalty
(a pipeline stall) will occur. Longer pipelines can have load delays of two or even
three cycles.

To avoid load penalties (in the absence of out-of-order execution), the compiler
may schedule one or more unrelated instructions into the delay slot(s) between a
load and a subsequent use. In the following code, for example, a simple in-orderEXAMPLE 5.15

Filling a load delay slot pipeline might incur a one-cycle penalty between the second and third instructions:

r2 := r1 + r2
r3 := A –– load
r3 := r3 + r2

If we swap the first two instructions, the penalty goes away:

r3 := A –– load
r2 := r1 + r2
r3 := r3 + r2

The second instruction gives the first instruction time enough to retrieve A before
it is needed in the third instruction.

To maintain program correctness, an instruction-scheduling algorithm must
respect all dependences among instructions. These dependences come in three
varieties:

Flow dependence (also called true or read-after-write dependence): a later instruc-
tion uses a value produced by an earlier instruction.

Anti-dependence (also called write-after-read dependence): a later instruction
overwrites a value read by an earlier instruction.

Output dependence (also called write-after-write dependence): a later instruction
overwrites a value written by a previous instruction.

PREPRINT

5.5.1 Keeping the Pipeline Full C 117

A compiler can often eliminate anti- and output dependences by renaming
registers. In the following, for example, anti-dependences prevent us from movingEXAMPLE 5.16

Renaming registers for
scheduling

either the instruction before the load or the one after the add into the delay slot of
the load:

r3 := r1 + 3 –– immovable×↓
r1 := A –– load
r2 := r1 + r2

r1 := 3 –– immovable×↑

If we use a different register as the target of the load, however, then either instruction
can be moved:

r3 := r1 + 3 –– movable↓
r5 := A –– load
r2 := r5 + r2

r1 := 3 –– movable↑
becomes

r5 := A –– load
r3 := r1 + 3
r1 := 3
r2 := r5 + r2

The need to rename registers in order to move instructions can increase the num-
ber of registers needed by a given stretch of code. To maximize opportunities
for concurrent execution, out-of-order processor implementations may perform
register renaming dynamically in hardware, as noted in Section C 5.4.3. These im-
plementations possess more physical registers than are visible in the instruction set.
As instructions are considered for execution, any that use the same architectural
register for independent purposes are given separate physical copies on which to
do their work. If a processor does not perform hardware register renaming, then
the compiler must balance the desire to eliminate pipeline stalls against the desire
to minimize the demand for registers (so that they can be used to hold loop indices,
local variables, and other comparatively long-lived values).

DESIGN & IMPLEMENTATION

5.5 Delayed load instructions
In order to enforce the flow dependence between a load of a register and its
subsequent use, a processor must include so-called interlock hardware. To
minimize chip area, several of the very early RISC processors provided this
hardware only in the case of cache misses. The result was an architecturally
visible delayed load instruction similar to the delayed branches discussed in
Sidebar C 5.4. The value of the register targeted by a delayed load was undefined
in the immediately subsequent instruction slot. Filling the delay slot of a delayed
load with an unrelated instruction was thus a matter of correctness, not just of
performance. If a compiler was unable to find a suitable ‘‘real’’ instruction, it
had to fill the delay slot with a no-op (nop). More recent RISC machines have
abandoned delayed loads; their implementations are fully interlocked. Within
processor families old binaries continue to work correctly; the (nop) instructions
are simply redundant.

PREPRINT

C 118 Chapter 5 Target Machine Architecture

5.5.2 Register Allocation

A load-store architecture explicitly acknowledges that moving data between reg-
isters and memory is expensive. A store instruction costs a minimum of one
cycle—more if several stores are executed in succession and the memory system
can’t keep up. A load instruction costs a minimum of one or two cycles (depending
on whether the delay slot can be filled), and can cost scores or even hundreds
of cycles in the event of a cache miss. In order to minimize the use of loads and
stores, a good compiler must keep things in registers whenever possible. We saw
an example in Chapter 1: the most striking difference between the ‘‘optimized’’
code of Example 1.2 and the naive code of Figure 1.7 is the absence in the former
of most of the loads and stores.

Register allocation is typically a two-stage process. In the first stage the compiler
identifies the portions of the abstract syntax tree that represent basic blocks: straight-
line sequences of code with no branches in or out. Within each basic block it assigns
a ‘‘virtual register’’ to each loaded or computed value. In effect, this assignment
amounts to generating code under the assumption that the target machine has an
unbounded number of registers. In the second stage, the compiler maps the virtual
registers of an entire subroutine onto the architectural (hardware) registers, using
the same architectural register when possible to hold different virtual registers at
different times, and spilling virtual registers to memory when there aren’t enough
architectural registers to go around.

We will examine this two-stage process in more detail in Section C 17.8. For
now, we illustrate the ideas with a simple example. Suppose we are compiling aEXAMPLE 5.17

Register allocation for a
simple loop

function that computes the variance σ 2 of the contents of an n-element vector.
Mathematically,

σ 2 = 1
n
∑

i

(x i − x)2 =

(
1
n
∑

i

x2
i

)
− x2

where x0 . . . xn−1 are the elements of the vector, and x = 1/n
∑

i x i is their average.
In pseudocode,

double sum := 0
double squares := 0
for int i in 0 . . n−1

sum +:= A[i]
squares +:= A[i] × A[i]

double average := sum / n
return (squares / n) − (average × average)

After some simple code improvements and the assignment of virtual registers,
the assembly language for this function on a modern machine is likely to look
something like Figure C 5.7. This code uses two integer virtual registers (v1 and
v2) and eight floating-point virtual registers (w1–w8). For each of these we can
compute the range over which the value in the register is useful, or live. This range

PREPRINT

5.5.2 Register Allocation C 119

1. v1 := &A –– pointer to A[1]
2. v2 := n –– count of elements yet to go
3. w1 := 0.0 –– sum
4. w2 := 0.0 –– squares
5. goto L2
6. L1: w3 := *v1 –– A[i] (floating point)
7. w1 := w1 + w3 –– accumulate sum
8. w4 := w3 × w3
9. w2 := w2 + w4 –– accumulate squares

10. v1 := v1 + 8 –– 8 bytes per double-word
11. v2 := v2 − 1 –– decrement count
12. L2: if v2 > 0 goto L1
13. w5 := w1 / n –– average
14. w6 := w2 / n –– average of squares
15. w7 := w5 × w5 –– square of average
16. w8 := w6 − w7
17. . . . –– return value in w8

Figure 5.7 Pseudo-assembly code for a vector variance computation.

extends from the point at which the value is defined to the last point at which the
value is used. For register w4, for example, the range is only one instruction long,
from the assignment at line 8 to the use at line 9. For register v1, the range is the
union of two subranges, one that extends from the assignment at line 1 to the use
(and redefinition) at line 10, and another that extends from this redefinition around
the loop to the same spot again.

Once we have calculated live ranges for all virtual registers we can create a
mapping onto the architectural registers. We can use a single architectural register
for two virtual registers only if their live ranges do not overlap. If the number of
architectural registers required is larger than the number available on the machine
(after reserving a few for such special values as the stack pointer), then at various
points in the code we shall have to write (spill) some of the virtual registers to
memory in order to make room for the others.

In our example program, the live ranges for the two integer registers overlap, so
they will have to be assigned to separate architectural registers. Among the floating-
point registers, w1 overlaps with w2–w4, w2 overlaps with w3–w5, w5 overlaps
with w6, and w6 overlaps with w7. There are several possible mappings onto three
architectural floating-point registers, one of which is shown in Figure C 5.8.

Interaction with Instruction Scheduling

From the point of view of execution speed, the code in Figure C 5.8 has at least two
problems. First, of the seven instructions in the loop, nearly half are devoted to
bookkeeping: updating the pointer into the array, decrementing the loop count,
and testing the terminating condition. Second, when run on a pipelined machine
with in-order execution, the code is likely to experience a very high number of
stalls. Exercise C 5.21 explores a first step toward addressing the bookkeeping

PREPRINT

C 120 Chapter 5 Target Machine Architecture

1. r1 := &A
2. r2 := n
3. f1 := 0.0
4. f2 := 0.0
5. goto L2
6. L1: f3 := *r1 –– no delay
7. f1 := f1 + f3 –– 1-cycle wait for f3
8. f3 := f3 × f3 –– no delay
9. f2 := f2 + f3 –– 4-cycle wait for f3

10. r1 := r1 + 8 –– no delay
11. r2 := r2 − 1 –– no delay
12. L2: if r2 > 0 goto L1 –– no delay
13. f1 := f1 / n
14. f2 := f2 / n
15. f1 := f1 × f1
16. f1 := f2 − f1
17. . . . –– return value in f1

Figure 5.8 The vector variance example with architectural registers assigned. Also shown in
the body of the loop are the number of stalled cycles that can be expected on a simple in-order
pipelined machine, assuming a one cycle penalty for loads, two cycle penalty for floating-point
adds, and four cycle penalty for floating-point multiplies.

overhead. We consider the stalls below, and return to both problems in more detail
in Chapter 17.

We noted in Section C 5.5.1 that floating-point instructions commonly employEXAMPLE 5.18
Register allocation and
instruction scheduling

a separate, longer pipeline. Because they take more cycles to complete, there can
be a significant delay before their results are available for use in other instructions.
Suppose that floating-point add and multiply instructions must be followed by two
and four cycles, respectively, of unrelated computation (these are modest figures;
real machines often have longer delays). Also suppose that the result of a load is
not available for a modest one-cycle delay. In the context of our vector variance
example, these delays imply a total of five stalled cycles in every iteration of the loop,
even if the hardware successfully predicts the outcome and target of the branch at
the bottom. Added to the seven instructions themselves, this implies a total of 12
cycles per loop iteration (i.e., per vector element).

By rescheduling the instructions in the loop (Figure C 5.9) we can eliminate all
but one cycle of stall. This brings the total number of cycles per iteration down
to only eight, a reduction of 33%. The savings comes at a cost, however: we now
execute the multiply instruction before the first floating-point add, and must use
an extra architectural register to hold on to the add’s second argument. This effect
is not unusual: instruction scheduling has a tendency to overlap the live ranges of
virtual registers whose ranges were previously disjoint, leading to an increase in
the number of architectural registers required.

On a machine with out-of-order execution, hardware is likely (with the assis-
tance of register renaming) to transform the code of Figure C 5.8 into something

PREPRINT

5.5.2 Register Allocation C 121

1. r1 := &A
2. r2 := n
3. f1 := 0.0
4. f2 := 0.0
5. goto L2
6. L1: f3 := *r1
7. r1 := r1 + 8 –– no delay
8. f4 := f3 × f3 –– no delay
9. f1 := f1 + f3 –– no delay

10. r2 := r2 − 1 –– no delay
11. f2 := f2 + f4 –– 1-cycle wait for f4
12. L2: if r2 > 0 goto L1 –– no delay
13. f1 := f1 / n
14. f2 := f2 / n
15. f1 := f1 × f1
16. f1 := f2 − f1
17. . . . –– return value in f1

Figure 5.9 The vector variance example after instruction scheduling. All but one cycle of delay
has been eliminated. Because we have hoisted the multiply above the first floating-point add,
however, we need an extra architectural floating-point register.

akin to Figure C 5.9 automatically on the fly, at the expense of chip area and density.
As of this writing, there is still considerable debate in the architecture commu-
nity regarding the relative merits of static (compiler) and dynamic (hardware)
scheduling.

The Impact of Subroutine Calls

The register allocation scheme outlined above depends implicitly on the compiler
being able to see all of the code that will be executed over a given span of time
(e.g., an invocation of a subroutine). But what if that code includes calls to other
subroutines? If a subroutine were called from only one place in the program,
we could allocate registers (and schedule instructions) across both the caller and
the callee, effectively treating them as a single unit. Most of the time, however,
a subroutine is called from many different places in a program, and the code
improvements that we should like to make in the context of one caller may be
different from the ones that we should like to make in the context of a different
caller. For small, simple subroutines, the compiler may actually choose to expand
a copy of the code at each call site, despite the resulting increase in code size. This
inlining of subroutines can be an important form of code improvement, particularly
for object-oriented languages, which tend to have very large numbers of very small
subroutines.

When inlining is not an option, most compilers treat each subroutine as an
independent unit. When a body of code for which we are attempting to perform
register allocation makes a call to a subroutine, there are several issues to consider:

PREPRINT

C 122 Chapter 5 Target Machine Architecture

Parameters must generally be passed. Ideally, we should like to pass them in
registers.
Any registers that the callee will use internally, but which contain useful values
in the caller, must be spilled to memory and then reread when the callee returns.
Any variables that the callee might load from memory, but which have been
kept in a register in the caller, must be written back to memory before the call,
so that the callee will see the current value.
Any variables to which the callee might store a value in memory, but which
have been kept in a register in the caller, must be reread from memory when
the callee returns, so that the caller will see the current value.

If the caller does not know exactly what the callee might do (this is often the
case—the callee might not have been compiled yet), then the compiler must make
conservative assumptions. In particular, it must assume that the callee reads and
writes every variable visible in its scope. The caller must write any such variable
back to memory prior to the call, if its current value is (only) in a register. If it
needs the value of such a variable after the call, it must reread it from memory.

With perfect knowledge of both the caller and the callee, we could arrange across
subroutine calls to save and restore precisely those registers that are both in use in
the caller and needed (for internal purposes) in the callee. Without this knowledge,
we can choose either for the caller to save and restore the registers it is using, before
and after the call, or for the callee to save and restore the registers it needs internally,
at the top and bottom of the subroutine. In practice it is conventional to choose the
latter alternative for at least some static subset of the register set, for two reasons.
First, while a subroutine may be called from many locations, there is only one copy
of the subroutine itself. Saving and restoring registers in the callee, rather than
the caller, can save substantially on code size. Second, because many subroutines
(particularly those that are called most frequently) are very small and simple, the
set of registers used in the callee tends, on average, to be smaller than the set in
use in the caller. We will look at subroutine calling sequences and inlining in more
detail in Sections 9.2 and 9.2.4, respectively.

DESIGN & IMPLEMENTATION

5.6 In-line subroutines
Subroutine inlining presents, to a large extent, a classic time-space tradeoff.
Inlining one instance of a subroutine replaces a relatively short calling sequence
with a subroutine body that is typically significantly longer. In return, it avoids
the execution overhead of the calling sequence, enables the compiler to perform
code improvement across the call without performing interprocedural analysis,
and typically improves locality, especially in the L1 instruction cache.

PREPRINT

5.6 Summary and Concluding Remarks C 123

3CHECK YOUR UNDERSTANDING

39. List the four principal causes of pipeline stalls.

40. What is a pipeline interlock?

41. What is a delayed branch instruction? A delayed load instruction?

42. What is instruction scheduling? Why is it important on modern machines?

43. What is the impact of out-of-order execution on compile-time instruction
scheduling?

44. What is branch prediction? Why is it important?

45. Describe the interaction between instruction scheduling and register allocation.

46. What is the live range of a register?

47. What is subroutine inlining? What benefits does it provide? When is it possible?
What is its cost?

48. Summarize the impact of subroutine calls on register allocation.

5.6 Summary and Concluding Remarks

Computer architecture has a major impact on the sort of code that a compiler
must generate, and the sorts of code improvements it must effect in order to obtain
good performance. Since the early 1980s, the trend in processor design has been
to equip the compiler with more and more knowledge of the low-level details of
processor implementation, so that the generated code can use the implementation
to its fullest. This trend has blurred the traditional dividing line between processor
architecture and implementation: while a compiler can generate correct code
based on an understanding of the architecture alone, it cannot generate fast code
unless it understands the implementation as well. In effect, timing issues that were
once hidden in the microcode of microprogrammed processors (and which made
microprogramming an extremely difficult and arcane craft) have been exported
into the compiler.

In the first several sections of this chapter we surveyed the organization of mem-
ory and the representation of data (including integer and floating-point arithmetic),
the variety of typical assembly language instructions, and the evolution of modern
architectures and implementations. As examples we compared the x86 and Arm.
In the final section we discussed why compiling for modern machines is hard. The
principal tasks include instruction scheduling, to accommodate load and branch
delays and multiple functional units, and register allocation, to minimize memory
traffic. We noted that there is often a tension between these tasks, and that both
are made more difficult by frequent subroutine calls.

PREPRINT

C 124 Chapter 5 Target Machine Architecture

The past two decades have seen a shake-up in RISC machines. IBM continues
to invest in Power for the server market, but its PowerPC consumer line has faded
away. MIPS Technologies announced in 2021 that it was transitioning development
to the RISC-V ISA. Fujitsu, the last remaining manufacturer of SPARC processors,
has announced plans to phase out production in the late 2020s. Arm has been
the big winner, with processors designed and sold by Apple, Motorola, nVidia,
Qualcomm, Texas Instruments, and scores of others. The RISC-V open standard,
originally developed at UC-Berkeley, also appears to be on the rise, with adoptions
by a variety of commercial vendors; it will be interesting to watch its development
over the coming years.

Despite the burden of backward compatibility, the x86 overwhelmingly domi-
nates the desktop and server market, thanks to the marketing prowess of IBM, Intel,
and Microsoft, and to the engineering prowess of Intel and AMD, which have suc-
cessfully decoupled the architecture from the implementation. IBM’s z architecture,
for its part, enjoys a virtual monopoly in mainframe computing. While modern
implementations of the x86 and z continue to implement their full respective ISAs,
they do so on top of pipelined implementations with uncompromised performance.

With growing demand for a 64-bit address space, a major battle developed
in the x86 world around the turn of the century. Intel undertook to design an
entirely new (and very different) instruction set for their IA-64/Itanium line of
processors. They provided an x86 compatibility mode, but it was implemented in a
separate portion of the processor—essentially a Pentium subprocessor embedded
in the corner of the chip. Application writers who wanted speed and address space
enhancements were expected to migrate to the new instruction set. AMD took a
more conservative approach, at least from a marketing perspective, and developed
a backward-compatible 64-bit extension to the x86 instruction set; its AMD64
processors provided a much smoother upward migration path. In response to
market demand, Intel subsequently licensed the AMD64 architecture (which it
now calls Intel 64) for use in its 64-bit x86 processors. In designing its 64-bit
extension, Arm has taken an intermediate approach: its 32- and 64-bit modes share
registers, and have essentially the same instructions, but use different instruction
encodings.

As Arm pushes for a growing slice of the laptop/desktop/server market, it will
come into increasingly direct competition with the x86, likely resulting in ever
more diverse implementations and instruction set extensions. In the development
of extensions, both the CISC and RISC ‘‘design philosophies’’ are still very much
alive [SW94]. The ‘‘CISC-ish’’ philosophy suggests that newly available resources
(e.g., increases in chip area) be used to implement functions that would otherwise
have to occur in software, such as decimal arithmetic, security, virtualization, or
transactional synchronization (to be discussed in Section 13.4.5). The ‘‘RISC-ish’’
philosophy suggests that resources be used to improve the speed of existing func-
tions, for example by increasing cache size, employing faster but larger functional
units, increasing the number of cores, or deepening the pipeline and decreasing
cycle time. Depending on one’s point of view, ‘‘data-parallel’’ accelerators for

PREPRINT

5.7 Exercises C 125

graphics, compression, encryption, transcoding, deep learning, and the like may
be consistent with either philosophy.

Heat dissipation and limited ILP are increasingly the main constraints on single-
core performance. In response, all the major vendors have developed multicore
versions of their respective architectures. It seems increasingly likely that future
processors will be highly heterogeneous, with multiple implementation strategies—
and even multiple instruction set architectures—deployed in different cores, each
optimized for a different sort of program. Such processors will certainly require
new compiler techniques. At perhaps no time in the past 30 years has the future of
microarchitecture been in so much flux. However it all turns out, it is clear that
processor and compiler technology will continue to evolve together.

5.7 Exercises

5.1 Consider sending a message containing a string of integers over the Inter-
net. What problems may occur if the sending and receiving machines have
different ‘‘endian-ness’’? How might you solve these problems?

5.2 What is the largest positive number in 32-bit two’s complement arithmetic?
What is the smallest (largest magnitude) negative number? Why are these
numbers not the additive inverse of each other?

5.3 (a) Express the decimal number 1234 in hexadecimal.
(b) Express the unsigned hexadecimal number 0x2ae in decimal.
(c) Interpret the hexadecimal bit pattern 0xffd9 as a 16-bit 2’s complement

number. What is its decimal value?
(d) Suppose that n is a negative integer represented as a k-bit 2’s complement

bit pattern. If we reinterpret this bit pattern as an unsigned number, what
is its numeric value as a function of n and k?

5.4 What will the following C code print on a little-endian machine like the x86?
What will it print on a big-endian machine?

unsigned short n = 0x1234; // 16 bits
unsigned char *p = (unsigned char *) &n;
printf ("%d\n", *p);

5.5 (a) Suppose we have a machine with hardware support for 8-bit integers.
What is the decimal value of 110110012, interpreted as an unsigned
quantity? As a signed, two’s complement quantify? What is its two’s
complement additive inverse?

(b) What is the 8-bit binary sum of 110110012 and 100100012? Does this
sum result in overflow if we interpret the addends as unsigned numbers?
As signed two’s complement numbers?

PREPRINT

C 126 Chapter 5 Target Machine Architecture

5.6 In Section C 5.2.1 we observed that overflow occurs in two’s complement
addition when we add two non-negative numbers and obtain an apparently
negative result, or add two negative numbers and obtain an apparently non-
negative result. Prove that it is equivalent to say that a two’s complement
addition operation overflows if and only if the carry into most significant
place differs from the carry out of most significant place. (This trivial check
is the one typically performed in hardware.)

5.7 In Section C 5.2.1 we claimed that a two’s complement integer could be
correctly negated by flipping the bits, adding 1, and discarding any carry out
of the left-most place. Prove that this claim is correct.

5.8 What is the single-precision IEEE floating-point number whose value is
closest to 6.022× 1023?

5.9 Occasionally one sees a C program in which a double-precision floating-point
number is used as an integer counter. Why might a programmer choose to
do this?

5.10 Modern compilers often find they don’t have enough registers to hold all the
things they’d like to hold. At the same time, VLSI technology has reached
the point at which there is room on a chip to hold many more registers than
are found in the typical ISA. Why are we still using instruction sets with only
32 integer registers? Why don’t we make, say, 64 or 128 of them visible to the
programmer?

5.11 Some early RISC machines (SPARC among them) provided a ‘‘multiply step’’
instruction that performed one iteration of the standard shift-and-add algo-
rithm for binary integer multiplication. Speculate as to the rationale for this
instruction.

5.12 Why do you think RISC machines standardized on 32-bit instructions? Why
not some smaller or larger length? Aside from Arm and RISC-V, why not
multiple lengths?

5.13 Consider a machine with three condition codes, N, Z, and O. N indicates
whether the most recent arithmetic operation produced a negative result. Z
indicates whether it produced a zero result. O indicates whether it produced
a result that cannot be represented in the available precision for the numbers
being manipulated (i.e., outside the range 0 . . 2n for unsigned arithmetic,
−2n−1 . . 2n−1−1 for signed arithmetic). Suppose we wish to branch on
condition A op B, where A and B are unsigned binary numbers, for op ∈
{<,≤, =, ̸=, >,≥}. Suppose we subtract B from A, using two’s complement
arithmetic. For each of the six conditions, indicate the logical combination
of condition-code bits that should be used to trigger the branch. Repeat
the exercise on the assumption that A and B are signed, two’s complement
numbers.

5.14 We implied in Section C 5.4.1 that if one adds a new instruction to a non-
pipelined, microcoded machine, the time required to execute that instruction
is (to first approximation) independent of the time required to execute all

PREPRINT

5.7 Exercises C 127

other instructions. Why is it not strictly independent? What factors could
cause overall execution to become slower when a new instruction is intro-
duced?

5.15 Suppose that loads constitute 25% of the typical instruction mix on a certain
machine. Suppose further that 15% of these loads miss in the last level of
on-chip cache, with a penalty of 120 cycles to reach main memory. What is
the contribution of last-level cache misses to the average number of cycles
per instruction? You may assume that instruction fetches always hit in the L1
cache. Now suppose that we add an off-chip (L3 or L4) cache that can satisfy
90% of the misses from the last-level on-chip cache, at a penalty of only 30
cycles. What is the effect on cycles per instruction?

5.16 Consider the following code fragment in pseudo-assembly notation:

1. r1 := K
2. r4 := &A
3. r6 := &B
4. r2 := r1 × 4
5. r3 := r4 + r2
6. r3 := *r3 –– load (register indirect)
7. r5 := *(r3 + 12) –– load (displacement)
8. r3 := r6 + r2
9. r3 := *r3 –– load (register indirect)

10. r7 := *(r3 + 12) –– load (displacement)
11. r3 := r5 + r7
12. S := r3 –– store

(a) Give a plausible explanation for this code (what might the corresponding
source code be doing?).

(b) Identify all flow, anti-, and output dependences.
(c) Schedule the code to minimize load delays on a single-pipeline, in-order

processor.
(d) Can you do better if you rename registers?

5.17 With the development of deeper, more complex pipelines, delayed loads and
branches became significantly less appealing as features of a RISC instruction
set. In later generations, architects eliminated visible load delays but were
unable to do so for branches. Explain.

5.18 Some processors, including the Power series and certain members of the x86
family, require one or more cycles to elapse between a condition-determining
instruction and a branch instruction that uses that condition. What options
does a scheduler have for filling such delays?

5.19 Branch prediction can be performed statically (in the compiler) or dynam-
ically (in hardware). In the static approach, the compiler guesses which
way the branch will usually go, encodes this guess in the instruction, and
schedules instructions for the expected path. In the dynamic approach, the

PREPRINT

C 128 Chapter 5 Target Machine Architecture

hardware keeps track of the outcome of recent branches, notices branches or
patterns of branches that recur, and predicts that the patterns will continue
in the future. Discuss the tradeoffs between these two approaches. What are
their comparative advantages and disadvantages?

5.20 Consider a machine with a three-cycle penalty for incorrectly predicted
branches and a zero-cycle penalty for correctly predicted branches. Suppose
that in a typical program 20% of the instructions are conditional branches,
which the compiler or hardware manages to predict correctly 75% of the time.
What is the impact of incorrect predictions on the average number of cycles
per instruction? Suppose the accuracy of branch prediction can be increased
to 90%. What is the impact on cycles per instruction?

Suppose that the number of cycles per instruction would be 1.5 with perfect
branch prediction. What is the percentage slowdown caused by mispredicted
branches? Now suppose that we have a superscalar processor on which the
number of cycles per instruction would be 0.6 with perfect branch prediction.
Now what is the percentage slowdown caused by mispredicted branches?
What do your answers tell you about the importance of branch prediction on
superscalar machines?

5.21 Consider the code in Figure C 5.9. In an attempt to eliminate the remaining
delay, and reduce the overhead of the bookkeeping (loop control) instructions,
one might consider unrolling the loop: creating a new loop in which each
iteration performs the work of k iterations of the original loop. Show the
code for k = 2. You may assume that n is even, and that your target machine
supports displacement addressing. Schedule instructions as tightly as you
can. How many cycles does your loop consume per vector element?

5.8 Explorations

5.22 Skip ahead to Sidebar 7.4 (Decimal types) in the main text. Write algorithms
to convert BCD numbers to binary, and vice versa. Try writing the routines
in assembly language for your favorite machine (if your machine has special
instructions for this purpose, pretend you’re not allowed to use them). How
many cycles are required for the conversion?

5.23 Is microprogramming an idea that has outlived its usefulness, or are there ap-
plication domains for which it still makes sense to build a microprogrammed
machine? Defend your answer.

5.24 If you have access to both CISC and RISC machines, compile a few programs
for both machines and compare the size of the target code. Can you generalize
about the ‘‘space penalty’’ of RISC code?

5.25 The Intel IA-64 (Itanium) architecture is neither CISC nor RISC. It belongs to
an architectural family known as long instruction word (LIW) machines (Intel
calls it explicitly parallel instruction set computing [EPIC]). Find an Itanium

PREPRINT

5.9 Bibliographic Notes C 129

manual or tutorial and learn about the instruction set. Compare and contrast
it with the x86 and Arm instruction sets. Discuss, from a compiler writer’s
point of view, the challenges and opportunities presented by the IA-64.

5.26 Research the history of the x86. Learn how it has been extended over the
years. Write a brief paper describing the extensions. Identify the portions of
the instruction set that are still useful today (i.e., are targeted by modern com-
pilers), and the portions that are maintained solely for the sake of backward
compatibility.

5.27 If you have access to computers with more than one kind of processor, compile
a few programs on each machine and time their execution. (If possible, use
the same compiler [e.g., gcc] and options on each machine.) Discuss the
factors that may contribute to different run times. How closely do the ratios
of run times mirror the ratios of clock rates? Why don’t they mirror them
exactly?

5.28 Branch prediction can be characterized as control speculation: it makes a guess
about the future control flow of the program that saves enough time when
it’s right to outweigh the cost of cleanup when it’s wrong. Some researchers
have proposed the complementary notion of value speculation, in which the
processor would predict the value to be returned by a cache miss, and proceed
on the basis of that guess. What do you think of this idea? How might you
evaluate its potential?

5.29 Can speculation be useful in software? How might you (or a compiler or other
tool) be able to improve performance by making guesses that are subject to
future verification, with (software) rollback when wrong? (Hint: Think about
operations that require communication over slow Internet links.)

5.30 Translate the high-level pseudocode for vector variance (Example C 5.17)
into your favorite programming language, and run it through your favorite
compiler. Examine the resulting assembly language. Experiment with differ-
ent levels of optimization (code improvement). Discuss the quality of the
code produced.

5.31 Try to write a code fragment in your favorite programming language that
requires so many registers that your favorite compiler is forced to spill some
registers to memory (compile with a high level of optimization). How com-
plex does your code have to be?

5.32 Experiment with small subroutines in C++ to see how much time can be
saved by expanding them in-line.

5.9 Bibliographic Notes

The standard reference in computer architecture is the graduate-level text by Hen-
nessy and Patterson [HP17]. More introductory material can be found in the
undergraduate computer organization text by the same authors [PH20]. Students

PREPRINT

C 130 Chapter 5 Target Machine Architecture

without previous assembly language experience may be particularly interested in
the text of Bryant and O’Hallaron [BO16], which surveys computer organization
from the point of view of the systems programmer, focusing in particular on the
correspondence between source-level programs in C and their equivalents in x86
assembly.

The ‘‘RISC revolution’’ of the early 1980s was spearheaded by three separate
research groups. The first to start (though last to publish [Rad82]) was the 801
group at IBM’s T. J. Watson Research Center, led by John Cocke. IBM’s Power and
PowerPC architectures, though not direct descendants of the 801, take significant
inspiration from it. The second group (and the one that coined the term ‘‘RISC’’)
was led by David Patterson [PD80, Pat85] at UC Berkeley. The commercial SPARC
architecture is a direct descendant of the Berkeley RISC II design. The third
group was led by John Hennessy at Stanford [HJBG81]. The commercial MIPS
architecture is a direct descendant of the Stanford design.

Much of the history of pre-1980 processor design can be found in the text by
Siewiorek, Bell, and Newell [SBN82]. This classic work contains verbatim reprints
of many important original papers. In the context of RISC processor design, Smith
and Weiss [SW94] contrast the more ‘‘RISCy’’ and ‘‘CISCy’’ design philosophies
in their comparison of implementations of the Power and Alpha architectures.
Hennessy and Patterson’s architecture text includes an appendix that summarizes
the similarities and differences among the major commercial instruction sets [HP17,
App. K]. Current manuals for all the popular commercial processors are available
from their manufacturers.

An excellent treatment of computer arithmetic can be found in Goldberg’s
appendix to the Hennessy and Patterson architecture text [Gol17]. Additional
coverage of floating point can be found in the same author’s 1991 Computing
Surveys article [Gol91]. The IEEE 754 floating-point standard was printed in ACM
SIGPLAN Notices in 1985 [IEE87]. The texts of Muchnick [Muc97] and of Cooper
and Torczon [CT11] are excellent sources of information on instruction scheduling,
register allocation, subroutine optimization, and other aspects of compiling for
modern machines.

PREPRINT

PREPRINT

6Control Flow

6.7 Nondeterminacy

In Algol 68, the lack of ordering among expression operands was explicitly defined
as an example of nondeterminacy, which the language designers called collateral
execution. Several other built-in constructs in Algol 68 were nondeterministic
as well, and an explicit collateral statement allowed the programmer to specify
nondeterminacy in the evaluation of arbitrary expressions when desired.

Among his many contributions to the art of programming, Dijkstra [Dij75]
advocated the use of nondeterminacy for selection and logically controlled loops.
His guarded command notation has been adopted by several languages. One of
these is SR, a pedagogical language of the 1980s, which we will mention again
in Chapter 13. Imagine for a moment that we are writing a function to returnEXAMPLE 6.89

Avoiding asymmetry with
nondeterminism

the maximum of two integers. In C, we would probably employ a code fragment
something like this:

if (a > b) max = a;
else max = b;

Of course, we could also write

if (a >= b) max = a;
else max = b;

These fragments differ in their behavior when a = b: the first sets max = b; the
second sets max = a. As a practical matter the difference is irrelevant, since a and
b are equal, but it is in some sense aesthetically unpleasant to have to make an
arbitrary choice between the two. More important, the arbitrariness of the choice
makes it more difficult to reason about the code formally, or to prove it is correct.
In a language with guarded commands (the example here is in SR), one could writeEXAMPLE 6.90

Selection with guarded
commands

the following:

if a >= b -> max := a
[] b >= a -> max := b
fi

C 131

C 132 Chapter 6 Control Flow

The general form of this construct is

if condition -> stmt_list
[] condition -> stmt_list
[] condition -> stmt_list
...
fi

Each of the conditions in this construct is known as a guard. The guard and its
following statement, together, are called a guarded command. When control reaches
an if statement in a language with guarded commands, a nondeterministic choice
is made among the guards that evaluate to true, and the statement list following
the chosen guard is executed. In SR, the final condition may optionally be else. If
none of the conditions evaluates to true, the statement list following the else, if
any, is executed. If there is no else, the if statement as a whole has no effect. (In
Dijkstra’s original proposal, there was no else guard option, and it was a dynamic
semantic error for none of the guards to be true.) Interestingly, SR provides no
separate case construct: the SR compiler detects when the conditions of an if
statement test the same expression against a nonoverlapping set of compile-time
constants, and generates table-lookup code as appropriate.

SR uses guarded commands for several purposes in addition to selection. ItsEXAMPLE 6.91
Looping with guarded
commands

logically controlled looping construct (again patterned on Dijkstra’s proposal)
looks very much like the if statement:

do condition -> stmt_list
[] condition -> stmt_list
[] condition -> stmt_list
...
od

For each iteration of the loop, a nondeterministic choice is made among the guards
that evaluate to true, and the statement list following the chosen one is executed.
The loop terminates when none of the guards is true (there is no else guard option
for loops). Using this notation, we can write Euclid’s greatest common divisor
algorithm as follows:

do a > b -> a := a - b
[] b > a -> b := b - a
od
gcd := a

Nondeterministic Concurrency

While nondeterministic constructs have a certain appeal from an aesthetic and
formal semantics point of view, their most compelling advantages arise in concur-
rent programs, for which they can affect correctness. Imagine, for example, that weEXAMPLE 6.92

Nondeterministic message
receipt

are writing a simple dictionary program to support computer-aided design on a

PREPRINT

6.7 Nondeterminacy C 133

process client:
loop

toss coin
if heads, send read request to server

wait for response
if tails, send write request to server

wait for response

process server:
loop

receive read request
reply with data

OR
receive write request
update data and reply

Figure 6.7 Example of a concurrent program that requires nondeterminacy. The server must
be able to accept either a read or a write request, whichever is available at the moment. If it
insists on receiving them in any particular order, deadlock may result.

network of personal computers. The dictionary keeps a mapping from part names
to their specifications. A dictionary server process handles requests from clients on
other workstations on the network. Each request may be either a read (return me
the current specification for part X) or a write (define part Y as follows).1 Clients
send requests at unpredictable times. As a result, the server cannot tell at any given
time whether it should try to receive a read or a write request. If it makes the wrong
choice the entire system may deadlock (see Figure C 6.7).

Most message-based concurrent languages provide at least one mechanism to
specify nondeterministic choice among potential communication partners. These
mechanisms do not all look like guarded commands, but they have similar seman-
tics. In SR, one could write our dictionary server as follows:EXAMPLE 6.93

Nondeterministic server in
SR # declarations of request types:

op read_data(n : name) returns d : description
op write_data(n : name; d : description)
local subroutines:
proc lookup ... # find info in dictionary
proc update ... # change info in dictionary

1 This is of course an oversimplified example. Among other things, any real system of this sort
would need a mechanism to lock parts in the dictionary, so that no two clients would ever end up
designing new specifications for the same part concurrently.

PREPRINT

C 134 Chapter 6 Control Flow

code for server:
process server

do true -> # loop forever
in read_data(n) returns d -> d := lookup(n)
[] write_data(n, d) -> update(n, d)
ni

od
end

Here in is a nondeterministic construct whose guards can contain communication
statements. The guard write_data(n, d) will evaluate to true if and only if some
client is attempting to send a request containing a new specification for a part.
We shall see in Section C 13.5.3 that more elaborate guards can allow a server to
constrain the types of requests that it is willing to receive at a given point in time,
or even to ‘‘peek’’ inside a message to see if it is acceptable. If none of the guards of
an in statement is true, the server waits until one is.

Choosing among Guards

What happens if two or more guards evaluate to true? How does the language
implementation choose among them? We have glossed over this issue so far. TheEXAMPLE 6.94

Naive (unfair)
implementation of
nondeterminism

most naive implementation would treat a guarded command construct like a
conventional if. . . then . . . else:

server:
loop

if read_data request available
. . .

elsif write_data request available
. . .

else wait until some request is available

The problem with this implementation is that it always favors one type of request
over another; if read_data requests are always available, write_data requests
will never be received.

A slightly more sophisticated implementation would maintain a circular list ofEXAMPLE 6.95
‘‘Gotcha’’ in round-robin
implementation of
nondeterminism

the guards in each set of guarded commands. Each time it encounters the construct
in which these commands appear, it would check guards beginning with the one
after the one that succeeded last time. This technique works well in many cases,
but can fail consistently in others. In the following, for example (again in SR), the
guard of the first in statement combines a communication test with a Boolean
condition:

PREPRINT

6.7 Nondeterminacy C 135

process silly
var count : int := 0

do true ->
in A() st count % 2 = 1 -> ...
[] B() -> ...
[] C() -> ...
ni
count++

od

This example is somewhat contrived, but illustrates the problem. The st (‘‘such
that’’) clause in the first guard indicates that it can be chosen only on odd iterations
of the loop. Now imagine that A, B, and C requests are always available. If we
always check guards starting with the one after the one that succeeded last time
(beginning at first with the initial guard), then B will be chosen in the first iteration
(because count mod 2 ̸= 1), C will be chosen in the second iteration (when count
= 2), B will be chosen again in the third iteration (because again count mod 2 ̸=
1), and so forth. A will never be chosen. The lesson to be learned from this example
is that no deterministic algorithm will provide a truly satisfactory implementation
of a nondeterministic construct (see Sidebar C 6.10).

One final issue has to do with side effects. Guarded command constructs make
a nondeterministic choice among the guards that evaluate to true. They do not,
however, guarantee that all guards will be evaluated before the choice is made;
the implementation is free to ignore the rest of the guards once it has chosen one
that is true. A program may therefore produce unexpected or even unpredictable

DESIGN & IMPLEMENTATION

6.10 Nondeterminacy and fairness
Ideally, what we should like in a nondeterministic construct is a guarantee of
fairness. This turns out to be trickier than one might expect: there are several
plausible ways that ‘‘fair’’ might be defined. Certainly we should like to guarantee
that no guard that is always true is always skipped. Probably, we should like to
guarantee that no guard that is true infinitely often (in a hypothetical infinite
sequence of iterations) is always skipped. Better, we might ask that any guard that
is true infinitely often be chosen infinitely often. This stronger notion of fairness
will obtain if the choice among true guards is genuinely random. Unfortunately,
good pseudorandom number generators are expensive enough that we may not
want to use them to choose among guards. As a result, most implementations of
guarded commands are not provably fair. Many simply employ the circular list
technique. Others use somewhat ‘‘more random’’ heuristics. Many machines,
for example, provide a fast-running clock register that can be read efficiently in
user-level code. A reasonable ‘‘random’’ choice of the guard to evaluate first can
be made by interpreting this clock as an integer, and computing its remainder
modulo the number of guards.

PREPRINT

C 136 Chapter 6 Control Flow

results if any of the guards have side effects. This problem is the programmer’s
responsibility in SR. An alternative would have been to prohibit side effects and
have the compiler verify their absence.

3CHECK YOUR UNDERSTANDING

45. What is a guarded command?

46. Explain why nondeterminacy is particularly important for concurrent pro-
grams.

47. Give three alternative definitions of fairness in the context of nondeterminacy.

48. Describe three possible ways of implementing the choice among guards that
evaluate to true. What are the tradeoffs among these?

PREPRINT

PREPRINT

6Control Flow

6.9 Exercises

6.38 Explain why the following guarded commands in SR are not equivalent:

if a < b -> c := a if a < b -> c := a
[] b < c -> c := b [] b < c -> c := b
[] else -> c := d [] true -> c := d
fi fi

6.39 The astute reader may have noticed that the final line of the code in Exam-
ple C 6.91 embodies an arbitrary choice. It could just as easily have said
gcd := b. Show how to use a guarded command to restore the symmetry of
the program.

6.40 Write, in SR or pseudocode, a function that returns
(a) an arbitrary nonzero element of a given array
(b) an arbitrary permutation of a given array
In each case, write your code in such a way that if the implementation of
nondeterminism were truly random, all correct answers would be equally
likely.

C 137

C 138 Chapter 6 Control Flow

PREPRINT

PREPRINT

6Control Flow

6.10 Explorations

6.48 Learn about the select routine in the Unix (POSIX) library. How does it deal
with the need for nondeterministic receipt from multiple communication
partners? How would you use this routine to achieve the effect of the SR code
in Example C 6.93?

6.49 Explain how to use threads in Java to achieve the effect of Example C 6.93.

C 139

C 140 Chapter 6 Control Flow

PREPRINT

PREPRINT

7Type Systems

7.3.5 Generics in C++, Java, and C#

Though templates were not officially added to C++ until 1990, when the language
was almost ten years old, they were envisioned early in its evolution. C# generics,
likewise, were planned from the beginning, though they actually didn’t appear
until the 2.0 release in 2004. By contrast, generics were deliberately omitted from
the original version of Java. They were added to Java 5 (also in 2004) in response
to strong demand from the user community.

C++ Templates

Figure C 7.6 defines a simple generic class in C++ that we have named an arbiter.EXAMPLE 7.56
Generic arbiter class in
C++

The purpose of an arbiter object is to remember the ‘‘best instance’’ it has seen
of some generic parameter class T. We have also defined a generic chooser class
that provides an operator() method, allowing it to be called like a function. The
intent is that the second generic parameter to arbiter should be a subclass of
chooser, though as written the code does not enforce this. Given these definitions
we might write

class case_sensitive : chooser<string> {
public:

bool operator()(const string& a, const string& b) { return a < b; }
};
...
arbiter<string, case_sensitive> cs_names; // declare new arbiter
cs_names.consider(new string("Apple"));
cs_names.consider(new string("aardvark"));
cout << *cs_names.best() << "\n"; // prints "Apple"

Alternatively, we might define a case_insensitive descendant of chooser,
whereupon we could write

C 141

C 142 Chapter 7 Type Systems

template<typename T>
class chooser {
public:

virtual bool operator()(const T& a, const T& b) = 0;
};

template<typename T, typename C>
class arbiter {

T* best_so_far;
C comp;

public:
arbiter() { best_so_far = nullptr; }
void consider(T* t) {

if (!best_so_far || comp(*t, *best_so_far)) best_so_far = t;
}
T* best() {

return best_so_far;
}

};

Figure 7.6 Generic arbiter in C++.

arbiter<string, case_insensitive> ci_names; // declare new arbiter
ci_names.consider(new string("Apple"));
ci_names.consider(new string("aardvark"));
cout << *ci_names.best() << "\n"; // prints "aardvark"

Either way, the C++ compiler will create a new instance of the arbiter template
every time we declare an object (e.g., cs_names) with a different set of generic
arguments. Only at the point where we attempt to use such an object (e.g., by calling
consider) will it check to see whether the arguments support all the required
operations.

Because type checking is delayed until the point of use, there is nothing magic
about the chooser class. If we neglected to define it, and then left it out of the
header of case_sensitive (and similarly case_insensitive), the code would
still compile and run just fine.

C++ templates are an extremely powerful facility. Template parameters can
include not only types, but also values of ordinary (nongeneric) types, and nested
template instances. Programmers can also define specialized templates that provide
alternative implementations for certain combinations of arguments. These facilities
suffice to implement recursion, giving programmers the ability, at least in principle,
to compute arbitrary functions at compile time (in other words, templates are
Turing complete). An entire branch of software engineering has grown up around
so-called template metaprogramming, in which templates are used to persuade the
C++ compiler to generate custom algorithms for special circumstances [AG05].
As a comparatively simple example, one can write a template that accepts a generic

PREPRINT

7.3.5 Generics in C++, Java, and C# C 143

parameter int n and produces a sorting routine for n-element arrays in which all
of the loops have been completely unrolled.

As described in Section 7.3.4 (‘‘Implicit Instantiation’’), C++ allows generic
parameters to be inferred for generic functions, rather than specified explicitly. To
identify the right version of a generic function (from among an arbitrary number of
specializations), and to deduce the corresponding generic arguments, the compiler
must perform a complicated, potentially recursive pattern-matching operation.
This pattern matching is, in fact, quite similar to the type inference of ML-family
languages, described in Section 7.4. It can, as noted in Sidebar 7.8, be cast as
unification.

Unfortunately, per-use instantiation of templates has several significant draw-
backs. First, it requires that the compiler have access to the template’s source code
at the point in the program where instantiation occurs. In the code of Figure C 7.6,EXAMPLE 7.57

Template function bodies
moved to a .cc file

the arbiter class includes complete definitions of its methods. This is entirely
appropriate for small, simple classes, even in a header (.h) file. If the code were
significantly more complex, we might wish to put only the declaration of the generic
class in our header file (call it arbiter.h), and defer the method definitions to a
separate arbiter.cc file:

// arbiter.h:

template<typename T, typename C>
class arbiter {

T* best_so_far;
C comp;

public:
arbiter();
void consider(T* t);
T* best();

};

// arbiter.cc (imagine that these methods were long and complicated):

template<class T, class C>
arbiter<T,C>::arbiter() { best_so_far = nullptr; }

template<class T, class C>
void arbiter<T,C>::consider(T* t) {

if (!best_so_far || comp(*t, *best_so_far)) best_so_far = t;
}

template<class T, class C>
T* arbiter<T,C>::best() { return best_so_far; }

Compilation units that have access to the .h file will still compile successfully, but
now machine code for the arbiter methods will never be instantiated, because no
actual use of an arbiter object appears in the file (arbiter.cc) that contains the
source code. The likely symptom will be ‘‘missing symbol’’ errors from the linker.

PREPRINT

C 144 Chapter 7 Type Systems

C++ provides a partial solution to this problem, in the form of explicit instan-
tiation. If we anticipate the need for case-sensitive and case-insensitive string
arbiters, we can define the appropriate chooser classes in arbiter.h, and then
instantiate corresponding arbiter classes in arbiter.cc:

template class arbiter<string, case_sensitive>;
template class arbiter<string, case_insensitive>;

Of course, explicit instantiation works only if the implementor of a template’s
.cc file knows what instantiations will eventually be required. If this cannot
be anticipated, the bodies will need to remain in the .h file, regardless of their
complexity. But then a second problem arises: if the same template is instantiated
with the same arguments in 20 different compilation units, the compiler will end
up compiling the same code 20 times. Most modern linkers are smart enough to
keep only one copy of the machine code for a repeatedly instantiated template, but
we will have wasted not only the cost of repeated scanning and parsing, but of
semantic analysis, optimization, and code generation as well.

C++11 provides a partial solution to this second problem, in the form of extern
template declarations. If the templated class declaration and method definitions ofEXAMPLE 7.58

extern templates in
C++11

Example C 7.57 were included in their entirety in arbiter.h, and we then needed
a case-sensitive arbiter in each of 20 .cc files, we could write

extern template class arbiter<string, case_sensitive>;

in all but one of the files, instructing the compiler not to generate machine code
for that arbiter, but rather to assume that an appropriate implementation would
be generated elsewhere (presumably in the 20th file, where the extern keyword
would be omitted), and would thus be available at link time.

Historically, the final and perhaps the most frustrating problem with per-use
instantiation was its tendency to result in inscrutable error messages. ContinuingEXAMPLE 7.59

Instantiation-time errors in
C++ templates

our running example, if we define

class foo { // line 40 of source
public:

bool operator()(const string& a, const unsigned int b) {
// wrong type for second parameter, from arbiter's point of view
return a.length() < b;

}
};

and then say

arbiter<string, foo> oops;
...
oops.consider(new string("Apple")); // line 75 of source

the GNU C++ compiler (version 12.2) will respond with

PREPRINT

7.3.5 Generics in C++, Java, and C# C 145

best.cc: In instantiation of ‘void arbiter<T, C>::consider(T*)
[with T = std::__cxx11::basic_string<char>; C = foo]’:
best.cc:75:18: required from here
best.cc:28:33: error: no match for call to ‘(foo)

(std::__cxx11::basic_string<char>&, std::__cxx11::basic_string<char>&)’
28 | if (!best_so_far || comp(*t, *best_so_far)) best_so_far = t;

| ~~~~^~~~~~~~~~~~~~~~~~
best.cc:42:10: note: candidate: ‘bool foo::operator()(const std::string&,

unsigned int)’
42 | bool operator()(const string& a, const unsigned int b) {

| ^~~~~~~~
best.cc:42:57: note: no known conversion for argument 2

from ‘std::__cxx11::basic_string<char>’ to ‘unsigned int’
42 | bool operator()(const string& a, const unsigned int b) {

| ~~~~~~~~~~~~~~~~~~~^

LLVM’s clang front end (version 14.0) is only a little more helpful:

best.cc:28:29: error: no matching function for call to object of type 'foo'
if (!best_so_far || comp(*t, *best_so_far)) best_so_far = t;

^~~~
best.cc:75:10: note: in instantiation of member function
'arbiter<std::string, foo>::consider' requested here

oops.consider(new string("Apple")); // line 75 of source
^

best.cc:42:10: note: candidate function not viable: no known conversion
from 'std::string' to 'const unsigned int' for 2nd argument

bool operator()(const string& a, const unsigned int b) {
^

The problem here is fundamental; it’s not poor compiler design. Because the lan-
guage requires that templates be ‘‘expanded out’’ before they are type checked, it is
extraordinarily difficult to generate messages without reflecting that expansion.

To facilitate more helpful messages (and also to increase the expressive power
of template specialization), C++20 introduced the notion of concepts, which allow
the programmer to specify constraints on template parameters—and the compiler
to check those constraints at instantiation time. Dozens of concepts and related
requirements are defined in the standard library, and rich notation is available in
which to define additional concepts.

Perhaps the simplest constraint we might add to our arbiter type insists thatEXAMPLE 7.60
Insisting on a chooser type parameter C be derived from chooser<T>:

template<typename T, typename C>
requires std::derived_from<C, chooser<T>>

class arbiter { ...

With this change in place, clang says

PREPRINT

C 146 Chapter 7 Type Systems

best.cc:74:5: error: constraints not satisfied for class template 'arbiter'
[with T = std::string, C = foo]

arbiter<string, foo> oops;
^~~~~~~~~~~~~~~~~~~~

best.cc:18:14: note: because 'std::derived_from<foo, chooser<std::string> >'
evaluated to false

requires std::derived_from<C, chooser<T>>
^

Note that the error message is now associated with the instantiation of arbiter
at line 74, rather than its use at line 75.

But this is overkill. It rules out cases in which we provide a perfectly usable
comparator type C that isn’t actually derived from chooser<T>. To allow moreEXAMPLE 7.61

Insisting on a predicate general comparators, we might write

template<typename T, typename C>
requires std::predicate<C, T, T>

class arbiter { ...

Here predicate<C, T, T> requires that C be an invocable object that takes
two parameters of type T and returns a value whose type is (or can be coerced to
be) bool. With this revised constraint, error messages still occur at the point of
instantiation but we are no longer limited to strict descendants of the chooser
type.

Unfortunately, the error message for a failed instantiation of Example C 7.61
(a message we haven’t shown) now fills most of a page, diving into details of the
definition of std::predicate. To improve this message, we can define a conceptEXAMPLE 7.62

Defining a new named
concept

that captures exactly what we need:

template<typename T, typename C>
concept Compares =

requires(C c, T a, T b) { {c(a, b)} -> std::convertible_to<bool>; };

template<typename T, typename C>
requires Compares<T, C>

class arbiter { ...

Here we have defined Compares to insist that for any C object c and any T
objects a and b, the expression c(a, b) is well formed and has a value whose type
is (or can be coerced to be) bool. Now our error message is quite nice:

best.cc:74:5: error: constraints not satisfied for class template 'arbiter'
[with T = std::string, C = foo]

arbiter<string, foo> oops;
^~~~~~~~~~~~~~~~~~~~

best.cc:19:14: note: because 'Compares<foo, std::string>' evaluated to false
requires Compares<C, T>

^

PREPRINT

7.3.5 Generics in C++, Java, and C# C 147

best.cc:15:32: note: because 'c(a, b)' would be invalid: no matching
function for call to object of type 'foo'

requires(C c, T a, T b) { {c(a, b)} -> std::convertible_to<bool>; };
^

Java Generics

Generics were deliberately omitted from the original version of Java. Rather than
instantiate containers with different generic parameter types, Java programmers
followed a convention in which all objects in a container were assumed to be of the
standard base class Object, from which all other classes are descended. Users of
a container could place any type of object inside. When removing an object, an
explicit conversion (what Java calls a cast) could be used to reassert the original
type. No danger was involved, because objects in Java are self-descriptive, and
conversions employ run-time checks.

Though dramatically simpler than the use of templates in C++, this program-
ming convention has three significant drawbacks: (1) users of containers must
litter their code with conversions, which many people find distracting or aes-
thetically distasteful; (2) errors in the use of a container manifest themselves as
ClassCastExceptions at run time, rather than as compile-time error messages;
(3) the error checking of the conversions incurs overhead at run time. Given Java’s
emphasis on clarity of expression, rather than pure performance, problems (1) and
(2) were considered the most serious, and became the subject of a Java Community
Process proposal for a language extension in Java 5. The solution adopted is based
on the GJ (Generic Java) work of Bracha et al. [BOSW98].

Figure C 7.7 contains a Java version of our arbiter class. It differs from theEXAMPLE 7.63
Generic Arbiter class in
Java

C++ code of Figure C 7.6 in several important ways. First, Java requires that the
code for each generic class be manifestly (self-obviously) type safe, independent
of any particular instantiation. This means that the type of field comp—and in
particular, the fact that it provides a better method—must be statically declared.
As a result, the Chooser to be used by a given Arbiter instance must be specified
as a constructor parameter; it cannot be a generic parameter. (We could have used
a constructor parameter in C++; in Java it is mandatory.) For both field comp and
constructor parameter c, we are then faced with the question: what should be the
generic parameter of Chooser?

The most obvious choice (not the one adopted in Figure C 7.7) would be
Chooser<T>. This would allow us to write

class CaseSensitive implements Chooser<String> {
public boolean better(String a, String b) {

return a.compareTo(b) < 1;
}

}

PREPRINT

C 148 Chapter 7 Type Systems

interface Chooser<T> {
public boolean better(T a, T b);

}

class Arbiter<T> {
T bestSoFar;
Chooser<? super T> comp;

public Arbiter(Chooser<? super T> c) {
comp = c;

}
public void consider(T t) {

if (bestSoFar == null || comp.better(t, bestSoFar)) bestSoFar = t;
}
public T best() {

return bestSoFar;
}

}

Figure 7.7 Generic arbiter in Java.

...
Arbiter<String> csNames = new Arbiter<String>(new CaseSensitive());
csNames.consider(new String("Apple"));
csNames.consider(new String("aardvark"));
System.out.println(csNames.best()); // prints "Apple"

Suppose, however, we were to defineEXAMPLE 7.64
Wildcards and bounds on
Java generic parameters class CaseInsensitive implements Chooser<Object> { // note type!

public boolean better(Object a, Object b) {
return a.toString().compareToIgnoreCase(b.toString()) < 1;

}
}

Class Object defines a toString method (usually used for debugging purposes),
so this declaration is valid. Moreover since every String is an Object, we ought
to be able to pass any pair of strings to CaseInsensitive.better and get a
valid response. Unfortunately, Chooser<Object> is not acceptable as a match
for Chooser<String>. If we typed

Arbiter<String> ciNames = new Arbiter<String>(new CaseInsensitive());

the compiler would complain. The fix (as shown in Figure C 7.7) is to declare both
comp and c to be of type <? super T> instead. This informs the Java compiler
that an arbitrary type argument (‘‘?’’) is acceptable as the generic parameter of our
Chooser, so long as that type is an ancestor of T.

PREPRINT

7.3.5 Generics in C++, Java, and C# C 149

interface Chooser {
public boolean better(Object a, Object b);

}

class Arbiter {
Object bestSoFar;
Chooser comp;

public Arbiter(Chooser c) {
comp = c;

}
public void consider(Object t) {

if (bestSoFar == null || comp.better(t, bestSoFar)) bestSoFar = t;
}
public Object best() {

return bestSoFar;
}

}

Figure 7.8 Arbiter in Java after type erasure. Conversions will be inserted by the compiler on
calls that return an Object or that expect an Object to support a particular method.

The super keyword specifies a lower bound on a type parameter. It is the sym-
metric opposite of the extends keyword, which we used in Example 7.39 to specify
an upper bound. Together, upper and lower bounds allow us to broaden the set of
types that can be used to instantiate generics. As a general rule, we use extends
T whenever a method returns a T object (on which we need to be able to invoke
T methods); we use super T whenever we expect to pass a T object as a param-
eter, but don’t mind if the receiver is willing to accept something more general.
Given the bounded declarations of Figure C 7.7, our use of CaseInsensitive will
compile and run just fine:

Arbiter<String> ciNames = new Arbiter<String>(new CaseInsensitive());
ciNames.consider(new String("Apple"));
ciNames.consider(new String("aardvark"));
System.out.println(ciNames.best()); // prints "aardvark"

Type Erasure

Generics in Java are defined in terms of type erasure: the compiler effectively deletes
every generic parameter and argument list, replaces every occurrence of a type
parameter with Object, and inserts conversions back to concrete types wherever
objects are returned from generic methods. The erased equivalent of Figure C 7.7EXAMPLE 7.65

Type erasure and implicit
conversions

appears in Figure C 7.8. No conversions are required in this portion of the code.
On any use of best, however, the compiler would insert an implicit conversions.
The statement

String winner = csNames.best();

PREPRINT

C 150 Chapter 7 Type Systems

will, in effect, be implicitly replaced with

String winner = (String) csNames.best();

Also, in order to match the Chooser<String> interface, our definition of
CaseSensitive (Example C 7.63) will in effect be replaced with

class CaseSensitive implements Chooser {
public boolean better(Object a, Object b) {

return ((String) a).compareTo((String) b) < 1;
}

}

The advantage of type erasure over the nongeneric (Object-based) version of
the code is that the programmer doesn’t have to write the conversions. In addition,
the compiler is able to verify in most cases that the erased code will never generate
a ClassCastException at run time. The exceptions occur primarily when, for theEXAMPLE 7.66

Unchecked warnings in
Java

sake of interoperability with preexisting code, the programmer assigns a generic
collection into a nongeneric collection:

Arbiter<String> csNames = new Arbiter<String>(new CaseSensitive());
Arbiter alias = csNames; // nongeneric
alias.consider(Integer.valueOf(3)); // unsafe

DESIGN & IMPLEMENTATION

7.11 Why erasure?
Erasure in Java has several surprising consequences. For one, we can’t invoke
new T(), where T is a type parameter: the compiler wouldn’t know what kind of
object to create. Similarly, Java’s reflection mechanism, which allows a program
to examine and reason about the concrete type of an object at run time, knows
nothing about generics: csNames.getClass().toString() returns "class
Arbiter", not "class Arbiter<String>". Why would the Java designers
introduce a mechanism with such significant limitations? The answer is back-
ward compatibility or, more precisely, migration compatibility, which requires
complete interoperability of old and new code.

More so than most previous languages, Java encourages the assembly of
working programs, often on the fly, from components written independently
by many different people in many different organizations. The Java designers
felt it was critical not only that old (nongeneric) programs be able to run with
new (generic) libraries, but also that new (generic) programs be able to run
with old (nongeneric) libraries. In addition, they took the position that the Java
virtual machine, which interprets Java bytecode in the typical implementation,
could not be modified. While one can take issue with these goals, once they are
accepted erasure becomes a natural solution.

PREPRINT

7.3.5 Generics in C++, Java, and C# C 151

The compiler will issue an ‘‘unchecked’’ warning on the third line of this example,
because we have invoked method consider on a ‘‘raw’’ (nongeneric) Arbiter
without explicitly converting the arguments. In this case the warning is clearly
warranted: alias shouldn’t be passed an Integer. Other examples can be quite
a bit more subtle. It should be emphasized that the warning simply indicates the
lack of static checking; any type errors that actually occur will still be caught at run
time.

Note, by the way, that the use of erasure, and the insistence that every instanceEXAMPLE 7.67
Java generics and built-in
types

of a given generic be able to share the same code, means that type arguments in
Java must all be descended from Object. While Arbiter<Integer> is a perfectly
acceptable type, Arbiter<int> is not.

C# Generics

Though generics were omitted from C# version 1, the language designers al-
ways intended to add them, and the .NET Common Language Infrastructure
(CLI) was designed from the outset to provide appropriate support. As a result,
C# 2.0 was able to employ an implementation based on reification rather than
erasure. Reification creates a different concrete type every time a generic is instan-
tiated with different arguments. Reified types are visible to the reflection library
(csNames.GetType().ToString() returns "Arbiter`1[System.Double]"),
and it is perfectly acceptable to call new T() if T is a type parameter with a zero-
argument constructor (a constraint to this effect is required). Moreover where the
Java compiler must generate implicit type conversions to satisfy the requirements
of the virtual machine (which knows nothing of generics) and to ensure type-safe
interaction with legacy code (which might pass a parameter or return a result of an
inappropriate type), the C# compiler can be sure that such checks will never be
needed, and can therefore leave them out. The result is faster code.

Of course the C# compiler is free to merge the implementations of any genericEXAMPLE 7.68
Sharing generic
implementations in C#

instantiations whose code would be the same. Such sharing is significantly easier
in C# than it is in C++, because implementations typically employ just-in-time
compilation, which delays the generation of machine code until immediately prior
to execution, when it’s clear whether an identical instantiation already exists some-
where else in the program. In particular, MyType<Foo> and MyType<Bar> will
share code whenever Foo and Bar are both classes, because C# employs a reference
model for variables of class type.

Like C++, C# allows generic arguments to be value types (built-ins or structs),EXAMPLE 7.69
C# generics and built-in
types

not just classes. We are free to create an object of class MyType<int>; we do not have
to ‘‘wrap’’ it as MyType<Integer>, the way we would in Java. MyType<int> and
MyType<double> would generally not share code, but both would run significantly
faster than MyType<Integer> or MyType<Double>, because they wouldn’t incur
the dynamic memory allocation required to create a wrapper object, the garbage
collection required to reclaim it, or the indirection overhead required to access the
data inside.

Like Java, C# allows only types as generic parameters, and insists that generics
be manifestly type safe, independent of any particular instantiation. It generates

PREPRINT

C 152 Chapter 7 Type Systems

interface Chooser<in T> {
bool better(T a, T b);

}

class Arbiter<T> {
T bestSoFar;
Chooser<T> comp;
bool initialized;

public Arbiter(Chooser<T> c) {
comp = c;
bestSoFar = default(T);
initialized = false;

}
public void Consider(T t) {

if (!initialized || comp.better(t, bestSoFar)) bestSoFar = t;
initialized = true;

}
public T Best() {

return bestSoFar;
}

}

Figure 7.9 Generic arbiter in C#.

reasonable error messages if we try to instantiate a generic with an argument that
doesn’t meet the constraints of the corresponding generic parameter, or if we try,
inside the generic, to invoke a method that the constraints don’t guarantee will be
available.

A C# version of our Arbiter class appears in Figure C 7.9. One small differenceEXAMPLE 7.70
Generic Arbiter class in
C#

with respect to Figure C 7.7 can be seen in the Arbiter constructor, which must
explicitly initialize field bestSoFar to default(T). We can leave this out in Java
because variables of class type are implicitly initialized to null, and type parameters
in Java are all classes. In C# T might be a built-in or a struct, both of which require
explicit initialization.

A more interesting difference from Figure C 7.7 appears in the definitions ofEXAMPLE 7.71
Contravariance in the
Arbiter interface

the Chooser interface, the comp member of class Arbiter, and the c parameter
of the Arbiter constructor. In Java, we used explicit lower bounds (? super T)
on comp and c to indicate that any Chooser<S>, where S is a superclass of T,
would be acceptable. While C# allows us to specify upper bounds in the form
of type constraints (we did so in the sort routine of Example 7.40), it has no
direct equivalent of lower bounds. It does, however, support the related notions
of covariance and contravariance. We have exploited this support in Figure C 7.9,
where it appears not as bounds on the Chooser passed to a newly created Arbiter,
but as an in modifier on the generic parameter of the Chooser interface itself.

The declaration interface Chooser<in T> indicates that objects of class T
will be used only as input parameters to methods of the interface. Suppose now

PREPRINT

7.3.5 Generics in C++, Java, and C# C 153

that S is a superclass of T. Since T provides all the methods of S, any method that
expects an input of class S will also accept an input of class T. This means that
in any context in which all we do is provide T objects as inputs to a Chooser, we
can use a ‘‘less choosy’’ Chooser that merely expects S inputs. In other words,
Chooser<T> is a superclass of Chooser<S>. Represented graphically,

T→ S ⇒ Chooser<S>→ Chooser<T>

where the→ symbol, pronounced ‘‘is a,’’ indicates that the item on the left inherits
from the item on the right. Chooser<T> is said to be ‘‘contravariant in T’’ because
the relationship between S and T is reversed when wrapping them in a Chooser.

In other situations, objects of a generic type may only be produced by the methodsEXAMPLE 7.72
Covariance of an interface. Consider, for example, the notion of an iterator, as provided by C#’s

IEnumerator<T> interface. Method Current of this interface returns an object
of class T; no method takes a T object as input. In the C# standard library, the
interface is declared as

public interface IEnumerator<out T> ...

Now suppose again that S is a superclass of T. In any context in which all we do is
extract S objects from an IEnumerator, we can use a more specific IEnumerator
that gives us T objects instead. In other words, IEnumerator<S> is a superclass of
IEnumerator<T>. Graphically,

T→ S ⇒ IEnumerator<T>→ IEnumerator<S>

Here IEnumerator<T> is said to be ‘‘covariant in T’’ because the relationship
between S and T is preserved when wrapping them in an IEnumerator. In many
interfaces, of course, generic parameters appear as both inputs and outputs of
methods. For such an interface Foo, there is no subclassing relationship: Foo<T>
is said to be ‘‘invariant in T.’’

Returning to the Arbiter example, there is actually a simpler way to writeEXAMPLE 7.73
Chooser as a delegate our code in C#. Because the Chooser interface has only a single method, we can

express it as a delegate instead:

delegate bool Chooser<T>(T a, T b);

Then in method Arbiter.Consider, we can call the delegate directly as comp(t,
bestSoFar). Our new Chooser is roughly analogous to the C declaration

typedef _Bool (*Chooser)(T a, T b);

(pointer to function of two T arguments, returning a Boolean), except that a C#
Chooser object is a closure, not a pointer: it can refer to a static function, a method
of a particular object (in which case it has access to the object’s fields), or an
anonymous nested function (in which case it has access, with unlimited extent, to
variables in the surrounding scope). In our particular case, defining Chooser to be
a delegate allows us to pass any appropriate function to the Arbiter constructor,
without regard to the class inheritance hierarchy. We can declare

PREPRINT

C 154 Chapter 7 Type Systems

static bool CaseSensitive(String a, String b) {
return String.CompareOrdinal(a, b) < 1;
// use Unicode order, in which upper-case letters come first

}
static bool CaseInsensitive(Object a, Object b) {

return String.Compare(a.ToString(), b.ToString(), false) < 1;
}

and then say

Arbiter<String> csNames =
new Arbiter<String>(new Chooser<String>(CaseSensitive));

csNames.Consider("Apple");
csNames.Consider("aardvark");
Console.WriteLine(csNames.Best()); // prints "Apple"

Arbiter<String> ciNames =
new Arbiter<String>(new Chooser<String>(CaseInsensitive));

ciNames.Consider("Apple");
ciNames.Consider("aardvark");
Console.WriteLine(ciNames.Best()); // prints "aardvark"

The compiler is perfectly happy to instantiate CaseInsensitive as a Chooser
<String>, because Strings can be passed as Objects.

3CHECK YOUR UNDERSTANDING

48. Why was it difficult, historically, to produce high-quality error messages for
misuses of C++ templates? How do the concepts of C++20 address this problem?

49. What is the purpose of explicit instantiation in C++? What is the purpose of
extern templates?

50. What is template metaprogramming?

51. Explain the difference between upper bounds and lower bounds in Java type
constraints. Which of these does C# support?

52. What is type erasure? Why is it used in Java?

53. Under what circumstances will a Java compiler issue an ‘‘unchecked’’ generic
warning?

54. Why must fields of generic parameter type be explicitly initialized in C#?

55. For what two main reasons are C# generics often more efficient than comparable
code in Java?

56. Summarize the notions of covariance and contravariance in generic types.

PREPRINT

7.3.5 Generics in C++, Java, and C# C 155

57. How does a C# delegate differ from an interface with a single method (e.g., the
C++ chooser of Figure C 7.6)? How does it differ from a function pointer
in C?

PREPRINT

C 156 Chapter 7 Type Systems

PREPRINT

PREPRINT

7Type Systems

7.7 Exercises

7.27 C++ has no direct analogue of the extends X and super X clauses of Java.
Why not?

7.28 Write a simple abstract ordered_set<T> class (an interface) whose meth-
ods include void insert(T val), void remove (T val), bool lookup
(T val), and bool is_empty(), together with a language-appropriate iter-
ator, as described in Section 6.5.3. Using this abstract class as a base, build
a simple list_set class that uses a sorted linked list internally. Try this
exercise in C++, Java, and C#. Note that you will need constraints on T in
Java and C#. You may also want them in C++. Discuss the differences among
your implementations.

7.29 Building on the previous exercise, implement higher-level union<T>,
intersection<T>, and difference<T> functions that operate on ordered
sets. Note that these should not be members of the ordered_set<T> class,
but rather stand-alone functions: they should be independent of the details of
list_set or any other particular ordered_set. So, for example, union(A,
B, C) should verify that A is empty, and then add to it all the elements
found in B or C. Explain, for each of C++, Java, and C#, how to handle the
comparison of elements.

7.30 Continuing Example C 7.63, the call

csNames.consider(null);

will generate a run-time exception, because String.compareTo is not de-
signed to take null arguments.
(a) Modify Figure C 7.7 to guard against this possibility by including a pred-

icate public Boolean valid(T a); in the Chooser<T> interface, and
by modifying consider to make an appropriate call to this predicate.
Modify class CaseSensitive accordingly.

C 157

C 158 Chapter 7 Type Systems

(b) Suggest how to make similar modifications to the C# Arbiter of Fig-
ure C 7.9 and Example C 7.70. How should you handle lower bounds
when you need both Better and Valid?

7.31 (a) Modify your solution to Exercise 7.15 so that the comparison routine is an
explicit generic parameter, reminiscent of the chooser of Figure C 7.6.

(b) Give an alternative solution in which the comparison routine is an extra
parameter to sort.

7.32 Consider the C++ program shown in Figure C 7.10. Explain why the final
call to first_n generates a compile-time error, but the call to last_n does
not. (Note that first_n is generic but last_n is not.) Show how to modify
the final call to first_n so that the compiler will accept it.

7.33 Consider the following code in C++:

template <typename T>
class cloneable_list : public list<T> {
public:

cloneable_list<T>* clone() {
auto rtn = new cloneable_list<T>();
for (auto e : *this) {

rtn->push_back(e);
}
return rtn;

}
};

...
cloneable_list<foo> L;
...
cloneable_list<foo>* Lp = L.clone();

Here *Lp will be a ‘‘deep copy’’ of L, containing a copy of each foo object.
Try to write equivalent code in Java. What goes wrong? How might you get
around the problem?

PREPRINT

7.7 Exercises C 159

#include <iostream>
#include <list>
using std::cout;
using std::list;

template<typename T> void first_n(list<T> p, int n) {
for (typename list<T>::iterator li = p.begin(); li != p.end(); li++) {

if (n-- <= 0) break;
cout << *li << " ";

}
cout << "\n";

}

void last_n(list<int> p, int n) {
for (list<int>::reverse_iterator li = p.rbegin(); li != p.rend(); li++) {

if (n-- <= 0) break;
cout << *li << " ";

}
cout << "\n";

}

class int_list_box {
list<int> content;

public:
int_list_box(list<int> l) { content = l; }
operator list<int>() { return content; }

// user-supplied operator for coercion/conversion
};

int main() {
int i = 5;
list<int> l;

for (int i = 0; i < 10; i++) l.push_back(i);
int_list_box b(l);

first_n(l, i); // works
last_n(b, i); // works (coerces b)
first_n(b, i); // static semantic error

}

Figure 7.10 Coercion and generics in C++. The compiler refuses to accept the final call to first_n.

PREPRINT

C 160 Chapter 7 Type Systems

PREPRINT

PREPRINT

7Type Systems

7.8 Explorations

7.44 Learn more about concepts in C++, together with the earlier notions of named
requirements and the ‘‘substitution failure is not an error’’ (SFINAE) idiom.
Compare and contrast concepts with the constraint mechanisms of Java and
C#.

7.45 Explore the support for generics in Scala, Eiffel, Ada, or some other program-
ming language. Compare this support to that of C++, Java, and C#. What
might account for the differences? Which approach(es) do you prefer? Why?

7.46 Explore more fully the concepts of covariance and contravariance in object-
oriented languages, as exemplified by the in and out modifiers for generic
parameters in C# 4.0. Discuss the connection between these concepts and
the notions of upper and lower bounds on generic parameters (? extends T
and ? super T in Java).

C 161

C 162 Chapter 7 Type Systems

PREPRINT

PREPRINT

8Composite Types

8.1.4 Unions (Variant Records, Datatypes)

A variant record provides two or more alternative fields or collections of fields, only
one of which is valid at any given time. This notion has its roots in the equivalence
statement of Fortran I and in the union types of Algol 68. Building on the elementEXAMPLE 8.82

Nested structs and
unions in traditional C

type of Example 8.1, one could specify a variant record as follows in (pre-2011) C:

struct element {
char name[2];
int atomic_number;
double atomic_weight;
_Bool metallic;
_Bool naturally_occurring;
union {

struct {
char *source;

/* textual description of principal commercial source */
double prevalence;

/* fraction, by weight, of Earth's crust */
} natural_info;
double lifetime;

/* half-life in seconds of the most stable known isotope */
} extra_fields;

} copper;

Here the programmer presumably intends for the naturally_occurring field
to indicate which parts of the union are currently valid. A true value indicates
that the element has at least one naturally occurring stable isotope; in this case
fields source and prevalence are intended to describe how the element may be
obtained and how commonly it occurs. A false value indicates that the element
results only from atomic collisions or the decay of heavier elements; in this case, field
lifetime is intended to indicate how long atoms so created tend to survive before
undergoing radioactive decay. These mutually exclusive sets of fields (source and

C 163

C 164 Chapter 8 Composite Types

name

metallic

atomic_number
atomic_weight

source
prevalence

<true> metallic <false>

name
atomic_number
atomic_weight

lifetime

4 bytes/32 bits 4 bytes/32 bits

Figure 8.16 Likely memory layouts for element variants. The value of the naturally_
occurring field (shown here with a double border) is intended to indicate which of the
interpretations of the remaining space is valid. Field source is assumed to point to a string that
has been independently allocated.

prevalence, on the one hand, or lifetime on the other) are sometimes known
as variants. Either the first or the second variant may be useful, but never both at
once. From an implementation perspective, nonoverlapping uses suggest that the
variants may share space, as shown in Figure C 8.16.

One significant problem with our nested struct and union is the need for two
extra levels of naming. While the always-present fields can be accessed as, say,
copper.atomic_weight, fields of the inner struct are much less easy to name:
copper.extra_fields.natural_info.source.

Pascal’s principal contribution to union types was to integrate them with records.EXAMPLE 8.83
A variant record in Pascal In Pascal syntax, our running example might look like this:

type element = record
name : two_chars;
atomic_number : integer;
atomic_weight : real;
metallic : Boolean;
case naturally_occurring : Boolean of

true : (
source : string_ptr;
prevalence : real;

);
false : (

lifetime : real;
)

end;

Here the naturally_occurring field is introduced with the keyword case, to
formalize its role as a tag or discriminant. Note that the variant fields have no
extraneous levels of naming: we can refer directly to copper.source.

PREPRINT

8.1.4 Unions (Variant Records, Datatypes) C 165

Leveraging an extension long supported by gcc, C11 and its successors allow aEXAMPLE 8.84
Anonymous unions in C11
and C++11

nameless (anonymous) struct or union to appear within another struct or union.
The members of the anonymous construct are then directly visible in the surround-
ing context:

struct element {
char name[2];
int atomic_number;
double atomic_weight;
_Bool metallic;
_Bool naturally_occurring;
union {

struct {
char *source;
double prevalence;

};
double lifetime;

};
} copper;
...
copper.source = "various ores";

Anonymous nesting makes variants in C11 as convenient as those of Pascal. C++11
even allows anonymous unions in non-struct contexts:

void foo() {
union {

int a;
int b;

};
...
a = 3;

Safety

A potentially more significant problem with unions in C is the lack of type safety.EXAMPLE 8.85
Breaking type safety with
unions

Mistakes in which the programmer writes to one field of a union and then reads
from the other are relatively common:

union {
int i;
double d;

} u;
...
u.d = 3.0;
...
printf("%d", u.i);

PREPRINT

C 166 Chapter 8 Composite Types

Here the printf statement, which attempts to output i as an integer, will (in most
implementations) take its bits from the floating-point representation of 3.0—almost
certainly a mistake, but one that the language implementation will not catch.

To avoid these sorts of errors, Algol 68 included features to track the status of
unions at run time, and to prevent access to currently invalid fields. Similar features
can be found in Ada and in ML-family languages today. Our running elementEXAMPLE 8.86

Type-safe unions in OCaml example might be written as follows in OCaml:

type natural_info = {source : string; prevalence : float};;
type synthesized_info = {lifetime : float};;
type extra_info =

| Natural of natural_info
| Synthesized of synthesized_info;;

type element = {
name : string;
atomic_number : int;
atomic_weight : float;
metallic : bool;
extra_fields : extra_info};;

As in traditional C, the variant portions of a record introduce extra levels of
nesting in OCaml. To enforce correct usage, the language implementation main-
tains a hidden tag in every union object, to indicate which variant is currently valid.
Values can be declared only as aggregates that specify the tag and all the fields:

let copper = {
name = "Cu";
atomic_number = 29;
atomic_weight = 63.546;
metallic = true;
extra_fields = Natural ({

source = "various ores and native deposits";
prevalence = 0.00005

})
};;

Individual fields can be read, but only in the context of a match expression that
verifies the value of the tag:

exception Union_error;;
let source (e : element) =

match e.extra_fields with
| Natural n -> n.source
| Synthesized _ -> raise Union_error;;

let copper_source = source copper;;

PREPRINT

8.1.4 Unions (Variant Records, Datatypes) C 167

Variant records with mandatory tags (explicit or hidden) are known as discrimi-
nated unions. Variant records without tags (as in C) are known as nondiscriminated
unions. Pascal provided both, but in the absence of an analogue of match, even
the discriminated case was difficult to implement safely (more on this in Exer-
cise C 8.38). Ada, by contrast, combines syntax reminiscent of Pascal with the type
safety of ML.

Variants in Ada

Ada variant records must always have a tag (called the discriminant). Language rulesEXAMPLE 8.87
Ada variants and tags
(discriminants)

ensure that this tag can never be changed without simultaneously assigning values
to all of the fields of the corresponding variant. The assignment can occur either
via whole-record assignment (e.g., a := b, where a and b are variant records),
or via assignment of an aggregate (e.g., p := (polar => true, rho => 1.0,
theta => pi/2.0)). In addition to appearing as a field within the record, the
discriminant of a variant record in Ada must also appear in the header of the
record’s declaration:

type Element (Naturally_Occurring : Boolean := True) is record
Name : String (1..2);
Atomic_Number : Integer;
Atomic_Weight : Long_Float;
Metallic : Boolean;
case Naturally_Occurring is

when True =>
Source : String_Ptr;
Prevalence : Long_Float;

when False =>
Lifetime : Long_Float;

end case;
end record;

Here we have not only declared the discriminant of the record in its header, we
have also specified a default value for it. A declaration of a variable of type Element
has the option of accepting this default value:

Copper : Element;

or overriding it:

Plutonium : Element (False);
Neptunium : Element (Naturally_Occurring => False);

-- alternative syntax

If the type declaration for Element did not specify a default value for Naturally_
Occurring, then all variables of type Element would have to provide a value.
These rules guarantee that the tag field of a variant record is never uninitialized.

PREPRINT

C 168 Chapter 8 Composite Types

An Ada record variable whose declaration specifies a value for the discriminant is
said to be constrained. Its tag field can never be changed by a subsequent assignment.
This immutability means that the compiler can allocate just enough space to hold the
specified variant; this space may in some cases be significantly smaller than would
be required for other variants. A variable whose declaration does not provide an
initial value for the discriminant is said to be unconstrained. Its tag will be initialized
to the value in the type declaration, but may be changed by later (whole-record)
assignments, so the space that the record occupies must be large enough to hold
any possible variant.

An Ada subtype definition can also constrain the discriminant(s) of its parentEXAMPLE 8.88
A discriminated subtype in
Ada

type:

subtype Natural_Element is Element (True);

Variables of type Natural_Element will all be constrained; their Naturally_
Occurring field cannot be changed. Because Natural_Element is a subtype,
rather than a derived type, values of type Element and Natural_Element are
compatible with each other, though a run-time semantic check will usually be
required to assign the former into the latter.

Ada uses record discriminants not only for variant tags, but in general for any
value that affects the size of a record. Here is an example that uses a discriminantEXAMPLE 8.89

Discriminated array in Ada to specify the length of an array:

DESIGN & IMPLEMENTATION

8.14 The placement of variant fields
To facilitate space saving in constrained variant records, Ada requires that all
variant parts of a record appear at the end. This rule ensures that every field
has a constant offset from the beginning of the record, with no holes (in any
variant) other than those required for alignment. When a constrained variant
record is elaborated, the Ada run-time system need only allocate sufficient space
to hold the specified variant, which is never allowed to change. Pascal had a
similar rule, designed for a similar purpose. When a variant record was allocated
from the heap in Pascal (via the built-in new operator), the programmer had
the option of specifying case labels for the variant portions of the record. A
record so allocated was never allowed to change to a different variant, so the
implementation could allocate precisely the right amount of space.

Modula-2, which did not provide new as a built-in operation, eliminated the
ordering restriction on variants. All variables of a variant record type had to be
large enough to hold any variant. The usual implementation assigned a fixed
offset to every field, with holes following small internal variants as necessary.
Similar conventions apply to unions and structs in modern C.

PREPRINT

8.1.4 Unions (Variant Records, Datatypes) C 169

type Element_Array is array (Integer range <>) of Element;
type Alloy (Num_Components : Integer) is record

Name : String (1..30);
Components : Element_Array (1..Num_Components);
Tensile_Strength : Long_Float;

end record;

The <> notation in the initial definition of Element_Array indicates that the
bounds are not statically known. Further discussion of dynamic arrays appears in
Section 8.2.2. As with discriminants used for variant tags, the programmer must
either specify a default value for the discriminant in the type declaration (we did
not do so above), or else every declaration of a variable of the type must specify
a value for the discriminant (in which case the variable is constrained, and the
discriminant cannot be changed).

The Object-Oriented Alternative

In dropping variant records from their parent language, the designers of Modula-3
noted [Har92, p. 110] that much of the same effect could be obtained with classes
and inheritance. Oberon, similarly, replaced variants with a more general mecha-
nism for type extension (sidebar 10.3), and the designers of Java and C# dropped the
unions of C and C++. In place of the C code of Example C 8.82, a Java programmerEXAMPLE 8.90

Derived types as an
alternative to unions

might write

class Element {
public String name;
public int atomicNumber;
public double atomicWeight;
public boolean metallic;

}
class NaturalElement extends Element {

public String source;
public double prevalence;

}
class SyntheticElement extends Element {

public double lifetime;
}

Like the discriminated subtypes of Ada, this approach constrains each object to a
single variant at creation time, but this may not be a problem: while the class of a
particular object never changes, class-type variables are references in Java and C#.
A variable of type Element can easily refer to an object of class NaturalElement
or SyntheticElement at run time.

PREPRINT

C 170 Chapter 8 Composite Types

3CHECK YOUR UNDERSTANDING

55. What are anonymous unions and structs? What purpose do they serve? How
is this related to the integration of variants with records in Pascal and its
descendants?

56. What is a tag (discriminant) in a variant record? In a language like Ada or
OCaml, how does it differ from an ordinary field?

57. Discuss the type safety problems that arise with variant records. How can these
problems be addressed?

58. Summarize the rules that prevent access to inappropriate fields of variant
records in OCaml and Ada.

59. Why might one wish to constrain a variable, so that it can hold only one variant
of a type?

60. Explain how classes and inheritance can be used to obtain the effect of con-
strained variant records.

PREPRINT

PREPRINT

8Composite Types

8.5.3 Dangling References

Memory access errors—dangling references, memory leaks, out-of-bounds access
to arrays—are among the most common program bugs, and among the most
difficult to find. Testing and debugging techniques for memory errors vary in when
they are performed, how much they cost, and how conservative they are. Several
commercial and open-source tools employ binary instrumentation (Section 16.2.3)
to track the allocation status of every block in memory and to check every load
or store to make sure it refers to an allocated block. These tools have proved to be
highly effective, but they can slow a program several-fold, and may generate false
positives—indications of error in programs that, while arguably poorly written, are
technically correct. Many compilers can also be instructed to generate dynamic
semantic checks for certain kinds of memory errors. Such checks must generally
be fast (much less than 2× slowdown), and must never generate false positives. In
this section we consider two candidate implementations of checks for dangling
references.

Tombstones

Tombstones [Lom75, Lom85] allow a language implementation to catch all dangling
references, to objects in both the stack and the heap. The idea is simple: rather thanEXAMPLE 8.91

Dangling reference
detection with tombstones

have a pointer refer to an object directly, we introduce an extra level of indirection
(Figure C 8.17). When an object is allocated in the heap (or when a pointer is created
to an object in the stack), the language run-time system allocates a tombstone. The
pointer contains the address of the tombstone; the tombstone contains the address
of the object. When the object is reclaimed, the tombstone is modified to contain a
value (typically zero) that cannot be a valid address. To avoid special cases in the
generated code, tombstones are also created for pointers to static objects.

For heap objects, it is easy to invalidate a tombstone when the program calls
the deallocation operation. For stack objects, the language implementation must
be able to find all tombstones associated with objects in the current stack frame

C 171

C 172 Chapter 8 Composite Types

new(my_ptr);

ptr2 := my_ptr;

delete(my_ptr);

my_ptr

my_ptr

ptr2

my_ptr

ptr2

RIP
(Potentially

reused)

Figure 8.17 Tombstones. A valid pointer refers to a tombstone that in turn refers to an object.
A dangling reference refers to an ‘‘expired’’ tombstone.

when returning from a subroutine. One possible solution is to link all stack-object
tombstones together in a list, sorted by the address of the stack frame in which the
object lies. When a pointer is created to a local object, the tombstone can simply
be added to the beginning of the list. When a pointer is created to a parameter,
the run-time system must scan down the list and insert in the middle, to keep it
sorted. When a subroutine returns, the epilogue portion of the calling sequence
invalidates the tombstones at the head of the list, and removes them from the list.

Tombstones may be allocated from the heap itself or, more commonly, from
a separate pool. The latter option avoids fragmentation problems, and makes
allocation relatively fast, since the first tombstone on the free list is always the right
size.

Tombstones can be expensive, both in time and in space. The time overhead
includes (1) creation of tombstones when allocating heap objects or using a ‘‘pointer
to’’ operator, (2) checking for validity on every access, and (3) double-indirection.
Fortunately, checking for validity can be made essentially free on most machines
by arranging for the address in an ‘‘invalid’’ tombstone to lie outside the program’s
address space. Any attempt to use such an address will result in a hardware interrupt,
which the operating system can reflect up into the language run-time system. We
can also use our invalid address, in the pointer itself, to represent the constant
nil. If the compiler arranges to set every pointer to nil at elaboration time, then
the hardware will catch any use of an uninitialized pointer. (This technique works
without tombstones, as well.)

PREPRINT

8.5.3 Dangling References C 173

The space overhead for tombstones can be significant. The simplest approach is
never to reclaim them. Since a tombstone is usually significantly smaller than the
object to which it refers, a program will waste less space by leaving a tombstone
around forever than it would waste by never reclaiming the associated object. Even
so, any long-running program that continually creates and reclaims objects will
eventually run out of space for tombstones. A potential solution, which we consider
in Section 8.5.4, is to augment every tombstone with a reference count, and reclaim
tombstones themselves when the reference count goes to zero.

Tombstones have a valuable side effect. Because of double-indirection, it is easy
to change the location of an object in the heap. The run-time system need not locate
every pointer that refers to the object; all that is required is to change the address
in the tombstone. The principal reason to change heap locations is for storage
compaction, in which all dynamically allocated blocks are ‘‘scooted together’’ at
one end of the heap in order to eliminate external fragmentation. Tombstones are
not widely used in language implementations, but the Macintosh operating system
(versions 9 and below) used them internally, for references to system objects such
as file and window descriptors. They also closely resemble the implementation
used for smart pointers in the C++ standard library.

Locks and Keys

Locks and keys [FL80] are an alternative to tombstones. Their disadvantage is that
they provide only probabilistic protection from dangling pointers. Their advantage
is that they avoid the need to keep tombstones around forever (or to figure out
when to reclaim them). Again the idea is simple: Every pointer is a tuple consistingEXAMPLE 8.92

Dangling reference
detection with locks and
keys

of an address and a key. Every object in the heap begins with a lock. A pointer to
an object in the heap is valid only if the key in the pointer matches the lock in the
object (Figure C 8.18). When the run-time system allocates a new heap object, it
generates a new key value. These can be as simple as serial numbers, but should
avoid ‘‘common’’ values such as zero and one. When an object is reclaimed, its lock
is changed to some arbitrary value (e.g., zero) so that the keys in any remaining
pointers will not match. If the block is subsequently reused for another purpose,
we expect it to be very unlikely that the location that used to contain the lock will
be restored to its former value by coincidence. The original implementation of
locks and keys in Pascal considered only pointers to heap objects, as outlined above,
but in principle a run-time system could also add locks to objects allocated on the
stack.

Like tombstones, locks and keys incur significant overhead. They add an extra
word of storage to every pointer and to every block in the heap. They increase
the cost of copying one pointer into another. Most significantly, they incur the
cost of comparing locks and keys on every access (or every access that cannot be
proven to be redundant). It is unclear whether the lock and key check is cheaper
or more expensive than the tombstone check. A tombstone check may result in
two cache misses (one for the tombstone and one for the object); a lock and key
check is unlikely to cause more than one. On the other hand, the lock and key
check requires a significantly longer instruction sequence on most machines. To

PREPRINT

C 174 Chapter 8 Composite Types

new(my_ptr);

135942 135942

135942

0

135942

135942

ptr2 := my_ptr;

delete(my_ptr);

my_ptr

my_ptr

135942

135942

ptr2

my_ptr

ptr2

(Potentially
reused)

Figure 8.18 Locks and keys. A valid pointer contains a key that matches the lock on an object
in the heap. A dangling reference is unlikely to match.

minimize time and space overhead, most compilers do not by default generate
code to check for dangling references.

3CHECK YOUR UNDERSTANDING

61. What are tombstones? What changes do they require in the code to allocate and
deallocate memory, and to assign and dereference pointers?

62. Explain how tombstones can be used to support compaction.

63. What are locks and keys? What changes do they require in the code to allocate
and deallocate memory, and to assign and dereference pointers?

64. Explain why the protection afforded by locks and keys is only probabilistic.

65. Discuss the comparative advantages of tombstones and locks and keys as a
means of catching dangling references.

PREPRINT

PREPRINT

8Composite Types

8.7 Files and Input/Output

The first two subsections below are devoted to interactive and file-based I/O, re-
spectively. Section C 8.7.3 then considers the common special case of text files.

8.7.1 Interactive I/O

On a modern machine, interactive I/O usually occurs through a graphical user
interface (GUI: ‘‘gooey’’) system, with a mouse, a keyboard, and a bit-mapped
screen that in turn support windows, menus, scrollbars, buttons, sliders, and so
on. GUI characteristics vary significantly among, say, Microsoft Windows, the
Macintosh, and Unix’s X11; the differences are one of the principal reasons it is
difficult to port applications across platforms.

Within a single platform, the facilities of a GUI system usually take the form of
library routines (to create or resize a window, print text, draw a polygon, and so
on). Input events (mouse move, button push, keystroke) may be placed in a queue
that is accessible to the program, or tied to event handler subroutines that are called
by the run-time system when the event occurs. Because the handler is triggered
from outside, its activities must generally be synchronized with those of the main
program, to make sure that both parties see a consistent view of any data shared
between them. We will discuss events further in Section 9.6, and synchronization
in Section 13.3.

A few programming languages—notably Smalltalk—attempt to incorporate a
standard set of GUI mechanisms into the language itself. The Smalltalk design team
was part of the original group at Xerox’s Palo Alto Research Center (PARC) that
invented mouse-and-window based interfaces in the early 1970s. Unfortunately,
while the Smalltalk GUI is successful within the confines of the language, it tends
not to integrate well with the ‘‘look and feel’’ of the host system on which it runs.

C 175

C 176 Chapter 8 Composite Types

Other languages—Java, for example—provide graphics as a standard library
package. Java’s original GUI facilities (the Abstract Window Toolkit—AWT) had
something of a ‘‘least common denominator’’ look to them. The Java routines and
their interface have evolved significantly over time; the more recent Swing and
JavaFX libraries have ‘‘pluggable’’ look and feel, allowing them to integrate more
easily with (and port more easily among) a variety of window systems.

The ‘‘parallel execution’’ of the program and the human user that characterizes
interactive systems is difficult to capture in a functional programming model.
A functional program that operates in a ‘‘batch’’ mode (taking its input from a
file and writing its output to a file) can be modeled as a function from input to
output. A program that interacts with the user, however, requires a very concrete
notion of program ordering, because later input may depend on earlier output.
If both input and output take the form of an ordered sequence of tokens, then
interactive I/O can be modeled using lazy data structures, a subject we considered
in Section 6.6.2. More general solutions can be based on the notion of monads,
which use a functional notion of sequencing to model side effects. We will consider
these issues again in Sections 11.5 and 11.8.

8.7.2 File-Based I/O

Persistent files are the principal mechanism by which programs that run at different
times communicate with each other. A few language proposals (e.g., Argus [LS83]
and χ [SH92]) allow ordinary variables to persist from one invocation of a program
to the next, and a few experimental operating systems (e.g., Opal [CLFL94] and
Hemlock [GSB+93]) provide persistence for variables outside the language proper.
In addition, some language-specific programming environments, such as those for
Smalltalk and Common Lisp, provide a notion of workspace that includes persistent
named variables. With coming advances in nonvolatile memory technology, such
features may find their way into a larger number of languages. Historically, they
have been more the exception than the rule. For the most part, data that need to
outlive a particular program invocation have needed to reside in files.

Like interactive I/O, files can be incorporated directly into the language, or pro-
vided via library routines. In the latter case, it is still a good idea for the language
designers to suggest a standard library interface, to promote portability of programs
across platforms. The lack of such a standard in Algol 60 is widely credited with im-
peding the language’s widespread use. One of the principal reasons to incorporate
I/O into the language proper is to make use of special syntax. In particular, several
languages, notably Fortran and Pascal, provide built-in I/O facilities in order to
obtain type-safe ‘‘subroutines’’ that take a variable number of parameters, some of
which may be optional.

Depending on the needs of the programmer and the capabilities of the host
operating system, data in files may be represented in binary form, much as it is
in memory, or as text. In a binary file, the number 106610 would be represented
by the 32-bit value 100001010102. In a text file, it would probably be represented

PREPRINT

8.7.2 File-Based I/O C 177

by the character string "1066". Temporary files are usually kept in binary form
for the sake of speed and convenience. Persistent files are commonly kept in both
forms. Text files are more easily ported across systems: issues of word size, byte
order, alignment, floating-point format, and so on do not arise. Text files also have
the advantage of human readability: they can be manipulated by text editors and
related tools. Unfortunately, text files tend to be large, particularly when used to
hold numeric data. A double-precision floating-point number occupies only eight
bytes in binary form, but can require as many as 24 characters in decimal notation
(not counting any surrounding white space). Text files also incur the cost of binary
to text conversion on output, and text to binary conversion on input. The size
problem can be addressed, at least for archival storage, by using data compression.
Mechanisms to control text/binary conversion tend to be the most complicated
part of I/O; we discuss them in the following subsection.

When I/O is built into a language, files are usually declared using a built-in typeEXAMPLE 8.93
Files as a built-in type constructor, as for example in Pascal:

var my_file : file of foo;

If I/O is provided by library routines, the library usually provides an opaque type
to represent a file. In either case, each file variable is generally bound to an external,EXAMPLE 8.94

The open operation operating system–supported file by means of an open operation. In C, for example,
one says

my_file = fopen(path_name, mode);

The first argument to fopen is a character string that names the file, using the
naming conventions of the host operating system. The second argument is a string
that indicates whether the file should be readable, writable, or both, whether it
should be created if it does not yet exist, and whether it should be overwritten or
appended to if it does exist.

When a program is done with a file, it can break the association between the fileEXAMPLE 8.95
The close operation variable and the external object by using a close operation:

fclose(my_file);

In response to a call to close, the operating system may perform certain ‘‘finalizing’’
operations, such as unlocking an exclusive file (so that it may be used by other
programs), rewinding a tape drive, or forcing the contents of buffers out to disk.

Most files, both binary and text, are stored as a linear sequence of characters,
words, or records. Every open file then has a notion of current position: an implicit
reference to some element of the sequence. Each read or write operation implic-
itly advances this reference by one position, so that successive operations access
successive elements, automatically. In a sequential file, this automatic advance is
the only way to change the current position. Sequential files usually correspond to
media like printers and tapes, in which the current position has a physical repre-
sentation (how many pages we’ve printed; how much tape is on each spool) that is
difficult to change.

PREPRINT

C 178 Chapter 8 Composite Types

In other, random-access files, the programmer can change the current position
to an arbitrary value by issuing a seek operation. In a few programming languages
(e.g., Cobol and PL/I), random-access files (also called direct files) have no notion
of current position. Rather, they are indexed on some key, and every read or write
operation must specify a key. A file that can be accessed both sequentially and by
key is said to be indexed sequential.

Random-access files usually correspond to media like solid-state flash drives
or magnetic or optical disks, in which the current position can be changed with
relative ease. Where tape drives (still widely used for archival storage) can take
more than a minute to seek to a given position, modern disks take anywhere from
5 to 200 ms, depending on technology. (Note that 5 ms is still a very long time—10
million cycles on a 2 GHz processor.) Seeking on a solid-state device is essentially
instantaneous. A few languages—notably Pascal—provide no random-access files,
though individual implementations may support random access as a nonstandard
language extension.

8.7.3 Text I/O

It is conventional to think of text files as consisting of a sequence of lines, each of
which in turn consists of characters. In older systems, particularly those designed
around the metaphor of punch cards, lines are reflected in the organization of the
file itself. A seek operation, for example, may take a line number as argument.
More commonly, a text file is simply a sequence of characters. Within this sequence,
control (nonprinting) characters indicate the boundaries between lines. Unfor-
tunately, end-of-line conventions are not standardized. In Unix and in modern
versions of the Mac OS, each line of a text file ends with a newline (‘‘control-J’’)
character, ASCII value 10. (On ‘‘classic’’ Macs, each line ended with a carriage
return (‘‘control-M’’) character, ASCII value 13.) On Windows machines, each line
ends with a carriage return/newline pair. Text files are usually sequential.

Despite the muddied conventions for line breaks, text files are much more
portable and readable than binary files.1 Because they do not mirror the structure
of internal data, text files require extensive conversions on input and output. Issues
to be considered include the base for integer values (and the representation of
nondecimal bases); the representation of floating-point values (number of digits,
placement of decimal point, notation for exponent); the representation of enu-
merations and other nonnumeric, nonstring types; and positioning, if any, within
columns (right and left justification, zero or white-space fill, ‘‘floating’’ dollar signs
in Cobol). Some of these issues (e.g., the number of digits in a floating-point

1 We are speaking here, of course, of plain-text ASCII or Unicode files. So-called ‘‘rich text’’ files,
consisting of formatted text in particular fonts, sizes, and colors, perhaps with embedded graphics,
are another matter entirely. Word processors typically represent rich text with a combination of
binary and ASCII data, though ASCII-only standards such as Postscript, textual PDF, RTF, and
XML can be used to enhance portability.

PREPRINT

8.7.3 Text I/O C 179

number) are influenced by the hardware, but most are dictated by the needs of the
application and the preferences of the programmer.

In most languages the programmer can take complete control of input and output
formatting by writing it all explicitly, using language or library mechanisms to read
and write individual characters only. I/O at such a low level is tedious, however,
and most languages also provide more high-level operations. These operations vary
significantly in syntax and in the degree to which they allow the programmer to
specify I/O formats. We illustrate the breadth of possibilities with examples from
four imperative languages: Fortran, Ada, C, and C++.

Text I/O in Fortran

In Fortran, we could write a character string, an integer, and an array of 10 floating-EXAMPLE 8.96
Formatted output in
Fortran

point numbers as follows:

character s*20
integer n
real r (10)
...
write (4, '(A20, I10, 10F8.2)'), s, n, r

In the write statement, the 4 indicates a unit number, which identifies a particular
output file. The quoted, parenthesized expression is called a format; it specifies
how the printed variables are to be represented. In this case, we have requested a
20-column ASCII string, a 10-column integer, and 10 eight-column floating-point
numbers (with two columns of each reserved for the fractional part of the value).
Fortran provides an extremely rich set of these edit descriptors for use inside of
formats. Cobol, PL/I, and Perl provide comparable facilities, though with a very
different syntax.

Fortran allows a format to be specified indirectly, so it may be used in moreEXAMPLE 8.97
Labeled formats than one input or output statement:

write (4, 100), s, n, r ! 100 is the line number
... ! of the format statement
100 format (A20, I10, 10F8.2)

It also allows formats to be created at run time, and stored in strings:

character(len=20) :: fmt
...
fmt = "(A20, I10, 10F8.2)"
...
write (4, fmt), s, n, r

If the programmer does not know, or does not care about, the precise allocation of
columns to fields, the format can be omitted:

write (4, *), s, n, r

PREPRINT

C 180 Chapter 8 Composite Types

In this case, the run-time system will use default format conventions.
To write to the standard output stream (i.e., the terminal or its surrogate), theEXAMPLE 8.98

Printing to standard output programmer can use the print statement, which resembles a write without a
unit number:

print*, s, n, r ! * means default format

For input, read is used both for standard input and for specific files; in the former
case, the unit number is omitted, together with the extra set of parentheses:

read 100, s, n, r
...
read*, s, n, r ! * means default format

The star may be omitted in Fortran 90.
In the full form of read, write, and print, additional arguments may be

provided in the parenthesized list with the unit number and format. These can be
used to specify a variety of additional information, including a label to which to
jump on end-of-file, a label to which to jump on other errors, a variable into which
to place status codes returned by the operating system, a set of labels (a ‘‘namelist’’)
to attach to the output values, and a control code to override the usual automatic
advance to the next line of the file. Because there are so many of these optional
arguments, most of which are usually omitted, they are usually specified using
named (keyword) parameter notation, a notion we defer to Section 9.3.3.

The variety of shorthand versions of read, write, and print, together with
the fact that they operate on a variable number of program variables, makes it very
difficult to cast them as ‘‘ordinary’’ subroutines. Fortran 90 provides optional and
named parameters, but Fortran 77 does not, and even in Fortran 90 there is no way
to define a subroutine with an arbitrary number of parameters.

Text I/O in Ada

Ada provides a suite of five standard library packages for I/O. The Sequential_
IO and Direct_IO packages are for binary files. They provide generic file types
that can be instantiated for any desired element type. The IO_Exceptions and
Low_Level_IO packages handle error conditions and device control, respectively.
The Text_IO package provides formatted input and output on sequential files of
characters.

Using Text_IO, our original three-variable Fortran output statement wouldEXAMPLE 8.99
Formatted output in Ada look something like this in Ada:

s : array (1..20) of Character;
n : Integer;
r : array (1..10) of Real;
...

PREPRINT

8.7.3 Text I/O C 181

set_output(My_File);
Put(N, 10);
Put(S);
for I in 1..10 loop Put(R(I), 5, 2); end loop;
New_Line;

In the Put of an element of R (within the loop), the second parameter specifies
the number of digits before the decimal point, rather than the width of the entire
number (including the decimal point), as it did in Fortran. The Put of S will use
the string’s natural length. If a different length is desired, the programmer will have
to write blanks or Put a substring explicitly. If precise output positioning is not
desired for the integers and real numbers, the extra parameters in their Put calls
can be omitted; in this case the run-time system will use standard defaults. The
programmer can use additional library routines to change these defaults if desired.
A call to Set_Output invokes a similar mechanism: it changes the default notion
of output file.

There are two overloaded forms of Put for every built-in type. One takes a fileEXAMPLE 8.100
Overloaded Put routines name as its first argument; the other does not. The last five lines above could have

been written

Put(My_File, N, 10);
Put(My_File, S);
for I in 1..10 loop Put(My_File, R(I), 5, 2); end loop;
New_Line(My_File);

The programmer can of course define additional forms of Get and Put for arbitrary
user-defined types. All of these facilities rely on standard Ada mechanisms; in
contrast to Fortran, no support for I/O is built into the language itself.

Text I/O in C

C provides I/O through a library package called stdio; as in Ada, no support
for I/O is built into the language itself. Many C implementations, however, build
knowledge of I/O functions into the compiler, so it can issue warnings when
arguments appear to be used incorrectly.

Our example output statement would look something like this in C:EXAMPLE 8.101
Formatted output in C

char s[20];
int n;
double r[10];
...
fprintf(my_file, "%20s%10d", s, n);
for (i = 0; i < 10; i++) fprintf(my_file, "%8.2f", r[i]);
fprintf(my_file, "\n");

The arguments to fprintf are a file, a format string, and a sequence of expres-
sions. The format string has capabilities similar to the formats of Fortran, though

PREPRINT

C 182 Chapter 8 Composite Types

the syntax is very different. In general, a format string consists of a sequence of
characters with embedded ‘‘placeholders,’’ each of which begins with a percent
sign. The placeholder %20s indicates a 20-character string; %d indicates an integer
in decimal notation; %8.2f indicates an 8-character floating-point number, with
two digits to the right of the decimal point.

As in Fortran, formats can be computed and stored in strings, and a single
fprintf statement can print an arbitrary number of expressions. As in Ada, an
explicit for loop is needed to print an array. Commonly the format string alsoEXAMPLE 8.102

Text in format strings contains labeling text and white space:

strcpy(s, "four"); /* copy "four" into s */
n = 20;
char *fmt = "%s score and %d years ago\n";
fprintf(my_file, fmt, s, n);

A percent sign can be printed by doubling it:

fprintf(my_file, "%d%%\n", 25); /* prints "25%" */

Input in C takes a similar form. The fscanf routine takes as argument a file, aEXAMPLE 8.103
Formatted input in C format string, and a sequence of pointers to variables. In the common case, every

argument after the format is a variable name preceded by a ‘‘pointer to’’ operator:

fscanf(my_file, "%s %d %lf", s, &n, &r[0]);

In this call, the %s placeholder will match a string of maximal length that does
not include white space. If this string is longer than 20 characters (the length of
s), then fscanf will write beyond the end of the storage for the string. (This
weakness in scanf is one of the sources of the so-called ‘‘buffer overflow’’ bugs
discussed in Sidebar 8.7. It can be avoided in this example by replacing the %s
specifier with %19s, which will cause fscanf to move at most 19 bytes, plus a
terminating NUL.) The three-character %lf placeholder informs the library routine
that the corresponding argument is a double; the 2-character sequence %f would
read into a float.2 Accidentally using a placeholder for the wrong size variable
is a common error in older implementations of C; forgetting the ampersand on a
trailing argument is another. While such mistakes will often be caught by a modern
C compiler with special-case knowledge of fscanf, they would always be caught in
a language with type-safe I/O. Note that we have read a single element of r; as with
fprintf, a for loop would be needed to read the whole array. Note also that while

2 C’s doubles are double-precision IEEE floating-point numbers in most implementations; floats
are usually single precision. The lack of safety for %s arguments is only one of several problems
with fscanf. Others include the inability to ‘‘skip over’’ erroneous input, and undefined behavior
when there is insufficient input. Instead of fscanf, seasoned C programmers tend to use fgets,
which reads (length-limited) input into a string, followed by manual parsing using strtol (string-
to-long), strtod (string-to-double), and so on.

PREPRINT

8.7.3 Text I/O C 183

we have not made use of this fact in our example, fscanf returns an integer value
indicating the number of &-identified items that were scanned successfully.

We have noted above that the I/O routines of Fortran and Pascal are built into
the language largely to permit them to take a variable number of arguments. We
have also noted that moving I/O into a library in Ada forces us to make a separate
call to put for every output expression. So how do fprintf and fscanf work? It
turns out that C permits functions with a variable number of parameters (we will
discuss such functions in more detail in Section 9.3.3). Unfortunately, the types of
trailing parameters are unspecified, which makes compile-time type checking of
variable-length argument lists impossible in the general case. Moreover, the lack of
run-time type descriptors in C precludes run-time checking as well. At the same
time, because the C library (including fprintf and fscanf) is part of the language
standard, special knowledge of these routines can be built into the compiler—and
often is: while the I/O routines of C are formally defined as ‘‘ordinary’’ functions,
they are typically implemented in the same way as their analogues in Fortran and
Pascal. As a result, C compilers will often provide good error diagnostics when the
arguments to fprintf or fscanf do not match the format string.

To simplify I/O to and from the standard input and output streams, stdio
provides routines called printf and scanf that omit the initial arguments of
fprintf and fscanf. To facilitate the formatting of strings within a program,
stdio also provides routines called sprintf and sscanf, which replace the initial
arguments of fprintf and fscanf with a pointer to an array of characters. The
sscanf function ‘‘reads’’ from this array; sprintf ‘‘writes’’ to it. Fortran 90
provides similar support for intraprogram formatting through so-called internal
files.

Text I/O in C++

As a descendant of C, C++ supports the stdio library described in the previous
subsection. It also supports an I/O library called iostream that exploits the object-
oriented features of the language. The iostream library is more flexible than
stdio, provides arguably more elegant syntax (though this is a matter of taste),
and is completely type safe.

C++ streams use operator overloading to co-opt the << and >> symbols normally
used for bit-wise shifts. The iostream library provides an overloaded version of
<< and >> for each built-in type, and programmers can define versions for new
types. To print a C-style character string in C++, one writesEXAMPLE 8.104

Formatted output in C++
my_stream << s;

To output a string and an integer one can write

my_stream << s << n;

This idiom requires that my_stream be an instance of the ostream (output stream)
class defined in the iostream library. The << operator, with a right operand of type

PREPRINT

C 184 Chapter 8 Composite Types

T, is then syntactic sugar for either the ‘‘operator function’’ operator<<(ostream,
T) or the ‘‘operator method’’ ostream::operator<<(T), as described in Sec-
tion 3.5.2. As it turns out, iostream provides an operator function for C-style
strings and a member function for integers. Because << associates left-to-right, the
statement above is equivalent to

(operator<<(my_stream, s)).operator<<(n);

The code works because operator<< returns a reference to its first argument as
its result (as we shall see in Section 9.3.1, C++ supports both a value model and a
reference model for variables).

As shown so far, output to an ostream uses default formatting conventions. ToEXAMPLE 8.105
Stream manipulators change conventions, one may embed so-called stream manipulators in a sequence

of << operations. To print n in octal notation (rather than the default decimal), we
could write

my_stream << oct << n;

To control the number of columns occupied by s and n, we could write

my_stream << setw(20) << s << setw(10) << n;

The oct manipulator causes the stream to print all subsequent numeric output in
octal. The setw manipulator causes it to print its next string or numeric output in
a field of a specified minimum width (behavior reverts to the default after a single
output).

The oct manipulator is declared as a function that takes an ostream as a param-
eter and produces a reference to an ostream as its result. Because it is not followed
by empty parentheses, the occurrence of oct in the output sequence above is not a
call to oct; rather, a reference to oct is passed to an overloaded version of << that
expects a manipulator function as its right-hand argument. This version of << then
calls the function, passing the stream (the left-hand argument of <<) as argument.

The setw manipulator is even trickier. It is declared as a function that returns a
reference to what we might call an ‘‘object closure’’—an object containing a refer-
ence to a function and a set of arguments. In this particular case, setw(20) is a
call to a constructor function that returns a closure containing the number 20 and
a pointer to the setw manipulator. (We will discuss constructors in detail in Sec-
tion 10.3, and object closures in Section 3.6.3.) The iostream library provides an
overloaded version of << that expects an object closure as its right-hand argument.
This version of << calls the function inside the closure, passing it as arguments the
stream (the left-hand argument of <<) and the integer inside the closure.

The iostream library provides a wealth of manipulators to change the format-
ting behavior of an ostream. Because C++ inherits C’s handling of pointers andEXAMPLE 8.106

Array output in C++ arrays, however, there is no way for an ostream to know the length of an array. As
a result, our full output example still requires a for loop to print the r array:

PREPRINT

8.7.3 Text I/O C 185

char s[20];
int n;
double r[10];
...
my_stream << setw(20) << s << setw(10) << n;
for (i = 0; i < 10; i++)

my_stream << setiosflags(ios::fixed)
<< setw(8) << setprecision(2) << r[i];

my_stream << "\n";

Here the manipulators in the output sequence in the for loop specify fixed format
(rather than scientific) for floating-point numbers, with a field width of eight,
and two digits past the decimal point. The setiosflags and setprecision
manipulators change the default format of the stream; the changes apply to all
subsequent output.

To avoid calling stream manipulators repeatedly, we could modify our exampleEXAMPLE 8.107
Changing default format as follows:

my_stream.flags(my_stream.flags() | ios::fixed);
my_stream.precision(2);
for (i = 0; i < 10; i++) my_stream << setw(8) << r[i];

To facilitate the restoration of defaults, the flags and precision functions return
the previous value:

ios::fmtflags old_flags = my_stream.flags(my_stream.flags() | ios::fixed);
int old_precision = my_stream.precision(2);
for (i = 0; i < 10; i++) my_stream << setw(8) << r[i];
my_stream.flags(old_flags);
my_stream.precision(old_precision);

Formatted input in C++ is analogous to formatted output. It uses istreams
instead of ostreams, and the >> operator instead of <<. It also supports a suite of
manipulators comparable to those for output. I/O on the standard input and output
streams does not require different functions; the programmer simply begins an
input or output sequence with the standard stream name cin or cout. (In keeping
with C tradition, there is also a standard stream cerr for error messages.) To sup-
port intraprogram formatting of character strings, the strstream library provides
istrstream and ostrstream object classes that are derived from istream and
ostream, and that allow a stream variable to be bound to a string instead of to a
file.

PREPRINT

C 186 Chapter 8 Composite Types

3CHECK YOUR UNDERSTANDING

66. Explain the differences between interactive and file-based I/O, between tem-
porary and persistent files, and between binary and text files. (Some of this
information is in the main text.)

67. What are the comparative advantages of text and binary files?

68. Describe the end-of-line conventions of Unix, Windows, and Macintosh files.

69. What are the advantages and disadvantages of building I/O into a programming
language, as opposed to providing it through library routines?

70. Summarize the different approaches to text I/O adopted by Fortran, Ada, C,
and C++.

71. Describe some of the weaknesses of C’s scanf mechanism.

72. What are stream manipulators? How are they used in C++?

PREPRINT

PREPRINT

8Composite Types

8.9 Exercises

8.35 In Example 6.70 we described a programming idiom in which an iterator
takes a ‘‘loop body’’ function as argument, and applies it to every element of a
given container or set. Show how to use this idiom in ML to apply a function
to every element of the tree in Example 11.39. Write versions of your iterator
for preorder, inorder, and postorder traversals.

8.36 Show how unions can be used in C to interpret the bits of a value of one
type as if they represented a value of some other type. Explain why the same
technique does not work in Ada. After consulting an Ada manual, describe
how an unchecked pragma can be used to get around the Ada rules.

8.37 Are variant records a form of polymorphism? Why or why not?
8.38 Learn the details of variant records in Pascal.

(a) You may have noticed that the language does not allow you to pass the
tag field of a variant record to a subroutine by reference. Why not?

(b) Explain how you might implement dynamic semantic checks to catch
references to uninitialized fields of a tagged variant record. Changing
the value of the tag field should cause all fields of the variant part of the
record to become uninitialized. Suppose you want to avoid adding flag
fields within the record itself (e.g., to avoid changing the offsets of fields
in a systems program). How much harder is your task?

(c) Explain how you might implement dynamic semantic checks to catch
references to uninitialized fields of an untagged variant record. Any
assignment to a field of a variant should cause all fields of other variants
to become uninitialized. Any assignment that changes the record from
one variant to another should also cause all other fields of the new variant
to be uninitialized. Again, suppose you want to avoid adding flag fields
within the untagged record itself. How much harder is your task?

C 187

C 188 Chapter 8 Composite Types

8.39 We noted in Section C 8.1.4 that Ada requires the variant portions of a record
to occur at the end, to save space when a particular record is constrained to
have a comparatively small variant part. Could a compiler rearrange fields to
achieve the same effect, without the restriction on the declaration order of
fields? Why or why not?

8.40 Reference counts can be used to reclaim tombstones,. While it is certainly
possible to create a circular structure with tombstones, the fact that the pro-
grammer is responsible for explicit deallocation of heap objects implies that
reference counts will fail to reclaim tombstones only when the programmer
has failed to reclaim the objects to which they refer. Explain how to leverage
this observation to catch memory leaks at run time. Does your solution work
in all cases? Explain.

8.41 For objects allocated in the heap, we have suggested that a ‘‘lock’’ for dangling
reference detection be allocated in the object header, at a known offset from
the beginning of the object itself. This choice doesn’t work well for pointers
to static or stack-allocated objects, or in general for pointers created with
an ‘‘address of’’ (&) operator, since these may refer to fields in the middle of
larger objects.

Zhou [ZCH23] has suggested solving this problem by adding an extra field
to every pointer, to indicate the offset between the lock and the pointed-to
object. A single lock can then protect an entire stack frame, or all the static
objects in a module.

Elaborate on this suggestion. Specifically, describe the code that must be
executed in subroutine prologues and epilogues—and on pointer assignment
and dereference—in order to detect dangling references in a language that
permits pointers to non-heap objects.

8.42 In Section 8.5.4 we introduced the notion of smart pointers in C++. Learn how
these are implemented, and write an explanation. Discuss the relationship to
tombstones.

8.43 Rewrite Example C 8.103 using fgets, strtol, strtod, etc. (read the man
pages), so that it is guaranteed not to result in buffer overflow.

8.44 The output routines of several languages (e.g., println in Swift) give spe-
cial treatment to ends of lines. By contrast, C’s printf does not; it treats
newlines and carriage returns the same as any other character. What are the
comparative advantages of these approaches? Which do you prefer? Why?

PREPRINT

PREPRINT

8Composite Types

8.10 Explorations

8.54 Research the history of smart pointers (Section 8.5.4) in C++, including
the unique_ptr, shared_ptr, and weak_ptr of C++11; the auto_ptr of
C++98, and the various pointer classes of the popular Boost library. How
has the standard set of pointers evolved over time? What accounts for the
changes? Do you consider the current mechanisms an adequate replacement
for automatic garbage collection? Why or why not?

8.55 Find a Cobol manual and learn about the language’s facilities for text I/O.
Prepare a written comparison of those facilities to those of the languages
described in Section C 8.7.3.

8.56 If you were designing the text I/O facilities for a new programming language,
what approach would you take? In particular, do you believe that I/O should
be a built-in part of the language, or should it be handled by library routines?

C 189

C 190 Chapter 8 Composite Types

PREPRINT

PREPRINT

9Subroutines and Control Abstraction

9.2.1 Displays

As noted in the main text, a display is an embedding of the static chain into anEXAMPLE 9.67
Nonlocal access using a
display

array. The jth element of the display contains a reference to the frame of the most
recently active subroutine at lexical nesting level j. The first element of the display
is thus a reference to the frame of some subroutine S nested directly inside the main
program; the second element is a reference to the frame of a routine that is nested
inside of S, and so forth, until we reach the currently active routine. Figure C 9.7
contains an example.

If the display is stored in memory, then a nonlocal object can be loaded into a
register with two memory accesses: one to load the display element into a register,
the second to load the object. On a machine with a large number of registers, one
might be tempted to reduce the overhead to only one memory access by keeping the
entire display in registers, but that would probably be a bad idea: display elements
tend to be accessed much less frequently than other things (e.g., local variables)
that might be kept in the registers instead.

Maintaining the Display

Maintenance of a display is slightly more complicated than maintenance of a static
chain, but not by much. Perhaps the most obvious approach would be to maintain
the static chain as usual, and simply fill the display at procedure entry and exit,
by walking down the chain. In most cases, however, the following (much faster)
scheme suffices: when calling a subroutine at lexical nesting level j, the callee saves
the current value of the jth display element into the stack, and then replaces that
element with a copy of its own (newly created) frame pointer. Before returning, it
restores the old element. Why does this mechanism work? As with static chains,
there are two cases to consider:

1. The callee is nested (directly) inside the caller. In this case the caller and the
callee share all display elements up to the current level. Putting the callee’s
frame pointer into the display simply extends the current level by one. It is
conceivable that the old value needn’t be saved, but in general there is no way

C 191

C 192 Chapter 9 Subroutines and Control Abstraction

A

E

A

E

B

A

E

B

D

A

E

B

D

E

Figure 9.7 Nonlocal access using a display. The stack configurations, from left to right, illustrate
the contents of the display (at bottom) for a sequence of subroutine calls, assuming the lexical
nesting of Figure 9.1. Display elements beyond that of the currently executing subroutine are not
used.

to tell. The caller itself might have been called by code that is very deeply nested,
and that is counting on the integrity of a very deep display, in which case the
old display element will be needed. A smart compiler may be able to avoid the
save in certain circumstances.

2. The callee is at lexical nesting level j, k ≥ 0 levels out from the caller. In this
case the caller and callee share all display elements up through j−1. The caller’s

DESIGN & IMPLEMENTATION

9.9 Lexical nesting and displays
Because the display is a fixed-size array, compilers that use a display to implement
access to nonlocal objects generally impose a limit (the size of the display) on
the maximum depth to which subroutines may be nested. If this limit is larger
than, say, five or six, it is unlikely that any programmer will ever wish for more.
Note that the display does not eliminate the need for a frame pointer. Because
local variables are accessed so often, it is important to have the address of
the current frame in a register, where it can be used for displacement-mode
addressing. Similarly, on a RISC processor, where a 32-bit address will not
fit in one instruction, it is important to maintain a base register for the most
commonly accessed global variables as well.

PREPRINT

9.2.1 Displays C 193

entry at level j is different from the callee’s, so the callee must save it before
storing its own frame pointer. If the callee in turn calls a routine at level j + 1,
that routine will change another element of the display, but all old elements will
be restored before they are needed again.

If the callee is a leaf routine then the display can be left intact; no one will use the
element corresponding to the callee’s nesting level before control returns to the
caller.

Closures

A subroutine that is passed as a parameter, stored in a variable, or returned from a
function must be called through some sort of closure (Section 3.6) that captures the
referencing environment. In a language implementation based on static chains, a
closure can be represented as a ⟨code address, static link⟩ pair. Displays are not as
simple. A standard technique is to create two ‘‘entry points’’—starting addresses—
for every subroutine. One of these is for ‘‘normal’’ calls, the other for calls through
closures. When a closure is created, it contains the address of the alternative entry
point. The code at that entry point saves elements 1 through j of the display into
the stack (it will have to create a larger-than-normal stack frame in order to do
this), and then replaces those elements with values taken from (or calculated from)
the closure. The alternative entry then makes a nested call to the main body of the
subroutine (it skips the code immediately following the normal entry—the code
that creates the normal stack frame and updates the display). When the subroutine
returns, it comes back to the code of the alternative entry, which restores the old
value of the display before returning to the actual caller.

More space-conserving implementations of display-based closures are possible
(see Exercise C 9.29), but with higher run-time overhead.

Comparison to Static Chains

In general, maintaining a display is slightly more expensive than maintaining a
static chain, though the comparison is not absolute. In the usual case, passing a
static link to a called routine requires k ≥ 0 load instructions in the caller, followed
by one store instruction in the callee (to place the static link at the appropriate
offset in the stack frame). The store may be skipped in leaf routines, assuming
that a register is available to hold the link as long as it is needed. No overhead is
required to maintain the static chain when returning from a subroutine. With a
display, a nonleaf callee requires two loads and three stores (1 + 2 in the prologue
and 1 + 1 epilogue) to save and restore display elements. Because the callee does
all the work, displays may save a little bit on code size, compared to static chains.
As noted above, displays significantly complicate the creation and use of closures.

The original advantage of displays—reduced cost for access to objects in outer
scopes—seems less clear today than once it did. In fact, while displays were popular
in the CISC compilers of the 1970s and 1980s, they are less common in recent
compilers. Most programs don’t nest subroutines more than two or three levels
deep, so static chains are seldom very long, and variables in surrounding scopes tend

PREPRINT

C 194 Chapter 9 Subroutines and Control Abstraction

not to be accessed very often. If they are accessed often, common subexpression
optimizations (to be discussed in Chapter 17) are likely to ensure that a pointer to
the appropriate frame remains in a register.

Some language designers have argued that the development of object-oriented
programming (the subject of Chapter 10) has eliminated the need for nested subrou-
tines [Han81]. Others might even say that the success of C has shown such routines
to be unneeded. Without nested subroutines, of course, the choice between static
chains and displays is moot.

3CHECK YOUR UNDERSTANDING

46. Describe how we access an object at lexical nesting level k in a language imple-
mentation based on displays.

47. Why isn’t the display typically kept in registers?

48. Explain how to maintain the display during subroutine calls.

49. What special concerns arise when creating closures in a language implementa-
tion that uses displays?

50. Summarize the tradeoffs between displays and static chains. Describe a program
for which displays will result in faster code. Describe another for which static
chains will be faster.

PREPRINT

PREPRINT

9Subroutines and Control Abstraction

9.2.2 Stack Case Studies: LLVM on Arm; gcc on x86

To make stack management a bit more concrete, we present a pair of case studies:
Apple’s LLVM-based C compiler for the iPhone (Arm) and the GNU compiler
suite for 32- and 64-bit x86. Both examples follow the general scheme outlined in
Section 3.2.2, with differences in details that reflect the history of the respective
compilers and the architecture of the target machines.

LLVM on Arm

An overview of the Arm instruction set architecture (ISA) can be found in Sec-
tion C 5.4.5. For the sake of interoperability, Arm Ltd. publishes a standard for
subroutine calling sequences that allows code from different vendors and compilers
to link and run together. The standard has several variants, reflecting hardware
features (Thumb mode, floating-point or vector instructions and registers, dynamic
linking) that may or may not be present on a given processor or in its software
environment. We focus here on the conventions adopted by Apple’s C compiler for
the iPhone and iPad (version 4.2), at optimization level -O2. The Apple compiler
uses the 32-bit Arm back end (version 3.2svn) of the LLVM compiler suite. Given
the level of detail in Arm’s standard, code produced by other compilers is likely
to be quite similar. Note, however, that the conventions for 64-bit code are very
different; they are not documented here.

As noted in Section C 5.4.5, register r14 (also known as lr) is special-cased
by the ISA to receive the return address in subroutine call (bl—branch-and-link)
instructions. Register r13 (also known as sp) is similarly reserved for use as the
stack pointer. It is not modified by bl instructions, but several variants of push and
pop, which do update sp, are commonly part of the subroutine calling sequence.
Some compilers for Arm, though not all, dedicate a third register by convention
for use as a frame pointer; LLVM uses r7 for this purpose.

A typical LLVM/Arm stack frame appears in Figure C 9.8. The sp register pointsEXAMPLE 9.68
LLVM/Arm stack layout to the last used location in the stack (note that some compilers aim the pointer at

C 195

C 196 Chapter 9 Subroutines and Control Abstraction

4 bytes/32 bits

Local variables
and

temporaries

Arguments

Saved registers
(including fp)

sp

Direction of stack growth
(lower addresses)

r7 (fp)

5

Current frame

Previous (calling)
frame

n

Space to build
argument lists

Figure 9.8 Layout of the subroutine call stack for Apple’s LLVM-based C compiler for Arm,
running in 32-bit mode. As in Figure 9.2, lower addresses are toward the top of the page.

the first unused location). Arm’s subroutine calling standard requires that the stack
always be word-aligned (sp mod 4 = 0). At an external call (to a subroutine in a
different compilation unit) it must be double-word aligned (sp mod 8 = 0).

The first four arguments to a subroutine are always passed in registers. Additional
arguments may be passed on the stack, with the last argument in the deepest
location. Space for stack-based arguments is considered a part of the calling routine.
If the current routine is not a leaf, space for any stack-based arguments it needs to
pass to additional routines is preallocated, at the top (lowest-addressed-end) of the
frame, as part of the subroutine prologue.

Space for local variables and for any temporary values that will not fit in registers
is allocated in the middle of the frame. If the subroutine ever applies an address-of
operator (& in C) to a low-numbered argument (one that will have been passed
in a register), or if it passes such an argument to another routine by reference, the
compiler creates a local variable to hold the argument, and initializes it with the
value passed in the register.

Any callee-saves registers that may be overwritten by the current routine are
saved at the bottom of the frame, directly beyond any stack-based arguments. The
frame pointer (r7) is typically among these. LLVM arranges for the current fp to
point to the location of the saved fp.

Argument Passing Conventions Arguments and locals of the current subroutine
are accessed via offsets from the fp. Arguments in the process of being passed
to the next routine are assembled at the top of the frame, and are accessed via
offsets from the sp. The first four arguments are passed in registers r0–r3. A
double-precision floating-point number is divided into two 32-bit halves, and
passed as if it were two integers. (Some other Arm compilers pass floating-point

PREPRINT

9.2.2 Stack Case Studies: LLVM on Arm; gcc on x86 C 197

arguments in the floating-point registers.) Records (structs) that appear early
in the argument list may also be split into 32-bit pieces, and passed in multiple
registers. An argument may be split between registers and the stack, if part but not
all of it will fit in registers.

The argument build area at the top of the frame is designed to be large enough
to hold the largest argument list that may be passed to any called routine. This
convention may waste a bit of space in certain cases, but it ensures that arguments
never need to be ‘‘pushed’’ in the usual sense of the word: the sp does not change
when they are placed into the stack.

Return values up to 4 bytes in length occupy register r0. Double-word scalar
return values occupy register pair r0–r1; quad-word scalar return values occupy
registers r0–r3. Record-type return values of more than four bytes are placed in
memory, at a location chosen by the caller and passed as an extra, hidden argument.
If the return value is to be assigned immediately into a variable (e.g., x = foo()),
the caller can simply pass the address of the variable. If the value is to be passed in
turn to another subroutine, the caller can pass the appropriate address within its
own argument build area. (Writing the return value into this space will probably
destroy the returning function’s own arguments, but that’s fine in the absence of
call-by-value/result: at this point the arguments are no longer needed.) Finally,
though one doesn’t see this idiom often (and most languages don’t support it), C
allows the caller to extract a field directly from the return value of a function (e.g.,
x = foo().a + y;); in this case the caller must pass the address of a temporary
location within the ‘‘local variables and temporaries’’ part of its stack frame.

DESIGN & IMPLEMENTATION

9.10 Leveraging pc = r15
Because Arm assigns a register number to the program counter, that counter
can be read and written (almost) like any other register. Writes to the pc cause
a branch in control. This convention, together with the choice of lr = r14 and
pc = r15, enables an interesting optimization. If a subroutine is not a leaf (i.e., it
calls another routine), lr will be among the registers saved at the bottom of the
frame. If we suppose, for concreteness, that the subroutine plans to overwrite
callee-saves registers r4 and r5, and we know that we need to update the frame
pointer (r7), then the subroutine prologue is likely to contain a push {r4, r5,
r7, lr} instruction. This instruction stores the registers in sorted order, with
the highest-numbered register (in this case, lr) at the highest address—deepest
in the stack. One might naturally expect the epilogue to contain a symmetric
pop {r4, r5, r7, lr} instruction, followed immediately by bx lr (branch
to location in lr). But since the pc and lr have adjacent register numbers, the
compiler can—and typically does—achieve the same result with a single pop
{r4, r5, r7, pc} instruction.

PREPRINT

C 198 Chapter 9 Subroutines and Control Abstraction

Arm and Thumb Mode Switching One of the more unusual features of the 32-bit
Arm ISA (as described in Section C 5.4.5) is the presence of two separate instruction
encodings. As on most RISC machines, the A32 encoding represents each instruc-
tion with 32 bits. The alternative T32 encoding, also known as ‘‘Thumb,’’ represents
the most common instructions in only 16 bits; the resulting improvement in code
density can be important in embedded applications. While the two encodings are
quite different (and in particular, T32 is not a subset of A32), program fragments
that use different encodings can be linked into a single program.

To switch from one format to another, the program uses special bx (branch and
exchange instruction set) and blx (branch with link and exchange instruction set)
instructions. When the target address is statically known, the assumption is that
the programmer knows that the source and target encodings are different, so the
processor needs to change modes in the course of performing the branch. When
the target address is in a register (as it will be when returning from a subroutine, or
when calling through a pointer, a virtual method table, or a closure), Arm exploits
the fact that instructions never appear at an odd address (T32 instructions are
always word aligned; A32 instructions are always longword aligned). Because the
least significant bit of the target address must always be 0, this bit can be used in
the register to specify the target instruction set: 0 means A32; 1 means T32.

Calling Sequence Details The calling sequence to maintain the LLVM/ArmEXAMPLE 9.69
LLVM/Arm calling sequence stack is as follows. The caller

1. saves (into the ‘‘local variables and temporaries’’ part of its frame) any caller-
saves registers whose values are still needed

2. puts up to four small arguments (or ‘‘chunks’’ of larger arguments) into registers
r0–r3

3. stores the remaining arguments into the argument build area at the top of the
current frame

4. performs a bl or blx instruction, which puts the return address in register lr,
jumps to the target address, and optionally changes instruction set encoding

On 32-bit Arm, the caller-saves registers are just the ones that are used for
arguments—namely, r0–r3. In a language with nested subroutines (not sup-
ported by Apple’s compiler), the caller would need to place the static link into
another register immediately before performing the bl or blx.

In its prologue, the callee

1. pushes any necessary registers onto the stack
2. initializes the frame pointer by adding an appropriate small constant to the sp,

placing the result in r7
3. subtracts enough from the sp to make space for local variables, temporaries,

and the argument build area at the top of the stack, rounding down to a lower
address if necessary to ensure that these objects have appropriate alignment

PREPRINT

9.2.2 Stack Case Studies: LLVM on Arm; gcc on x86 C 199

Saved registers include (a) the frame pointer, r7 (assuming the current routine
needs a frame pointer of its own); (b) any callee-saves registers (r4–r6 and r8–
r11) whose values may be changed before returning; and (c) the link register, lr,
if the current routine is not a leaf, or if it uses lr as an additional temporary.

In its epilogue, immediately before returning, the callee

1. places the function return value (if any) into r0–r3 or memory, as appropriate
2. subtracts a small constant from r7, placing the result in sp; this effectively

deallocates the bulk of the frame
3. pops saved registers from the stack, with the pc taking the place held by lr in

the corresponding save in the prologue; this has the side effect of branching
back to the caller (see Sidebar C 9.10)

Finally, if appropriate, the caller moves the return value to wherever it is needed.
Caller-saves registers are restored lazily over time, as their values are needed.

To support the use of symbolic debuggers, the compiler generates a wealth of
symbol table information, in the open-source DWARF format [DWA17]. It embeds
this information into the object file. The information is most accurate when the
program is compiled without any code improvement (-O0). For each subroutine,
the information includes the starting and ending addresses of the routine; the
name, type, and location (register name or frame pointer offset) of every formal
parameter and local variable; the set of instructions corresponding to each line of
source code; the size and layout of the stack frame; and a list of which registers
were saved.

gcc on x86

To illustrate the differences among compilers and architectures, our second case
study considers the GNU compiler collection (gcc, version 4.8.1) on the x86.
We begin with 32-bit code and then explain the differences that obtain on 64-bit
machines. Our example again focuses mostly on C, which acts as sort of a ‘‘lowest
common denominator’’ among high-level languages. We also consider nested
subroutines and closures, however, since these appear in some of the collection’s
supported languages.

An overview of the x86-32 ISA appears in Section C 5.4.5. Given the machine’s
CISC heritage and the comparatively small number of registers (only six are avail-
able for general-purpose use), all arguments are passed on the stack when running
in 32-bit mode. To give the compiler the freedom to evaluate arguments out of
order when desired, recent versions of gcc employ an argument build area similar
to that of the LLVM case study. Unlike LLVM, recent versions of gcc omit the use
of a separate frame pointer by default, making register ebp (rbp in 64-bit mode)
available for other purposes; exceptions occur when specified by the programmer
(using the -no-omit-frame-pointer command-line switch), when compiling at
optimization levels -O0 and -O1, when a subroutine has a local variable whose
size is not known at compile time (Figure 8.7), or when a subroutine calls alloca
(a legacy mechanism to create temporary space within the current stack frame).

PREPRINT

C 200 Chapter 9 Subroutines and Control Abstraction

4 bytes/32 bits

Local variables
and

temporaries

Arguments

(Saved fp)

Other saved
registers

Return address

(Static link)

sp

(SL

Direction of stack growth
(lower addresses)

(fp

1

Current frame

Previous (calling)
frame

n

Space to build
argument lists

)

)

Figure 9.9 Layout of the subroutine call stack for the GNU Compiler Collection (gcc) on
32-bit x86. The return address is present in all frames. All other parts of the frame are optional;
they are present only if required by the current subroutine. In x86 terminology, the sp is named
esp; the fp is ebp (extended base pointer). The static link, in languages with nested subroutines,
is passed in register ecx. SL marks the location that will be referenced by the static link (if any)
of any subroutine nested immediately inside this one. A routine that is neither innermost nor
outermost will save its own static link at the location referenced by the static link of its children.

Historically, omission of the frame pointer made it difficult or even impossible for
symbolic debuggers to perform a ‘‘backtrace’’ operation (identifying the frames of
calling routines), but this limitation has been removed with modern debugging
standards like DWARF.

Calling sequences for the x86 vary from vendor to vendor, and have evolved
considerably over time, as changes in microarchitecture changed performance
tradeoffs. Most modern sequences use the call and ret instructions. The former
pushes the return address onto the stack, updating the sp, and branches to the
called routine. The latter pops the return address off the stack, again updating the
sp, and branches back to the caller. Several additional, more complex instructions,
retained for backward compatibility, are typically not generated by modern compil-
ers, because they were designed for calling sequences with an explicit display and
without an argument build area, or because they don’t pipeline as well as equivalent
sequences of simpler instructions.

Argument Passing Conventions Figure C 9.9 shows a stack frame for the x86-32.EXAMPLE 9.70
gcc/x86-32 stack layout As in the LLVM case study, the sp points to the last used location on the stack.

PREPRINT

9.2.2 Stack Case Studies: LLVM on Arm; gcc on x86 C 201

Arguments in the process of being passed to another routine are accessed via
offsets from the sp; everything else is accessed via offsets from the fp, if present—
otherwise the sp. All arguments are passed in the stack. In languages (Ada, in
particular) that permit nested subroutines, register ecx is used to pass the static
link. If the current routine has at least one lexically nested child and is itself lexically
nested in some parent, then a copy of the static link will be saved into the stack just
above (at a lower address than) the area used for local variables and temporaries.
When a nested routine is running, its own static link will point to the saved link
in this current routine, or to the local variables and temporaries, if this current
routine is outermost.

Functions return integer or pointer values in register eax. Floating-point values
are returned in the first of the ‘‘x87’’ floating-point registers, st(0). Composite
values (records, arrays, etc.) of 8 bytes or less are returned in the register pair
eax–edx, as are ‘‘long long’’ (64-bit) integers. For larger return values (records,
arrays, etc.), the compiler passes a hidden first argument (on the stack) whose value
is the address at which the return value should be written.

Calling Sequence Details The calling sequence to maintain the gcc/x86-32 stackEXAMPLE 9.71
gcc/x86-32 calling
sequence

is as follows. The caller

1. saves (into the ‘‘local variables and temporaries’’ part of its frame) any caller-
saves registers whose values are still needed

2. puts arguments into the build area at the top of the current frame
3. places the static link (if any) in register ecx
4. executes a call instruction

The caller-saves registers consist of eax, edx, and ecx. Step 1 is skipped if none of
these contain a value that will be needed later. Step 2 is skipped if the subroutine
has no parameters. Step 3 is skipped if the language has no nested subroutines, or if
the called routine is declared at the outermost nesting level. The call instruction
pushes the return address and jumps to the subroutine.

In its prologue, the callee

1. pushes the fp onto the stack (if the current routine uses the fp), implicitly
decrementing the sp by 4 (one word).

2. copies the sp into the fp if necessary, thereby establishing a frame pointer for
the current routine

3. pushes any callee-saves registers whose values may be overwritten by the current
routine

4. pushes the static link (ecx) if the language has nested subroutines and this is
not a leaf

5. subtracts the remainder of the frame size from the sp

The callee-saves registers are ebx, esi, edi, and, for routines that don’t need a
frame pointer, ebp. For routines that do need a frame pointer, registers esp and

PREPRINT

C 202 Chapter 9 Subroutines and Control Abstraction

ebp (the sp and fp, respectively) are saved by Steps 1 and 2. The instructions for
some of these steps may be replaced with equivalent sequences by the compiler’s
code improver, and may be mixed into the rest of the subroutine by the instruction
scheduler. In particular, if the value subtracted from the sp in Step 5 is made large
enough to accommodate the callee-saves registers, then the pushes in Steps 3 and 4
may be moved after Step 5 and replaced with fp- or sp-relative stores.

In its epilogue, the callee

1. sets the return value
2. restores any callee-saved registers
3. copies the fp into the sp, or subtracts a constant from the sp, as appropriate,

thereby deallocating the frame
4. pops the fp, if any, off the stack
5. returns

Steps 3 and 4 may be effected on the x86 by a single leave instruction. As in
the previous case study, the caller moves the return value, if it is in a register, to
wherever it is needed. It restores any caller-saves registers lazily over time.

Because Ada allows subroutines to nest (and Ada 2005 allows arbitrary subrou-EXAMPLE 9.72
Subroutine closure
trampoline

tines to be passed as parameters), a subroutine S that is passed as a parameter from
P to Q must be represented by a closure, as described in Section 3.6.1. In many
compilers the closure is a data structure containing the address of S and the static
link that should be used when S is called. In gcc, however, the closure contains
an x86 code sequence known as a trampoline—typically a pair of instructions to
load ecx with the appropriate static link and then jump to the beginning of S. The
trampoline resides in the ‘‘local variables and temporaries’’ section of P’s activa-
tion record. Its address is passed to Q. Rather than ‘‘interpret’’ the closure at run
time, Q actually calls it. One advantage of this mechanism is its interoperability
across programming languages: C functions passed as parameters are simply code
addresses. In fact, if S is declared at the outermost level of lexical nesting, then gcc
can pass an ordinary code address even when compiling Ada source; in this case
no trampoline is required.

x86-64 As noted in Section C 5.4.5, the x86-64 has 16 integer registers instead
of only 8. AMD, which developed the ISA for the wider architecture, suggests
a calling sequence that makes more use of registers (and less of the stack), in a
manner reminiscent of Arm (Example C 9.69) and other RISC machines. The GNU
compiler generally conforms to AMD’s suggestions.

Figure C 9.10 shows a stack frame for the x86-64. The first six integer arguments
are passed in registers rdi, rsi, rdx, rcx, r8, and r9, in that order. The static
link, when needed, is passed in r10 (not rcx). Registers rbx and r12–r15 are
callee saves; rax, r10, r11, and the argument registers are caller-saves. Integer
function values are returned in rax and (if needed) rdx. The first eight floating-
point arguments are passed in XMM/SSE registers xmm0–xmm7 (the legacy x87
registers are for the most part ignored). Additional floating-point arguments are

PREPRINT

9.2.2 Stack Case Studies: LLVM on Arm; gcc on x86 C 203

passed on the stack. Floating-point function values are returned in xmm0 and (if
needed) xmm1. The stack is always 16-byte aligned at the time of a call.

Perhaps the most interesting difference between the x86-32 and x86-64 conven-EXAMPLE 9.73
The x86-64 red zone tions is AMD’s specification of a ‘‘red zone’’ beyond the sp. Where the last used

word on the stack is guaranteed on x86-32 to be at an address no lower than the sp,
on x86-64 it can be up to 128 bytes beyond this point—in effect, the sp protects
not only the data at higher addresses (below it in the stack), but up to 128 bytes of
additional data as well. Signal handlers and other system software are required to
respect this convention. As a result, leaf routines that need a stack frame smaller
than 128 bytes need not update the sp. For frequent calls to very small routines,
the two-instruction savings in per-call bookkeeping can be significant.

3CHECK YOUR UNDERSTANDING

51. For each of our three case studies, explain which aspects of the calling sequence
and stack layout are dictated by the hardware, and which are a matter of software
convention.

52. Why don’t LLVM and gcc restore caller-saves registers immediately after a
call?

53. What is a subroutine closure trampoline? How does it differ from the usual im-
plementation of a closure described in Section 3.6.1? What are the comparative
advantages of the two alternatives?

DESIGN & IMPLEMENTATION

9.11 Executing code in the stack
A disadvantage of trampoline-based closures is the need to execute code in the
stack. Many machines and operating systems disallow such execution, for at least
two important reasons. First, as noted in Section C 5.1, modern microprocessors
typically have separate instruction and data caches, for fast concurrent access.
Allowing a process to write and execute the same region of memory means that
these caches must be kept mutually consistent (coherent), a task that introduces
significant hardware complexity (on some machines it requires execution of a
special hardware instruction). Second, many computer security breaches involve
a code injection attack, in which an intruder exploits software vulnerabilities
(e.g., the lack of array bounds checking in C) to write instructions into the stack,
and to overwrite the saved return address so that execution will jump into that
code when the current subroutine returns. Such an attack is possible only on
machines in which writable data are also executable. When compiling code for
use on modern systems, gcc embeds a call to a library routine that reverses the
system default and re-enables stack execution prior to using a trampoline.

PREPRINT

C 204 Chapter 9 Subroutines and Control Abstraction

sp

7

Space to build
argument lists

“Red zone”
(128 bytes)

Local variables
and

temporaries

Arguments

(fp

Direction of
stack growth

(lower addresses)

Current frame

Previous
(calling)
frame

n

8 bytes/64 bits

(Static link)

(Saved fp)

Other saved
registers

Return address

(SL)

)

Figure 9.10 Layout of the subroutine call stack for the GNU Compiler Collection (gcc) on
64-bit x86. Conventions differ from those of Figure C 9.9 in three principal ways: (1) most data
are 64 bits wide; (2) the first 6 integer arguments are passed in registers rather than on the stack;
(3) leaf routines are permitted to use up to 128 bytes of space beyond the top of the stack,
without updating the sp.

54. Explain the circumstances under which a subroutine needs a frame pointer
(i.e., under which access via displacement addressing from the stack pointer
will not suffice).

55. Under what circumstances must an argument that was passed in a register also
be saved into the stack?

56. What is the purpose of the ‘‘red zone’’ on x86-64?

PREPRINT

PREPRINT

9Subroutines and Control Abstraction

9.2.3 Register Windows

As an alternative to saving and restoring registers on subroutine calls and returns,
the original Berkeley RISC machines [PD80, Pat85] incorporated a hardware mech-
anism known as register windows. The basic idea is to provide a very large setEXAMPLE 9.74

Register windows on the
SPARC

of physical registers, most of which are organized as a collection of overlapping
windows (Figure C 9.11). A few register names (r0–r7 in the figure) always refer
to the same locations, but the rest (r8–r31 in the figure) are interpreted relative
to the currently active window. On a subroutine call, the hardware moves to a
different window. To facilitate the passing of parameters, the old and new windows
overlap: the top few registers in the caller’s window (r24–r31 in the figure) are
the same as the bottom few registers in the callee’s window (r8–r15 in the figure).
On a machine with register windows, the compiler places values of use only within
the current subroutine in the middle part of the window. It copies values to the
upper part of the window to pass them to a called routine, within which they are
read from the lower part of the window.

Since the number of physical windows is fixed, a long chain of subroutine
calls can cause the hardware to run off the end of the register set, resulting in a
‘‘window overflow’’ interrupt that drops the processor into the operating system.
The interrupt handler then treats the set of available windows as a circular buffer.
It copies the contents of one or more windows to memory and then resumes
execution. Later, a ‘‘window underflow’’ interrupt will occur when control attempts
to return into a window whose contents have been written to memory. Again the
operating system recovers, by restoring the saved registers and resuming execution.
In practice, eight windows appear to suffice to make overflow and underflow
relatively rare in typical programs.

Register windows have been used in several RISC processors, but only one of
these, the SPARC, is commercially significant today. The Intel IA-64 (Itanium),
introduced shortly after the turn of the century, also uses register windows, though
it is not a RISC machine. The advantage of windows, of course, is that they reduce

C 205

C 206 Chapter 9 Subroutines and Control Abstraction

Outputs

Locals

Inputs

Outputs

Locals

Inputs

Outputs

Locals

Inputs

Globals

Main
program

r31

r24
r23

r16
r15

r8

r8

r7

r0

r7

r0
Globals

Subroutine
A

Globals

Subroutine
B

r31

r24
r23
r16
r15

Figure 9.11 Register windows. When the main program calls subroutine A, and again when A
calls B, register names r0–r7 continue to refer to the same locations, but register names r8–r31
are changed to refer to a new, overlapping window. High-numbered registers in the caller share
locations with low-numbered registers in the callee.

the number of loads and stores required for the typical subroutine call. At the
same time, register windows significantly increase the amount of state associated
with the currently running program. When the operating system decides to give
the processor to a different application for a while (something that most systems
do many times per second), it must save all this state to memory, or arrange for
the processor to trap back into the OS if the new process attempts to access an
unsaved window. Worse, while register windows nicely capture the referencing
environment of a single thread of control, they do not work well for languages
that need more than one referencing environment (execution context). Several
language features, including continuations (Section 6.2.2), iterators (Section 6.5.3),
and coroutines (Section 9.5), are difficult to implement on a machine with register
windows, because they require that we save and restore not only the visible registers,
but those in other windows as well, when switching between contexts. It is unclear
whether the reduction in subroutine call overhead outweighs the extra cost of
context switches for typical application workloads, particularly given that loads
and stores for parameters are almost always cache hits.

PREPRINT

9.2.3 Register Windows C 207

3CHECK YOUR UNDERSTANDING

57. What are register windows? What purpose do they serve?

58. Which commercial instruction sets include register windows?

59. Explain the concepts of register window overflow and underflow.

60. Why are register windows a potential problem for multithreaded programs?

PREPRINT

C 208 Chapter 9 Subroutines and Control Abstraction

PREPRINT

PREPRINT

9Subroutines and Control Abstraction

9.3.2 Call by Name

Call by name implements the normal-order argument evaluation described in
Section 6.6.2. A call-by-name parameter is reevaluated in the caller’s referencing
environment every time it is used. The effect is as if the called routine had been
textually expanded at the point of call, with the actual parameter (which may be a
complicated expression) replacing every occurrence of the formal parameter. To
avoid the usual problems with macro parameters, the ‘‘expansion’’ is defined to
include parentheses around the replaced parameter wherever syntactically valid,
and to make ‘‘suitable systematic changes’’ to the names of any formal parameters
or local identifiers that share the same name, so that their meanings never con-
flict [NBB+63, p. 12]. Call by name was the default in Algol 60; call by value was
available as an alternative. In Simula call by value was the default; call by name was
the alternative.

To implement call by name, Algol 60 implementations passed a hidden subrou-
tine that evaluated the actual parameter in the caller’s referencing environment.
Such a hidden routine is usually called a thunk.1 In most cases thunks are trivial. If
an actual parameter is a variable name, for example, the thunk simply reads the
variable from memory. In some cases, however, a thunk can be elaborate. PerhapsEXAMPLE 9.75

Jensen’s device the most famous occurs in what is known as Jensen’s device, named after Jørn
Jensen [Rut67]. The idea is to pass to a subroutine both a built-up expression and
one or more of the variables used in the expression. Then by changing the values
of the individual variable(s), the called routine can deliberately and systematically
change the value of the built-up expression. This device can be used, for example,
to write a summation routine:

1 In general, a thunk is a procedure of zero arguments used to delay evaluation of an expression.
Other examples of thunks can be seen in the delay mechanism of Example 6.88 and the promise
constructor of Exercise 11.18.

C 209

C 210 Chapter 9 Subroutines and Control Abstraction

real procedure sum(expr, i, low, high);
value low, high;

comment low and high are passed by value;
comment expr and i are passed by name;

real expr;
integer i, low, high;

begin
real rtn;
rtn := 0;
for i := low step 1 until high do

rtn := rtn + expr;
comment the value of expr depends on the value of i;

sum := rtn
end sum

Now to evaluate the sum

y =
∑

1≤x≤10

3x2 − 5x + 2

we can simply say

y := sum(3*x*x - 5*x + 2, x, 1, 10);

Label Parameters

Both Algol 60 and Algol 68 allowed a label to be passed as a parameter. If a
called routine performed a goto to such a label, control would usually need to
escape the local context, unwinding the subroutine call stack as it did so. Details
of the unwinding operation would depend on the location of the label. For each
intervening scope, the goto would have to restore saved registers, deallocate the

DESIGN & IMPLEMENTATION

9.12 Call by name
In practice, most uses of call by name in Algol 60 and Simula programs served to
allow a subroutine to change the value of an actual parameter; neither language
offered call by reference. Unfortunately, call by name is significantly more
expensive than call by reference: it requires the invocation of a thunk (as opposed
to a simple indirection) on every use of a formal parameter. Call by name is
also prone to subtle program bugs when a change to a variable in a surrounding
scope unintentionally alters the value of a formal parameter. (Call by reference
suffers from a milder form of this problem, as discussed in Example 3.20.)
Such deliberate subtleties as Jensen’s device are comparatively rare, and can be
imitated in other languages through the use of formal subroutines. Call by name
was dropped in Algol 68, in favor of call by reference.

PREPRINT

9.3.2 Call by Name C 211

stack frame, and perform any other operations normally handled by epilogue code.
To implement label parameters, Algol implementations typically passed a thunk
that performed the appropriate operations for the given label. Note that the target
label would generally need to lie in some surrounding scope, where it was visible
to the caller under static scoping rules.

Label parameters were usually used to handle exceptional conditions—condi-
tions that prevent a subroutine from performing its usual operation, and that
cannot be handled in the local context. Instead of returning, an Algol routine
that encountered a problem (e.g., invalid input) could perform a goto to a label
parameter, on the assumption that the label referred to code that would perform
some remedial operation, or print an appropriate error message. In more recent
languages, label parameters have been replaced by more structured exception
handling mechanisms, as discussed in Section 9.4.

3CHECK YOUR UNDERSTANDING

61. What is call by name? What language first provided it? Why isn’t it used by the
language’s descendants?

62. What is call by need? How does it differ from call by name? What modern
languages use it?

63. How does a subroutine with call-by-name parameters differ from a macro?

64. What is a thunk? What is it used for?

65. What is Jensen’s device?

DESIGN & IMPLEMENTATION

9.13 Call by need
Functional languages like Miranda and Haskell typically pass parameters us-
ing a memoizing implementation of normal-order evaluation, as described in
Section 6.6.2. This lazy implementation is sometimes called call by need. Memo-
ization calculates and records the value of a parameter the first time it is needed,
and uses the recorded value thereafter. In the absence of side effects, call by
need is indistinguishable from call by name. It avoids the expense of repeated
evaluation, but precludes the use of techniques like Jensen’s device in languages
that do have side effects. Among imperative languages, call by need appears
in the scripting language R, where it serves to avoid the expense of evaluating
(even once) any complex arguments that are not actually needed.

PREPRINT

C 212 Chapter 9 Subroutines and Control Abstraction

PREPRINT

PREPRINT

9Subroutines and Control Abstraction

9.5.3 Implementation of Iterators

Consider the following for loop from Example 6.66:EXAMPLE 9.76
Coroutine-based iterator
invocation for i in range(first, last, step):

...

Using coroutines, a compiler might translate this as

iter := new from_to_by(first, last, step, i, done, current_coroutine)
while not done do

. . .
transfer(iter)

destroy(iter)

After the loop completes, the implementation can reclaim the space consumed by
iter.

The definition of from_to_by itself is quite straightforward:EXAMPLE 9.77
Coroutine-based iterator
implementation coroutine from_to_by(from_val, to_val, by_amt : int;

ref i : int; ref done : bool; caller : coroutine)
i := from_val
if by_amt > 0 then

done := from_val ≥ to_val
detach
loop

i +:= by_amt
done := i ≥ to_val
transfer(caller) –– yield i

C 213

C 214 Chapter 9 Subroutines and Control Abstraction

else
done := from_val ≤ to_val
detach
loop

i +:= by_amt
done := i ≤ to_val
transfer(caller) –– yield i

Parameters i and done are passed by reference so that the iterator can modify them
in the caller’s context. The caller’s identity is passed as a final argument so that the
iterator can tell which coroutine to resume when it has computed the next loop
index. Because the caller is named explicitly, it is easy for iterators to nest, as in
Figure 6.5.

Single-Stack Implementation

While coroutines suffice for the implementation of iterators, they are not necessary.
A simpler, single-stack implementation is also possible. Because a given iterator
(e.g., an instance of from_to_by) is always resumed at the same place in the code
(between iterations of a given for loop), we can be sure that the subroutine call
stack will always contain the same frames whenever the iterator runs. Moreover,
since yield statements can appear only in the main body of the iterator (never in
nested routines), we can be sure that the stack will always contain the same frames
whenever the iterator transfers back to its caller. These two facts imply that we can
place the frame of the iterator directly on top of the frame of its caller in a single
central stack.

When an iterator is created, its frame is pushed on the stack. When it yields a
value, control returns to the for loop, but the iterator’s frame is left on the stack.
If the body of the loop makes any subroutine calls, the frames for those calls will
be allocated beyond the frame of the iterator. Since control must return to the
loop before the iterator resumes, we know that such frames will be gone again
before the iterator has a chance to see them: if it needs to call subroutines itself,
the stack above it will be clear. Likewise, if the iterator calls any subroutines, they
will return (popping their frames from the stack) before the for loop runs again.
Nested iterators present no special problems (see Exercise C 9.37).

Data Structure Implementation

Compilers for C# 2.0 employ yet another implementation of iterators. Like Java,
C# 1.1 provided iterator objects. Each such object implements the IEnumerator
interface, which provides MoveNext and Current methods. Typically an iteratorEXAMPLE 9.78

Iterator usage in C# is obtained by calling the GetEnumerator method of an object (a container) that
implements the IEnumerable interface:

for (IEnumerator i = myTree.GetEnumerator(); i.MoveNext();) {
object o = i.Current;
Console.WriteLine(o.ToString());

}

PREPRINT

9.5.3 Implementation of Iterators C 215

C# 2.0 provides true iterators as an extension of iterator objects. The programmer
simply declares a method that contains one or more yield return statements,
and whose return type is IEnumerator or IEnumerable. Here is an example ofEXAMPLE 9.79

Implementation of C#
iterators

the latter:

static IEnumerable FromToBy (int fromVal, int toVal, int byAmt)
{

if (byAmt >= 0) {
for (int i = fromVal; i <= toVal; i += byAmt) {

yield return i;
}

} else {
for (int i = fromVal; i >= toVal; i += byAmt) {

yield return i;
}

}
}

The compiler automatically transforms this code into a hidden class with a
GetEnumerator method, along the lines of Figure C 9.12. Within this code,
an explicit state variable keeps track of the ‘‘program counter’’ of the last yield
statement. In addition, local variable i of the true iterator becomes a data member
of the FromToByImpl class, leaving the iterator with no need for a stack frame
across iterations of the loop. In a quite literal sense, the compiler transforms each
true iterator into an iterator object.

Recursive iterators present no particular difficulties: a nested iterator is allocated
on demand when the outer iterator enters a foreach loop, and is referred to by a
reference in that outer iterator. The details are deferred to Exercise C 9.38. Because
iterator objects are allocated from the heap, the C# implementation of true iterators
may be somewhat slower than the stack-based implementation of the previous
subsection.

3CHECK YOUR UNDERSTANDING

66. Describe the ‘‘obvious’’ implementation of iterators using coroutines.

67. Explain how the state of multiple active iterators can be maintained in a single
stack.

68. Describe the transformation used by C# compilers to turn a true iterator into
an iterator object.

PREPRINT

C 216 Chapter 9 Subroutines and Control Abstraction

static IEnumerable FromToBy(int fromVal, int toVal, int byAmt) {
return new FromToByImpl(fromVal, toVal, byAmt);

}
class FromToByImpl : IEnumerator, IEnumerable {

enum State {starting, goingUp, goingDown, done}
int i, tv, ba;
State s;

public FromToByImpl(int fromVal, int toVal, int byAmt) {
i = fromVal; tv = toVal; ba = byAmt; s = State.starting;

}
public IEnumerator GetEnumerator() {

return this;
}
public object Current {

get { return i; }
}
public bool MoveNext() {

switch (s) {
case State.starting :

if (ba >= 0) {
if (i <= tv) { s = State.goingUp; return true; }
else { s = State.done; return false; }

} else {
if (i >= tv) { s = State.goingDown; return true; }
else { s = State.done; return false; }

}
case State.goingUp :

i += ba;
if (i <= tv) return true;
else { s = State.done; return false; }

case State.goingDown :
i += ba;
if (i >= tv) return true;
else { s = State.done; return false; }

default: // for completeness
case State.done : return false;

}
}
public void Reset() {

s = State.starting;
}

}

Figure 9.12 Iterator object equivalent of a true iterator in C#. This handwritten code
corresponds to Example C 9.79. It represents, at the source level, what the compiler creates at
the level of intermediate code: a state machine that tracks the program counter of the original
iterator, with a starting state, an ending state, and one state for each yield return statement.
The arms of the switch statement capture the code paths in the original iterator that move from
one state to the next.

PREPRINT

PREPRINT

9Subroutines and Control Abstraction

9.5.4 Discrete Event Simulation

Suppose that we wish to experiment with the flow of traffic in a city. A computerized
traffic model, if it captures the real world with sufficient accuracy, will allow us to
predict the effects of construction projects, accidents, increased traffic due to new
development, or changes to the layout of streets. It is difficult (though certainlyEXAMPLE 9.80

Sequential simulation of a
complex physical system

not impossible) to write such a simulation in a conventional sequential language.
We would probably represent each interesting object (automobile, intersection,
street segment, etc.) with a data structure. Our main program would then look
something like this:

while current_time < end_of_simulation
calculate next time t at which an interesting interaction will occur
current_time := t
update state of objects to reflect the interaction
record desired statistics

print collected statistics

The problem with this approach lies in determining which objects will interact
next, and in remembering their state from one interaction to the next. It is in some
sense unnatural to represent active objects such as cars with passive data structures,
and to make time the active entity in the program. An arguably more attractive
approach is to represent each active object with a coroutine, and to let each object
keep track of its own state.

If each active object can tell when it will next do something interesting, then we
can determine which objects will interact next by keeping the currently inactive
coroutines in a priority queue, ordered by the time of their next event. We mightEXAMPLE 9.81

Initialization of a
coroutine-based traffic
simulation

begin a one-day traffic simulation by creating a coroutine for each trip to be taken by
a car that day, and inserting each coroutine into the priority queue with a ‘‘wakeup’’
time indicating when the trip is to begin:

C 217

C 218 Chapter 9 Subroutines and Control Abstraction

coroutine trip(. . .)
. . .
for each trip t

p := new trip(. . .)
schedule(p, t.start_time)

Let us assume that we think of street segments as passive, and represent them
with data structures. At any given moment, we can model a segment by the numberEXAMPLE 9.82

Traversing a street segment
in the traffic simulation

of cars that it is carrying in each direction. This number in turn will affect the speed
at which the cars can safely travel. Whenever it awakens, the coroutine representing
a trip examines the next street segment over which it needs to travel. Based on the
current load on that segment, it calculates how much time it will take to traverse it,
and schedules itself to awaken again at an appropriate point in the future:

coroutine trip(origin, destination : location)
plan a route from origin to destination
detach
for each segment of the route

calculate time i to reach the end of the segment
schedule(current_coroutine, current_time + i)

The schedule operation is easily built on top of transfer:EXAMPLE 9.83
Scheduling a coroutine for
future execution schedule(p : coroutine; t : time)

–– p may be self or other
insert (p, t) in priority queue
if p = current_coroutine –– self

extract earliest pair (q, s) from priority queue
current_time := s
transfer(q)

In some cases, it may be difficult to determine when to reschedule a given object.
Suppose, for example, that we wish to more accurately model the effects of traffic
signals at intersections. We might represent each traffic signal with a data structureEXAMPLE 9.84

Queueing cars at a traffic
light

that records the waiting cars in each direction, and a coroutine that lets cars through
as the signal changes color:

record controlled_intersection =
EW_cars, NS_cars : queue of trip
const per_car_lag_time : time

–– how long it takes a car to start after its predecessor does
coroutine signal(EW_duration, NS_duration : time)

detach
loop

change_time := current_time + EW_duration
while current_time < change_time

if EW_cars not empty
schedule(dequeue(EW_cars), current_time)

schedule(current_coroutine, current_time + per_car_lag_time)

PREPRINT

9.5.4 Discrete Event Simulation C 219

change_time := current_time + NS_duration
while current_time < change_time

if NS_cars not empty
schedule(NS_cars.dequeue(), current_time)

schedule(current_coroutine, current_time + per_car_lag_time)

When it reaches the end of a street segment that is controlled by a traffic signal,EXAMPLE 9.85
Waiting at a light a trip need not calculate how long it will take to get through the intersection.

Rather, it enters itself into the appropriate queue of waiting cars and ‘‘goes to sleep,’’
knowing that the signal coroutine will awaken it at some point in the future:

coroutine trip(origin, destination : location)
plan a route from origin to destination
detach
for each segment of the route

calculate time i to reach the end of the segment
schedule(current_coroutine, current_time + i)
if end of segment has a traffic light

identify appropriate queue Q
Q.enqueue(current_coroutine)
sleep()

Like schedule, sleep is easily built on top of transfer:EXAMPLE 9.86
Sleeping in anticipation of
future execution sleep()

extract earliest pair (q, s) from priority queue
current_time := s
transfer(q)

The schedule operation, in fact, is simply

schedule(p : coroutine; t : time)
insert (p, t) in priority queue
if p = current_coroutine

sleep()

Obviously this traffic simulation is too simplistic to capture the behavior of cars
in a real city, but it illustrates the basic concepts of discrete event simulation. More
sophisticated simulations are used in a wide range of application domains, including
all branches of engineering, computational biology, physics and cosmology, and
even computer design. Multiprocessor simulations (see reference [VF94], for
example) are typically divided into a ‘‘front end’’ that simulates the processors
and a ‘‘back end’’ that simulates the memory subsystem. Each coroutine in the
front end consists of a machine-language interpreter that captures the behavior of
one of the system’s processing cores. Each coroutine in the back end represents
a load or a store instruction. Every time a processor performs a load or store,
the front end creates a new coroutine in the back end. Data structures in the

PREPRINT

C 220 Chapter 9 Subroutines and Control Abstraction

back end represent various hardware resources, including caches, buses, network
links, message routers, and memory modules. The coroutine for a given load or
store checks to see if its location is in the local cache. If not, it must traverse the
interconnection network between the processor and memory, competing with
other coroutines for access to hardware resources, much as cars in our simple
example compete for access to street segments and intersections. The behavior of
the back-end system in turn affects the front end, since a processor must wait for
a load to complete before it can use the data, and since the rate at which stores
can be injected into the back end is limited by the rate at which they propagate to
memory.

3CHECK YOUR UNDERSTANDING

69. Summarize the computational model of discrete event simulation. Explain the
significance of the time-based priority queue.

70. When building a discrete event simulation, how does one decide which things
to model with coroutines, and which to model with data structures?

71. Are all inactive coroutines guaranteed to be in the priority queue? Explain.

PREPRINT

PREPRINT

9Subroutines and Control Abstraction

9.9 Exercises

9.29 Suppose you wish to minimize the size of closures in a language implementa-
tion that uses a display to access nonlocal objects. Assuming a language like
Pascal or Ada, in which subroutines have limited extent, explain how an ap-
propriate display for a formal subroutine can be calculated when that routine
is finally called, starting with only (1) the value of the frame pointer, saved in
the closure at the time that the closure was created, (2) the subroutine return
addresses found in the stack at the time the formal subroutine is finally called,
and (3) static tables created by the compiler. How costly is your scheme?

9.30 Elaborate on the reasons why even parameters passed in registers may some-
times need to have locations in the stack. Consider all the cases in which it
may not suffice to keep a parameter in a register throughout its lifetime.

9.31 Most versions of the C library include a function, alloca, that dynamically
allocates space within the current stack frame.2 It has two advantages over
the usual malloc, which allocates space in the heap: it’s usually very fast, and
the space it allocates is reclaimed automatically when the current subroutine
returns. Assuming the programmer wants deallocation to happen then, it’s
convenient to be able to skip the explicit free operations. How might you
implement alloca in conjunction with the calling conventions of our various
case studies?

9.32 Explain how to extend the conventions of Figure C 9.9 and Section C 9.2.2 to
accommodate arrays whose bounds are not known until elaboration time (as
discussed in Section 8.2.2). What ramifications does this have for the use of
separate stack and frame pointers?

2 Unfortunately, alloca is not POSIX compliant, and implementations vary greatly in their seman-
tics and even in details of the interface. Portable programs are wise to avoid this routine.

C 221

C 222 Chapter 9 Subroutines and Control Abstraction

9.33 In all three of our case studies, stack-based arguments were placed into the
argument build area in ‘‘reverse’’ order, with the lowest-numbered argument
at the top. Explain why this is important. (Hint: Consider subroutines with
variable numbers of arguments, as discussed in Section 9.3.3.)

9.34 How would you implement nested subroutines as parameters on a machine
that doesn’t let you execute code in the stack? Can you pass a simple code
address, or do you require that closures be interpreted at run time?

9.35 If you have read the rest of Chapter 9, you may have noticed that the term
‘‘trampoline’’ is also used in conjunction with the implementation of signal
handlers (Section 9.6.1). What is the connection (if any) between these uses
of the term?

9.36 Explain how you might implement setjmp and longjmp on a SPARC.
9.37 Following the code in Figure 6.5, and assuming a single-stack implementation

of iterators, trace the contents of the stack during the execution of a for loop
that iterates over all nodes of a complete, 3-level (6-node) binary tree.

9.38 Build a preorder iterator for binary trees in Java, C#, or Python. Do not use a
true iterator or an explicit stack of tree nodes. Rather, create nested iterator
objects on demand, linking them together as a C# compiler might if it were
building the iterator object equivalent of a true preorder iterator.

9.39 One source of inaccuracy in the traffic simulation of Section C 9.5.4 has to
do with the timing at traffic signals. If a signal is currently green in the EW
direction, but the queue of waiting cars is empty, the signal coroutine will
go to sleep until current_time + EW_duration. If a car arrives before the
coroutine wakes up again, it will needlessly wait. Discuss how you might
remedy this problem.

PREPRINT

PREPRINT

9Subroutines and Control Abstraction

9.10 Explorations

9.53 Read the Arm calling sequence standard for 64-bit (v8) code. Compare and
contrast to the conventions of Section C 9.2.2. Pay particular attention to
the lists of caller- and callee-saves registers, and to the registers used to pass
arguments. Speculate as to reasons for the differences.

9.54 Research the full range of hardware support for subroutines on the x86,
including all variants of call. Note that the leave instruction is sometimes
generated by modern compilers, but others, including enter, pushad, popad,
pushfd, and popfd, usually are not. In addition, the optional argument of
ret is almost never used, and push and pop are used sparingly. Discuss the
technological trends that have made this machinery obsolete.

9.55 As an example of hard-core CISC design, research the subroutine calling
conventions of the Digital VAX. Be sure to describe the behavior of the calls
instruction in detail.

9.56 Study the implementation of a user-level thread management package written
for the SPARC. How does it manage register windows?

9.57 Learn how parameter passing is implemented in the Glasgow Haskell com-
piler. How expensive is its call-by-need–based lazy evaluation?

9.58 Learn about the Time Warp system for discrete event simulation, developed
by David Jefferson and colleagues [JBW+87]. Discuss its relationship to both
the classic discrete event simulation of Section C 9.5.4 and the speculative
parallelism of mechanisms like transactional memory (to be discussed in
Section 13.4.5).

C 223

C 224 Chapter 9 Subroutines and Control Abstraction

PREPRINT

PREPRINT

10Object Orientation

10.6 True Multiple Inheritance

Recall our administrative computing example in C++:EXAMPLE 10.56
Deriving from two base
classes (reprise) class student : public person, public system_user { ...

To implement multiple inheritance, we must be able to generate both a ‘‘person
view’’ and a ‘‘system_user view’’ of a student object on demand, for example
when assigning a reference to a student object into a person or system_user
variable. For one of the base classes (person, say) we can do the same thing we did
with single inheritance: let the data members of that base class lie at the beginning
of the representation of the derived class, and let the virtual methods of that base
class lie at the beginning of the vtable. Then when we assign a reference to a
student object into a person variable, code that manipulates the person variable
will just use a prefix of the data members and the vtable.

For the other base class (system_user), things get more complicated: we can’tEXAMPLE 10.57
(Nonrepeated) multiple
inheritance

put both base classes at the beginning of the derived class. One possible solution is
shown in Figure C 10.8. It is based loosely on the implementation described by Ellis
and Stroustrup [ES90, Chap. 10]. Because the system_user fields of a student
follow the person fields, the assignment of a reference to a student object into a
variable of type system_user* requires that we adjust our ‘‘view’’ by adding the
compile-time constant offset d.

The vtable for a student is broken into two parts. The first part lists the virtual
methods of the derived class and the first base class (person). The second part lists
the virtual methods of the second base class. (We have already introduced a method,
print_mailing_label, defined in class person. We may similarly imagine that
system_user defines a virtual method print_stats that is supposed to dump
account statistics to standard output.) Generalization to three or more base classes
is straightforward; see Exercise C 10.23.

Every data member of a student object has a compile-time-constant offset from
the beginning of the object. Likewise, every virtual method has a compile-time-
constant offset from the beginning of one of the parts of the vtable. The address of

C 225

C 226 Chapter 10 Object Orientation

student object
student vtable

(student/person part)

person
methods (this

corrections)student (only)
methodsperson

student

student view,
person view

person
�elds

system_user

student
(only) �elds

system_user
�elds

student vtable
(system_user part)

system_user
methods

d

system_user view

Figure 10.8 Implementation of (nonrepeated) multiple inheritance. The size d of the person portion of the object is a
compile-time constant. We access the system_user portion of the vtable by adding d to the address of a student object
before indirecting. Likewise, we create a system_user view of a student object by adding d to the object’s address. Each
vtable entry consists of both a method address and a ‘‘this correction’’ value equal to the signed distance between the view
through which the vtable was accessed and the view of the class in which the method was defined.

the person/student portion of the vtable is stored in the beginning of the object.
The address of the system_user portion of the vtable is stored at offset d. Note that
both parts of the vtable are specific to class student. In particular, the system_
user part of the vtable is not shared by objects of class system_user, because the
contents of the tables will be different if student has overridden any of system_
user’s virtual methods.

To call the virtual method print_mailing_label, originally defined in per-EXAMPLE 10.58
Method invocation with
multiple inheritance

son, we can use a code sequence similar to the one shown in Section 10.4.2 for
single inheritance. To call a virtual method originally defined in system_user, we
must first add the offset d to our object’s address, in order to find the address of
the system_user portion of the vtable. Then we can index into this system_user
vtable to find the address of the appropriate method to call. But we are left with
one final problem: what is the appropriate value of this to pass to the method?

As a concrete example, suppose that student does not override print_stats
(though it certainly could). If our object is of class student, we should pass a
system_user view of it to print_stats: the address of the object, plus d. If, how-
ever, our object is of some class (transfer_student, perhaps) that does override
print_stats, then we should pass a transfer_student view to print_stats.
If we are accessing our object through a variable (a reference or a pointer) whose
methods are dynamically bound, then we can’t tell at compile time which one

PREPRINT

10.6 True Multiple Inheritance C 227

of these cases applies. Worse yet, we may not even know how to generate a
transfer_student view if we have to: class transfer_student may not have
been invented when this part of our code was compiled, so we certainly don’t know
how far into it the system_user fields appear!

A common solution is for each vtable entry to consist of a pair of fields. OneEXAMPLE 10.59
this correction is the address of the method’s code; the other is a ‘‘this correction’’ value, to be

added to the view through which we found the vtable. Returning to Figure C 10.8,
the ‘‘this correction’’ field of the vtable entry for print_stats would contain−d
if print_stats was overridden by student, and zero otherwise. In the system_
user part of the vtable for the (yet to be written) class transfer_student, the
‘‘this correction’’ field might contain some other value−e. In general, the ‘‘this
correction’’ is the distance between the view of the class in which the method was
declared (and through which we accessed the vtable) and the view of the class
in which the method was defined (and which will therefore be expected by the
subroutine’s implementation).

If variable my_student contains a reference to (a student view of) some object
at run time, and if print_stats is the third virtual method of system_user, then
the code to call my_student.print_stats would look something like this:

r1 := my_student –– student view of object
r1 := r1 + d –– system_user view of object
r2 := ∗r1 –– address of appropriate vtable
r3 := ∗(r2 + (3−1) × 8) –– method address
r2 := ∗(r2 + (3−1) × 8 + 4) –– this correction
r1 := r1 + r2 –– this
call ∗r3

Here we have assumed that both method addresses and this corrections are four
bytes long, that this is to be passed in r1, and that there are no other arguments.
On a typical machine this code is three instructions (including one memory access)
longer than the code required with single inheritance, and five instructions (includ-
ing three memory accesses) longer than a call to a statically identified method.

DESIGN & IMPLEMENTATION

10.9 The cost of multiple inheritance
The implementation we have described for multiple inheritance, using this
corrections in vtables, has the unfortunate property of increasing the overhead
of all virtual method invocations, even in programs that do not make use of
multiple inheritance. This sort of mandatory overhead is something that lan-
guage designers (and the designers of systems languages in particular) generally
try to avoid; as a matter of principle, complex special cases should not reduce
the efficiency of the simpler common case. Fortunately, there are other imple-
mentations of multiple inheritance (see Exercise C 10.28) in which the cost of
modifying this is paid only when the correction is nonzero.

PREPRINT

C 228 Chapter 10 Object Orientation

10.6.1 Semantic Ambiguities

In addition to implementation complexities (only some of which we have discussed
so far), multiple inheritance introduces potential semantic problems. SupposeEXAMPLE 10.60

Methods found in more
than one base class

that both system_user and person define a print_stats method. If we have
a variable s of type student* and we call s->print_stats, which version of
the method should we get? In CLOS and Python, we get the version from the
base class that appeared first in the derived class’s header. In Eiffel, we get a static
semantic error if we try to define a derived class with such an ambiguity. In C++,
we can define the derived class, but we get a static semantic error if we attempt to
use a member whose name is ambiguous. To resolve the ambiguity, we can use
the feature renaming mechanism in Eiffel to give different names to the inherited
methods. In C++ we must redefine the conflicting method explicitly:

void student::print_stats() {
person::print_stats();
system_user::print_stats();

}

Here we have chosen to call the print_stats routines of both base classes, using
the :: scope resolution operator to name them. We could of course have chosen
to call just one, or to write our own code from scratch. We could even arrange for
access to both routines by giving them new names:

void student::print_person_stats() {
person::print_stats();

}
void student::print_user_stats() {

system_user::print_stats();
}

Things are a little messier if either or both of the identically named base classEXAMPLE 10.61
Overriding an ambiguous
method

methods are virtual, and we want to override them in the derived class. Follow-
ing Stroustrup [Str13, Sec. 21.3.3], we can solve the problem by interposing an
intermediate class between each base class and the derived class:

class person_interface : public person {
public:

virtual void print_person_stats() = 0;
void print_stats() { print_person_stats(); }

// overrides person::print_stats
};
class system_user_interface : public system_user {
public:

virtual void print_user_stats() = 0;
void print_stats() { print_user_stats(); }

// overrides system_user::print_stats
};

PREPRINT

10.6.1 Semantic Ambiguities C 229

class student : public person_interface, public system_user_interface {
public:

void print_person_stats() { ...
void print_user_stats() { ...
...

};

We leave it as an exercise (C 10.24) to show what happens if we assign a student
object into a variable p of type person* and then call p->print_stats().

A more serious ambiguity arises when a class D inherits from two base classes,
B and C, both of which inherit from some common base class A. In this situation,
should an object of class D contain one instance of the data members of class A or
two? The answer would seem to be program dependent. For example, suppose thatEXAMPLE 10.62

Repeated multiple
inheritance

professors, like students, are all given accounts in our administrative computing
system. Then, like class student, we might want class professor to inherit from
both person and system_user:

class professor : public person, public system_user { ...

But now suppose that some professors take courses on occasion as nonmatricu-
lated students. In this case we might want a new class that supports both sets of
operations:

class student_prof : public student, public professor { ...

Class student_prof inherits from person and from system_user twice, once
each through student and professor. If we think about it, we probably want a
student_prof to have one instance of the data members of class person—one
name, one university ID number, one mailing address—and two instances of the
data members of class system_user—separate user accounts (with separate user
ids, disk quotas, etc.) for the student and professor roles:

person system_usersystem_user

professorstudent

student_prof

The system_user case—separate copies from each branch of the inheritance
tree—is known as replicated inheritance. The person case—a single copy from both
branches of the tree—is known as shared inheritance. Both are forms of repeated
inheritance.

Replicated inheritance is the default in C++. Shared inheritance is the default in
Eiffel. Shared inheritance can be obtained in C++ by specifying that a base class isEXAMPLE 10.63

Shared inheritance in C++ virtual:

PREPRINT

C 230 Chapter 10 Object Orientation

class student : public virtual person, public system_user { ...
class professor : public virtual person, public system_user { ...

In this case the members of class person are shared when inherited over multiple
paths, while the members of class system_user are replicated.

Replicated inheritance of individual features can be obtained in Eiffel by meansEXAMPLE 10.64
Replicated inheritance in
Eiffel

of renaming:

class student inherit person; system_user ...
class professor inherit person; system_user ...

class student_prof
inherit

student
rename

user_id as student_user_id,
disk_quota as student_disk_quota

end;
professor

rename
user_id as prof_user_id,
disk_quota as prof_disk_quota

end
feature

...
end -- class student_prof

Features inherited with different final names are replicated; features inherited with
the same final name are shared. Multiple inheritance in CLOS is always shared,
unless the user interposes interface classes as shown in Example C 10.61 explicitly;
there is no other renaming mechanism.

10.6.2 Replicated Inheritance

Replicated inheritance introduces no serious implementation problems beyond
those of nonrepeated multiple inheritance. As shown in Figure C 10.9, an objectEXAMPLE 10.65

Using replicated inheritance (in this case of class D) that inherits a base class (A) over two different paths in the
inheritance tree has two copies of A’s data members in its representation, and a set
of entries for the virtual methods of A in each of the parts of its vtable. Creation
of a B view of a D object (e.g., when assigning a pointer to a D object into a B*
variable) would not require the execution of any code. Creation of a C view (e.g.,
when assigning into a C* variable) would require the addition of offset d.

Because of ambiguity, we cannot access A members of a D object by name. We
can access them, however, if we assign a pointer to a D object into a B* or C*
variable. Similarly, a pointer to a D object cannot be assigned into an A pointer
directly: there would be no basis on which to choose the A for which to create a
view. We can, however, perform the assignment through a B* or C* intermediary:

PREPRINT

10.6.3 Shared Inheritance C 231

D view, B view, B::A view

C view, C::A view
D

B C

AA

d

D object D vtable (D/B part)

D vtable (C part)

B::A �elds
B::A

methods

C::A
methodsC::A �elds

B (only)
�elds

B (only)
methods
D (only)
methods

C (only)
methodsC (only)

�elds

D (only)
�elds

Figure 10.9 Implementation of replicated multiple inheritance. Each base class contains a
complete copy of class A. As in Figure C 10.8, the vtable for class D is split into two parts, one for
each base class, and each vtable entry consists of a ⟨method address, this correction⟩ pair.

class A { ...
class B : public A { ...
class C : public A { ...
class D : public B, public C { ...
...
A* a; B* b; C* c; D* d;
a = d; // error; ambiguous
b = d; // ok
c = d; // ok
a = b; // ok; a := d's B's A
a = c; // ok; a := d's C's A

As described in Example C 10.59, vtable entries will need to consist of ⟨method
address, this correction⟩ pairs.

10.6.3 Shared Inheritance

Shared inheritance introduces a new opportunity for ambiguity and additional
implementation complexity. As in the previous subsection, assume that D inheritsEXAMPLE 10.66

Overriding methods with
shared inheritance

from B and C, both of which inherit from A. This time, however, assume that A is
shared:

PREPRINT

C 232 Chapter 10 Object Orientation

D view, B view
D object

B methods

D methods

C methods

A methods

B (only)
�elds

C (only)
�elds

D (only)
�elds

A �elds

D vtable (D/B part)

D vtable (C part)

D vtable (A part)

C view

A view

D

C

A

B

Figure 10.10 Implementation of shared multiple inheritance. Objects of class B, C, and
D contain the address of their A components at a compile-time constant offset (in this case,
immediately after the vtable address). As in Figures C 10.8 and C 10.9, this corrections for
virtual methods in vtable entries are relative to the view of the class in which the method was
declared (i.e., through which the vtable was accessed).

class A {
public:

virtual void f();
...

};
class B : public virtual A { ...
class C : public virtual A { ...
class D : public B, public C { ...

The new ambiguity arises if B or C overrides method f, declared in A: which
version (if any) does D inherit? C++ defines a reference to f to be unambiguous
(and therefore valid) if one of the possible definitions dominates the others, in the
sense that its class is a descendant of the classes of all the other definitions. In our
specific example, D can inherit an overridden version of f from either B or C. If
both of them override it, however, any attempt to use f from within D’s code will
be a static semantic error. Eiffel provides comparatively elaborate mechanisms for
controlling ambiguity. A class that inherits an overridden method over more than
one path can specify the version it wants. Alternatively, through renaming, it can
retain access to all versions.

To implement shared inheritance we must recognize that because a single in-EXAMPLE 10.67
Implementation of shared
inheritance

stance of A is a part of both B and C, we cannot make the representations of both B
and C contiguous in memory. In Figure C 10.10, in fact, we have chosen to make

PREPRINT

10.6.3 Shared Inheritance C 233

neither B nor C contiguous. We insist, however, that the representation of every B,
C, or D object (and every B, C, or D view of an object of a derived class) contain
the address of the A part of the object at a compile-time constant offset from the
beginning of the view. To access a data member of A, we first indirect through this
address, and then apply the offset of the member within A. To call the nth virtual
method declared in A, we execute the following code:

r1 := my_D_view –– original view of object
r1 := ∗(r1 + 4) –– A view
r2 := ∗r1 –– address of A part of vtable
r3 := ∗(r2 + (n−1) × 8) –– method address
r2 := ∗(r2 + (n−1) × 8 + 4) –– this correction
r1 := r1 + r2 –– this
call ∗r3

This code sequence is the same number of instructions in length as our sequence for
nonvirtual base classes (Example C 10.59), but involves one more memory access
(to indirect through the A address). The code will work with any D view of any
object, including an object of a class derived from D, in which the D and A views
might be more widely separated. The constant 4 in the second line assumes 4-byte
addresses, with the address of D’s A part located immediately after D’s initial vtable
address. In an object with more than one virtual base class, the address of the part
of the object corresponding to each such base would be found at a different offset
from the beginning of the object.

The implementation strategy of Figure C 10.10 works in C++ because we always
know when a base class is virtual (shared). For data members and virtual methods
of nonvirtual base classes, we continue to use the (cheaper) lookup algorithms of
Figures C 10.8 and C 10.9. In Eiffel, on the other hand, a feature that is inherited
via replication at one level of the class hierarchy may be inherited via sharing later
on. As a result, Eiffel requires a somewhat more elaborate implementation strategy
(see Exercise C 10.29).

We can avoid the extra level of indirection when accessing virtual methods of
virtual base classes in C++ if we are willing to replicate portions of a class’s vtable.
We explore this option in Exercise C 10.30.

3CHECK YOUR UNDERSTANDING

45. Give a few examples of the semantic ambiguities that arise when a class has
more than one base class.

46. Explain the distinction between replicated and shared multiple inheritance.
When is each desirable?

47. Explain how even nonrepeated multiple inheritance introduces the need for
‘‘this correction’’ fields in individual vtable entries.

48. Explain how shared multiple inheritance introduces the need for an additional
level of indirection when accessing fields of certain parent classes.

PREPRINT

C 234 Chapter 10 Object Orientation

49. Explain why true multiple inheritance is harder to implement than interface
inheritance, traits, or mix-ins.

PREPRINT

PREPRINT

10Object Orientation

10.7.1 The Object Model of Smalltalk

Smalltalk is heavily integrated into its programming environment. In fact, unlike all
of the other languages mentioned in this book, a Smalltalk program does not consist
of a simple sequence of characters. Rather, Smalltalk programs are meant to be
viewed within the browser of a Smalltalk implementation, where font changes and
screen position can be used to differentiate among various parts of a given program
unit. Together with the contemporaneous Interlisp and Pilot/Mesa projects at PARC,
the Smalltalk group shares credit for developing the now ubiquitous concepts of
bit-mapped screens, windows, menus, and mice.

Smalltalk uses an untyped reference model for all variables. Every variable refers
to an object, but the class of the object need not be statically known. As described
in Section 10.3.1, every Smalltalk object is an instance of a class descended from a
single base class named Object. All data are contained in objects. The most trivial
of these are simple immutable objects such as true (of class Boolean) and 3 (of
class Integer).

Operations are all conceptualized as messages sent to objects. The expressionEXAMPLE 10.68
Operations as messages in
Smalltalk

3 + 4, for example, indicates sending a + message to the (immutable) object 3,
with a reference to the object 4 as argument. In response to this message, the
object 3 creates and returns a reference to the (immutable) object 7. Similarly, the
expression a + b, where a and b are variables, indicates sending a + message to
the object referred to by a, with the reference in b as argument. If a happens to
refer to 3 and b refers to 4, the effect will be the same as it was in the case of the
constants.

As described in Section 6.1, multiargument messages have multiword (‘‘mixfix’’)EXAMPLE 10.69
Mixfix messages names. Each word ends with a colon; each argument follows a word. The expression

myBox displayOn: myScreen at: location

sends a displayOn: at: message to the object referred to by variable myBox, with
the objects referred to by myScreen and location as arguments.

C 235

C 236 Chapter 10 Object Orientation

Even control flow in Smalltalk is conceptualized as messages. Consider theEXAMPLE 10.70
Selection as an ifTrue:
ifFalse: message

selection construct:

n < 0
ifTrue: [abs <- n negated]
ifFalse: [abs <- n]

This code begins by sending a < 0 message (a < message with 0 as argument) to
the object referred to by n. In response to this message, the object referred to by
n will return a reference to one of two immutable objects: true or false. This
reference becomes the value of the n < 0 expression.

Smalltalk evaluates expressions left-to-right without precedence or associativ-
ity. The value of n < 0 therefore becomes the recipient of an ifTrue: ifFalse:
message. This message has two arguments, each of which is a block. A block in
Smalltalk is a fragment of code enclosed in brackets. It is an immutable object,
with semantics roughly comparable to those of a lambda expression in Lisp. To
execute a block we send it a value message.

When sent an ifTrue: ifFalse: message, the immutable object true sends a
value message to its first argument (which had better be a block) and then returns
the result. The object false, on the other hand, in response to the same message,
sends a value message to its second argument (the block that followed ifFalse:).
The left arrow (<-) in each block is the assignment operator. Assignment is not a
message; it is a side effect of evaluation of the right-hand side. As in expression-
based languages such as Algol 68, the value of an assignment expression is the value
of the right-hand side. The overall value of our selection expression will be the value
of one of the blocks, namely a reference to n or to its additive inverse, whichever
is non-negative. For the sake of convenience, Boolean objects in Smalltalk also
implement ifTrue:, ifFalse:, and ifFalse: ifTrue: methods.

Iteration is modeled in a similar fashion. For enumeration-controlled loops,EXAMPLE 10.71
Iterating with messages class Integer implements timesRepeat: and to: by: do: methods:

pow <- 1.
10 timesRepeat:

[pow <- pow * n]

sum <- 0.
1 to: 100 by: 2 do:

[:i | sum <- sum + (a at: i)]

The first of these code fragments calculates n10. In response to a timesRepeat:
message, the integer k sends a value message to the argument (a block) k times.
The second code fragment sums the odd-indexed elements of the array referred
to by a. In response to a to: by: do: message, the integer k behaves as one might
expect: it sends a value: message to its third argument (a block) ⌊(t − k + b)/b⌋
times, where t is the first argument and b is the second argument. Note the colon at
the end of value:. The plain value message is unary; the value: message has an

PREPRINT

10.7.1 The Object Model of Smalltalk C 237

argument; it is understood by blocks that have a (single) formal parameter. In our
loop example, the integer 1 sends the messages value: 1, value: 3, value: 5, and
so on to the block [:i | sum <- sum + (a at: i)]. The :i | at the beginning of
the block is its formal parameter. The at: message is understood by arrays. For
iteration with a step size of one, integers also provide a to: do: method.

Because it is an object, a block can be referred to by a variable:EXAMPLE 10.72
Blocks as closures

b <- [n <- n + 1]. " b is now a closure"
c <- [:i | n <- n + i]. " so is c"
...
b value. " increment n by 1"
c value: 3. " increment n by 3"

A block with two parameters expects a value: value: message. A block with j
parameters expects a message whose name consists of the word value: repeated j
times. Comments in Smalltalk are double-quoted (strings are single-quoted).

For logically controlled loops, Smalltalk relies on the whileTrue: message,EXAMPLE 10.73
Logical looping with
messages

understood by blocks:

tail <- myList.
[tail next ~~ nil]

whileTrue: [tail <- tail next]

This code sets tail to the final element of myList. The double-tilde (~~) operator
means ‘‘does not refer to the same object as.’’ The method next is assumed to return
a reference to the element following its recipient. In response to a whileTrue:
message, a block sends itself a value message. If the result of that message is a
reference to true, the block sends a value message to the argument of the original
message and repeats. Blocks also implement a whileFalse: method.

The blocks of Smalltalk allow the programmer to construct almost arbitrary
control-flow constructs. Because of their simple syntax, Smalltalk blocks are even
easier to manipulate than the lambda expressions of Lisp. In effect, a to: by: do:
message turns iteration ‘‘inside out,’’ making the body of the loop a simple message
argument that can be executed (by sending it a value message) from within the
body of the to: by: do: method. Smalltalk programmers can define similar meth-EXAMPLE 10.74

Defining control
abstractions

ods for other container classes, obtaining all the power of iterators (Section 6.5.3)
and much of the power of call_with_current_continuation (Section 9.4.3):

myTree inorderDo: [:node | whatever]

It is worth noting that the uniform object model of computation in Smalltalk
does not necessarily imply a uniform implementation. Just as Clu implemen-
tations implement built-in immutable objects as values, despite their reference
semantics (Section 6.1.2), a Smalltalk implementation is likely to use the usual
machine instructions for computer arithmetic, rather than actually sending mes-
sages to integers. In a similar vein, the most common control-flow constructs

PREPRINT

C 238 Chapter 10 Object Orientation

(ifTrue: ifFalse:, to: by: do:, whileTrue:, etc.) are likely to be recognized
by a Smalltalk interpreter, and implemented with special, faster code.

We end this subsection by observing that recursion works at least as well in
Smalltalk as it does in other imperative languages. The following is a recursiveEXAMPLE 10.75

Recursion in Smalltalk implementation of Euclid’s algorithm:

gcd: other "other is a formal parameter"
(self = other)

ifTrue: [↑ self]. "end condition"
(self < other)

ifTrue: [↑ self gcd: (other - self)] "recurse"
ifFalse: [↑ other gcd: (self - other)] "recurse"

The up-arrow (↑) symbol is comparable to the return of C or Algol 68. The
keyword self is comparable to this in C++. We have shown the code in mixed
fonts, much as it would appear in a Smalltalk browser. The header of the method is
identified by bold face type.

3CHECK YOUR UNDERSTANDING

50. Name the three projects at Xerox PARC in the 1970s that pioneered modern
GUI-based personal computers.

51. Explain the concept of a message in Smalltalk.

52. How does Smalltalk indicate multiple message arguments?

53. What is a block in Smalltalk? What mechanism does it resemble in Lisp?

54. Give three examples of how Smalltalk models control flow as message evalua-
tion.

55. Explain how type checking works in Smalltalk.

PREPRINT

PREPRINT

10Object Orientation

10.9 Exercises

10.23 Suppose that class D inherits from classes A, B, and C, none of which share
any common ancestor. Show how the data members and vtable(s) of D
might be laid out in memory. Also show how to convert a reference to a D
object into a reference to an A, B, or C object.

10.24 Consider the person_interface and system_user_interface classes
described in Example C 10.61. If student is derived from person_
interface and system_user_interface, explain what happens in the
following method call:

student s;
person *p = &s;
...
p->print_stats();

You may wish to use a diagram of the representation of a student object to
illustrate the method lookups that occur and the views that are computed.
You may assume an implementation akin to that of Figure C 10.9, without
shared inheritance.

10.25 Given the inheritance tree of Example C 10.62, show a representation for
objects of class student_prof. You may want to consult Figures C 10.8,
C 10.9, and C 10.10.

10.26 Given the memory layout of Figure C 10.8 and the following declarations:

student& sr;
system_user& ur;

show the code that must be generated for the assignment

C 239

C 240 Chapter 10 Object Orientation

ur = sr;

(Pitfall: Be sure to consider null pointers.)
10.27 Standard C++ provides a ‘‘pointer-to-member’’ mechanism for classes:

class C {
public:

int a;
int b;

} c;
int C::*pm = &C::a;

// pm points to member a of an (arbitrary) C object
...
C* p = &c;
p->*pm = 3; // assign 3 into c.a

Pointers to members are also permitted for subroutine members (methods),
including virtual methods. How would you implement pointers to virtual
methods in the presence of C++-style multiple inheritance?

10.28 As an alternative to using ⟨method address, this correction⟩ pairs in the
vtable entries of a language with multiple inheritance, we could leave the
entries as simple pointers, but make them point to code that updates this
in-line, and then jumps to the beginning of the appropriate method. Show
the sequence of instructions executed under this scheme. What factors
will influence whether it runs faster or slower than the sequence shown in
Example C 10.59? Which scheme will use less space? (Remember to count
both code and data structure size, and consider which instructions must be
replicated at every call site.)

Pursuing the replacement of data structures with executable code even
further, consider an implementation in which the vtable itself consists of
executable code. Show what this code would look like and, again, discuss
the implications for time and space overhead.

10.29 In Eiffel, shared inheritance is the default rather than the exception. Only
renamed features are replicated. As a result, it is not possible to tell when
looking at a class whether its members will be inherited replicated or shared
by derived classes. Describe a uniform mechanism for looking up members
inherited from base classes that will work whether they are replicated or
shared. (Hint: Consider the use of dope vectors for records containing
arrays of dynamic shape, as described in Section 8.2.2. For further details,
consult the compiler text of Wilhelm and Maurer [WM95, Sec. 5.3].)

10.30 In Figure C 10.10, consider calls to virtual methods declared in A, but called
through a B, C, or D object view. We could avoid one level of indirection by
appending a copy of the A part of the vtable to the D/B and C parts of the
vtable (with suitably adjusted this corrections). Give calling sequences for
this alternative implementation. In the worst case, how much larger may
the vtable be for a class with n ancestors?

PREPRINT

10.9 Exercises C 241

10.31 Consider the Smalltalk implementation of Euclid’s algorithm, presented
at the end of Section C 10.7.1. Trace the messages involved in evaluating
4 gcd: 6.

PREPRINT

C 242 Chapter 10 Object Orientation

PREPRINT

PREPRINT

10Object Orientation

10.10 Explorations

10.39 Figure out how multiple inheritance is implemented in your local C++
compiler. How closely does it follow the strategy of Sections C 10.6.2 and
C 10.6.3? What rationale do you see for any differences?

10.40 Learn how multiple inheritance is implemented in Perl and Python (you
might begin by reading Section 14.4.4). Describe the differences with respect
to Sections C 10.6.2 and C 10.6.3. Discuss the advantages and drawbacks of
dynamic typing in object-oriented languages.

C 243

C 244 Chapter 10 Object Orientation

PREPRINT

PREPRINT

11Functional Languages

11.7 Theoretical Foundations

Mathematically, a function is a single-valued mapping: it associates every elementEXAMPLE 11.77
Functions as mappings in one set (the domain) with (at most) one element in another set (the range). In

conventional notation, we indicate the domain and range by writing

sqrt : R −→ R

We can, of course, have functions of more than one variable—that is, functions
whose domains are Cartesian products:

plus : [R×R] −→ R

If a function provides a mapping for every element of the domain, the function
is said to be total. Otherwise, it is said to be partial. Our sqrt function is partial: it
does not provide a mapping for negative numbers. We could change our definition
to make the domain of the function the non-negative numbers, but such changes
are often inconvenient, or even impossible: inconvenient because we should like
all mathematical functions to operate onR; impossible because we may not know
which elements of the domain have mappings and which do not. Consider for
example the function f that maps every natural number a to the smallest natural
number b such that the digits of the decimal representation of a appear b digits
to the right of the decimal point in the decimal expansion of π. Clearly f (59) =
4, because π = 3.14159 But what about f (428945028), or in general f (n)
for arbitrary n? Absent results from number theory, it is not at all clear how to
characterize the values at which f is defined. In such a case a partial function is
essential.

It is often useful to characterize functions as sets or, more precisely, as subsetsEXAMPLE 11.78
Functions as sets of the Cartesian product of the domain and the range:

sqrt ⊂ [R×R]
plus ⊂ [R×R×R]

C 245

C 246 Chapter 11 Functional Languages

We can specify which subset using traditional set notation:

sqrt ≡
{
(x , y) ∈ R×R | y > 0 ∧ x = y2}

plus ≡ {(x , y, z) ∈ R×R×R | z = x + y}

Note that this sort of definition tells us what the value of a function like sqrt is, but
it does not tell us how to compute it; more on this distinction below.

One of the nice things about the set-based characterization is that it makes it
clear that a function is an ordinary mathematical object. We know that a functionEXAMPLE 11.79

Functions as powerset
elements

from A to B is a subset of A× B. This means that it is an element of the powerset of
A× B—the set of all subsets of A× B, denoted 2A×B :

sqrt ∈ 2R×R

Similarly,
plus ∈ 2R×R×R

Note the overloading of notation here. The powerset 2A should not be confused
with exponentiation, though it is true that for a finite set A the number of elements
in the powerset of A is 2n , where n = |A|, the cardinality of A.

Because functions are single-valued, we know that they constitute only some of
the elements of 2A×B . Specifically, they constitute all and only those sets of pairs in
which the first component of each pair is unique. We call the set of such sets theEXAMPLE 11.80

Function spaces function space of A into B, denoted A→ B. Note that (A→ B) ⊂ 2A×B . In our
examples:

sqrt ∈ [R→ R]
plus ∈ [(R×R)→R]

Now that functions are elements of sets, we can easily build higher-order func-EXAMPLE 11.81
Higher-order functions as
sets

tions:

compose ≡ {(f , g , h) | ∀x ∈ R, h(x) = f (g(x))}

What are the domain and range of compose? We know that f , g, and h are elements
ofR → R. Thus

compose ∈ [(R→ R)× (R→ R)]→ (R→ R)

Note the similarity to the notation employed by the ML type system (Sec-
tion 7.4).

Using the notion of ‘‘currying’’ from Section 11.6, we note that there is an
alternative characterization for functions like plus. Rather than a function fromEXAMPLE 11.82

Curried functions as sets pairs of reals to reals, we can capture it as a function from reals to functions from
reals to reals:

curried_plus ∈ R → (R→ R)

We shall have more to say about currying in Section C 11.7.3.

PREPRINT

11.7.1 Lambda Calculus C 247

11.7.1 Lambda Calculus

As we suggested in the main text, one of the limitations of the function-as-set
notation is that it is nonconstructive: it doesn’t tell us how to compute the value of
a function at a given point (i.e., on a given input). Church designed the lambda
calculus to address this limitation. In its pure form, lambda calculus represents
everything as a function. The natural numbers, for example, can be represented by
a distinguished zero function (commonly the identity function) and a successor
function. (One common formulation uses a select_second function that takes two
arguments and returns the second of them. The successor function is then defined
in such a way that the number n ends up being represented by a function that, when
applied to select_second n times, returns the identity function [Mic89, Sec. 3.5];
[Sta95, Sec. 7.6]; see Exercise C 11.23.) While of theoretical importance, this
formulation of arithmetic is highly cumbersome. We will therefore take ordinary
arithmetic as a given in the remainder of this subsection. (And of course all practical
functional programming languages provide built-in support for both integer and
floating-point arithmetic.)

A lambda expression can be defined recursively as (1) a name; (2) a lambda
abstraction consisting of the letter λ, a name, a dot, and a lambda expression;
(3) a function application consisting of two adjacent lambda expressions; or (4) a
parenthesized lambda expression. To accommodate arithmetic, we will extend this
definition to allow numeric literals.

When two expressions appear adjacent to one another, the first is interpreted asEXAMPLE 11.83
Juxtaposition as function
application

a function to be applied to the second:

sqrt n

Most authors assume that application associates left-to-right (so f A B is interpreted
as (f A) B, rather than f (A B)), and that application has higher precedence than
abstraction (so λx .A B is interpreted as λx .(A B), rather than (λx .A) B). ML adopts
these rules.

Parentheses are used as necessary to override default groupings. Specifically, ifEXAMPLE 11.84
Lambda calculus syntax we distinguish between lambda expressions that are used as functions and those

that are used as arguments, then the following unambiguous CFG can be used to
generate lambda expressions with a minimal number of parentheses:

expr −→ name | number | λ name . expr | func arg
func −→ name | (λ name . expr) | func arg
arg −→ name | number | (λ name . expr) | (func arg)

In words: we use parentheses to surround an abstraction that is used as either a
function or an argument, and around an application that is used as an argument.

The letter λ introduces the lambda calculus equivalent of a formal parameter.EXAMPLE 11.85
Binding parameters with λ The following lambda expression denotes a function that returns the square of its

argument:

PREPRINT

C 248 Chapter 11 Functional Languages

λx .times x x

The name (variable) introduced by a λ is said to be bound within the expression
following the dot. In programming language terms, this expression is the variable’s
scope. A variable that is not bound is said to be free.

As in a lexically scoped programming language, a free variable needs to be
defined in some surrounding scope. Consider, for example, the expressionEXAMPLE 11.86

Free variables λx .λy.times x y. In the inner expression (λy.times x y), y is bound but x is free.
There are no restrictions on the use of a bound variable: it can play the role of a
function, an argument, or both. Higher-order functions are therefore completely
natural.

If we wish to refer to them later, we can give expressions names:EXAMPLE 11.87
Naming functions for future
reference square ≡ λx .times x x

identity ≡ λx .x
const7 ≡ λx .7
hypot ≡ λx .λy.sqrt (plus (square x) (square y))

Here≡ is a metasymbol meaning, roughly, ‘‘is an abbreviation for.’’
To compute with the lambda calculus, we need rules to evaluate expressions. ItEXAMPLE 11.88

Evaluation rules turns out that three rules suffice:

beta reduction: For any lambda abstraction λx .E and any expression M, we say

(λx .E) M →β E[M\x]

where E[M\x] denotes the expression E with all free occurrences of x replaced
by M. Beta reduction is not permitted if any free variables in M would become
bound in E[M\x].

alpha conversion: For any lambda abstraction λx .E and any variable y that has
no free occurrences in E, we say

λx .E →α λy.E[y\x]

eta reduction: A rule to eliminate ‘‘surplus’’ lambda abstractions. For any lambda
abstraction λx .E, where E is of the form F x, and x has no free occurrences in
F, we say

λx .F x →η F

To accommodate arithmetic we will also allow an expression of the form op x y ,EXAMPLE 11.89
Delta reduction for
arithmetic

where x and y are numeric literals and op is one of a small set of standard functions,
to be replaced by its arithmetic value. This replacement is called delta reduction. In
our examples we will need only the functions plus, minus, and times:

PREPRINT

11.7.1 Lambda Calculus C 249

(λ f .λg .λh. f g(h h))(λx .λy.x)h(λx .x x)
→β (λg .λh.(λx .λy.x)g(h h))h(λx .x x) (1)
→α (λg .λk.(λx .λy.x)g(k k))h(λx .x x) (2)
→β (λk.(λx .λy.x)h(k k))(λx .x x) (3)
→β (λx .λy.x)h((λx .x x) (λx .x x)) (4)
→β (λy.h)((λx .x x) (λx .x x)) (5)
→β h (6)

Figure 11.5 Reduction of a lambda expression. The top line consists of a function applied to
three arguments. The first argument (underlined) is the ‘‘select first’’ function, which takes two
arguments and returns the first. The second argument is the symbol h, which must be either a
constant or a variable bound in some enclosing scope (not shown). The third argument is an
‘‘apply to self ’’ function that takes one argument and applies it to itself. The particular series of
reductions shown occurs in normal order. It terminates with a simplest (normal) form of simply h.

plus 2 3 →δ 5
minus 5 2 →δ 3
times 2 3 →δ 6

Beta reduction resembles the use of call by name parameters (Section 9.3.1).
Unlike Algol 60, however, the lambda calculus provides no way for an argument to
carry its referencing environment with it; hence the requirement that an argument
not move a variable into a scope in which its name has a different meaning. Alpha
conversion serves to change names to make beta reduction possible. Eta reduction
is comparatively less important. If square is defined as above, eta reduction allowsEXAMPLE 11.90

Eta reduction us to say that

λx .square x →η square

In English, square is a function that squares its argument; λx .square x is a function
of x that squares x. The latter reminds us explicitly that it’s a function (i.e., that it
takes an argument), but the former is a little less messy looking.

Through repeated application of beta reduction and alpha conversion (and
possibly eta reduction), we can attempt to reduce a lambda expression to its simplest
possible form—a form in which no further beta reductions are possible. An exampleEXAMPLE 11.91

Reduction to simplest form can be found in Figure C 11.5. In line (2) of this derivation we have to employ an
alpha conversion because the argument that we need to substitute for g contains a
free variable (h) that is bound within g’s scope. If we were to make the substitution
of line (3) without first having renamed the bound h (as k), then the free h would
have been captured, erroneously changing the meaning of the expression.

PREPRINT

C 250 Chapter 11 Functional Languages

In line (5) of the derivation, we had a choice as to which subexpression to reduce.
At that point the expression as a whole consisted of a function application in which
the argument was itself a function application. We chose to substitute the main
argument ((λx .x x) (λx .x x)), unevaluated, into the body of the main lambda
abstraction. This choice is known as normal-order reduction, and corresponds to
normal-order evaluation of arguments in programming languages, as discussed
in Sections 6.6.2 and 11.5. In general, whenever more than one beta reduction
could be made, normal order chooses the one whose λ is left-most in the overall
expression. This strategy substitutes arguments into functions before reducing
them. The principal alternative, applicative-order reduction, reduces both the
function part and the argument part of every function application to the simplest
possible form before substituting the latter into the former.

Church and Rosser showed in 1936 that simplest forms are unique: any series
of reductions that terminates in a nonreducible expression will produce the same
result. Not all reductions terminate, however. In particular, there are expressions
for which no series of reductions will terminate, and there are others in which
normal-order reduction will terminate but applicative-order reduction will not.
The example expression of Figure C 11.5 leads to an infinite ‘‘computation’’ underEXAMPLE 11.92

Nonterminating
applicative-order reduction

applicative-order reduction. To see this, consider the expression at line (5). This line
consists of the constant function (λy.h) applied to the argument (λx .x x) (λx .x x).
If we attempt to evaluate the argument before substituting it into the function, we
run through the following steps:

(λx .x x) (λx .x x)
→β (λx .x x) (λx .x x)
→β (λx .x x) (λx .x x)
→β (λx .x x) (λx .x x)
. . .

In addition to showing the uniqueness of simplest (normal) forms, Church and
Rosser showed that if any evaluation order will terminate, normal order will. This
pair of results is known as the Church-Rosser theorem.

11.7.2 Control Flow

We noted at the beginning of the previous subsection that arithmetic can be mod-
eled in the lambda calculus using a distinguished zero function (commonly the
identity) and a successor function. What about control-flow constructs—selection
and recursion in particular?

The select_first function, λx .λy.x, is commonly used to represent the BooleanEXAMPLE 11.93
Booleans and conditionals value true. The select_second function, λx .λy.y, is commonly used to represent

the Boolean value false. Let us denote these by T and F. The nice thing about these
definitions is that they allow us to define an if function very easily:

PREPRINT

11.7.2 Control Flow C 251

if ≡ λc.λt.λe .c t e

Consider:

if T 3 4 ≡ (λc.λt.λe .c t e) (λx .λy.x) 3 4
→∗

β (λx .λy.x) 3 4
→∗

β 3

if F 3 4 ≡ (λc.λt.λe .c t e) (λx .λy.y) 3 4
→∗

β (λx .λy.y) 3 4
→∗

β 4

Functions like equal and greater_than can be defined to take numeric values as
arguments, returning T or F.

Recursion is a little tricky. An equation likeEXAMPLE 11.94
Beta abstraction for
recursion gcd ≡ λa.λb.(if (equal a b) a

(if (greater_than a b) (gcd (minus a b) b) (gcd (minus b a) a)))

is not really a definition at all, because gcd appears on both sides. Our previous
definitions (T , F, if) were simply shorthand: we could substitute them out to obtain
a pure lambda expression. If we try that with gcd, the ‘‘definition’’ just gets bigger,
with new occurrences of the gcd name. To obtain a real definition, we first rewrite
our equation using beta abstraction (the opposite of beta reduction):

gcd ≡ (λg .λa.λb.(if (equal a b) a
(if (greater_than a b) (g(minus a b) b) (g(minus b a) a)))) gcd

Now our equation has the form

gcd ≡ f gcd

where f is the perfectly well-defined (nonrecursive) lambda expression

λg .λa.λb.(if (equal a b) a
(if (greater_than a b) (g (minus a b) b) (g (minus b a) a)))

Clearly gcd is a fixed point of f .
As it turns out, for any function f given by a lambda expression, we can find theEXAMPLE 11.95

The fixed-point combinator
Y

least (simplest) fixed point of f , if there is a fixed point, by applying the fixed-point
combinator

λh.(λx .h(xx)) (λx .h(xx))

commonly denoted Y. Y has the property that for any lambda expression f , if the
normal-order evaluation of Y f terminates, then f (Y f) and Y f will reduce to the
same simplest form (see Exercise C 11.21). In the case of our gcd function, we have

PREPRINT

C 252 Chapter 11 Functional Languages

gcd ≡ (λh.(λx .h(x x)) (λx .h(x x)))
(λg .λa.λb.(if (equal a b) a
(if (greater_than a b) (g(minus a b) b) (g(minus b a) a))))

Figure C 11.6 traces the evaluation of gcd 4 2. Given the existence of the Y
combinator, most authors permit recursive ‘‘definitions’’ of functions, for conve-
nience.

11.7.3 Structures

Just as we can use functions to build numbers and truth values, we can also use
them to encapsulate values in structures. Using Scheme terminology for the sakeEXAMPLE 11.96

Lambda calculus list
operators

of clarity, we can define simple list-processing functions as follows:

cons ≡ λa.λd .λx .x a d
car ≡ λl .l select_first

cdr ≡ λl .l select_second

nil ≡ λx .T
null? ≡ λl .l(λx .λy.F)

where select_first and select_second are the functions λx .λy.x and λx .λy.y,
respectively—functions we also use to represent true and false.

Using these definitions we can see thatEXAMPLE 11.97
List operator identities

car(cons A B) ≡ (λl .l select_first) (cons A B)
→β (cons A B) select_first

≡ ((λa.λd .λx .x a d) A B) select_first

→∗
β (λx .x A B) select_first

→β select_first A B
≡ (λx .λy.x) A B
→∗

β A

cdr(cons A B) ≡ (λl .l select_second) (cons A B)
→β (cons A B) select_second

≡ ((λa.λd .λx .x a d) A B) select_second

→∗
β (λx .x A B) select_second

→β select_second A B
≡ (λx .λy.y) A B
→∗

β B

PREPRINT

11.7.3 Structures C 253

gcd 2 4 ≡ Y f 2 4

≡ ((λh.(λx .h(x x)) (λx .h(x x))) f) 2 4

→β ((λx . f (x x)) (λx . f (x x))) 2 4

≡ (k k) 2 4, where k ≡ λx . f (x x)

→β (f (k k)) 2 4

≡ ((λg .λa.λb.(if (= a b) a (if (> a b) (g(− a b) b) (g(− b a) a)))) (k k)) 2 4

→β (λa.λb.(if (= a b) a (if (> a b) ((k k)(− a b) b) ((k k)(− b a) a)))) 2 4

→∗
β if (= 2 4) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

≡ (λc.λt.λe .c t e) (= 2 4) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

→∗
β (= 2 4) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

→δ F 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

≡ (λx .λy.y) 2 (if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2))

→∗
β if (> 2 4) ((k k) (− 2 4) 4) ((k k) (− 4 2) 2)

→ . . .

→ (k k) (− 4 2) 2

≡ ((λx . f (x x))k) (− 4 2) 2

→β (f (k k)) (− 4 2) 2

≡ ((λg .λa.λb.(if (= a b) a (if (> a b) (g(− a b) b) (g(− b a) a)))) (k k)) (− 4 2) 2

→β (λa.λb.(if (= a b) a (if (> a b) ((k k)(− a b) b) ((k k)(− b a) a)))) (− 4 2) 2

→∗
β if (= (− 4 2) 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

≡ (λc.λt.λe .c t e)

(= (− 4 2) 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

→∗
β (= (− 4 2) 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

→δ (= 2 2) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

→δ T (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

≡ (λx .λy.x) (− 4 2) (if (> (− 4 2) 2) ((k k) (− (− 4 2) 2) 2) ((k k) (− 2 (− 4 2)) (− 4 2)))

→∗
β (− 4 2)

→δ 2

Figure 11.6 Evaluation of a recursive lambda expression. As explained in the body of the text, gcd is defined to be the
fixed-point combinator Y applied to a beta abstraction f of the standard recursive definition for greatest common divisor.
Specifically, Y is λh.(λx .h(x x)) (λx .h(x x)) and f is λg .λa.λb.(if (= a b) a (if (> a b) (g(− a b) b) (g(− b a) a))). For brevity
we have used =, >, and − in place of equal, greater_than, and minus. We have performed the evaluation in normal order.

PREPRINT

C 254 Chapter 11 Functional Languages

null? nil ≡ (λl .l (λx .λy.select_second)) nil

→β nil (λx .λy.select_second)

≡ (λx .select_first) (λx .λy.select_second)

→β select_first

≡ T

null? (cons A B) ≡ (λl .l (λx .λy.select_second)) (cons A B)
→β (cons A B) (λx .λy.select_second)

≡ ((λa.λd .λx .x a d) A B) (λx .λy.select_second)

→∗
β (λx .x A B) (λx .λy.select_second)

→β (λx .λy.select_second) A B
→∗

β select_second

≡ F

Because every lambda abstraction has a single argument, lambda expressions
are naturally curried. We generally obtain the effect of a multiargument functionEXAMPLE 11.98

Nesting of lambda
expressions

by nesting lambda abstractions:

compose ≡ λ f .λg .λx . f (g x)

which groups as

λ f .(λg .(λx .(f (g x))))

We commonly think of compose as a function that takes two functions as argu-
ments and returns a third function as its result. We could just as easily, however,
think of compose as a function of three arguments: the f , g, and x above. The
official story, or course, is that compose is a function of one argument that eval-
uates to a function of one argument that in turn evaluates to a function of one
argument.

If desired, we can use our structure-building functions to define a noncurriedEXAMPLE 11.99
Paired arguments and
currying

version of compose whose (single) argument is a pair:

paired_compose ≡ λp.λx .(car p) ((cdr p) x)

If we consider the pairing of arguments as a general technique, we can write a curry
function that reproduces the single-argument version, just as we did in Scheme in
Section 11.6:

curry ≡ λ f .λa.λb. f (cons a b)

PREPRINT

11.7.3 Structures C 255

3CHECK YOUR UNDERSTANDING

29. What is the difference between partial and total functions? Why is the difference
important?

30. What is meant by the function space A→ B ?

31. Define beta reduction, alpha conversion, eta reduction, and delta reduction.

32. How does beta reduction in lambda calculus differ from lazy evaluation of
arguments in a nonstrict programming language like Haskell?

33. Explain how lambda expressions can be used to represent Boolean values and
control flow.

34. What is beta abstraction?

35. What is the Y combinator? What useful property does it possess?

36. Explain how lambda expressions can be used to represent structured values
such as lists.

37. State the Church-Rosser theorem.

PREPRINT

C 256 Chapter 11 Functional Languages

PREPRINT

PREPRINT

11Functional Languages

11.10 Exercises

11.20 In Figure C 11.6 we evaluated our expression in normal order. Did we really
have any choice? What would happen if we tried to use applicative order?

11.21 Prove that for any lambda expression f , if the normal-order evaluation
of Y f terminates, where Y is the fixed-point combinator λh.(λx .h(x x))
(λx .h(x x)), then f (Y f) and Y f will reduce to the same simplest form.

11.22 Given the definition of structures (lists) in Section C 11.7.3, what happens
if we apply car or cdr to nil? How might you introduce the notion of ‘‘type
error’’ into lambda calculus?

11.23 Let
zero ≡ λx .x

succ ≡ λn.(λs.(s select_second) n)

where select_second ≡ λx .λy.y. Now let

one ≡ succ zero

two ≡ succ one

Show that

one select_second = zero

two select_second select_second = zero

In general, show that

succ
n

zero select_second
n = zero

Use this result to define a predecessor function pred. You may ignore the
issue of the predecessor of zero.

C 257

C 258 Chapter 11 Functional Languages

Note that our definitions of T and F allow us to check whether a number
is equal to zero:

iszero ≡ λn.(n select_first)

Using succ, pred, iszero, and if, show how to define plus and times recur-
sively. These definitions could of course be made nonrecursive by means of
beta abstraction and Y.

PREPRINT

PREPRINT

11Functional Languages

11.11 Explorations

11.30 Learn about the typed lambda calculus. What properties does it have that
standard lambda calculus does not? What restrictions does it place on per-
missible expressions? Possible places to start include Cardelli and Wegner’s
classic survey [CW85] or the newer text by Pierce [Pie02].

11.31 Learn more about fixed points. We mentioned these when presenting the Y
combinator in Section C 11.7.2. They also arise in the denotational defini-
tion of loop constructs, in metacircular interpreters [AS96, Sec. 4.1]), and
in the data flow analysis used by optimizing compilers (Section C 17.4.2).
What do these subjects have in common? Are there important differences
as well?

11.32 Explore the connection between lexical scoping in Scheme or OCaml and
the notion of free and bound variables in lambda calculus. How closely
are these related? Why does lambda calculus require alpha conversion but
Scheme and OCaml do not? Is there any analogy in lambda calculus to the
dynamic scoping of early dialects of Lisp?

C 259

C 260 Chapter 11 Functional Languages

PREPRINT

PREPRINT

12Logic Languages

12.3 Theoretical Foundations

In mathematical logic, a predicate is a function that maps constants (atoms) or
variables to the values true and false. Predicate calculus provides a notation and
inference rules for constructing and reasoning about propositions (statements) com-
posed of predicate applications, operators, and the quantifiers ∀ and ∃.1 Operators
include and (∧), or (∨), not (¬), implication (→), and equivalence (↔). Quanti-
fiers are used to introduce bound variables in an appended proposition, much as λ
introduces variables in the lambda calculus. The universal quantifier, ∀, indicates
that the proposition is true for all values of the variable. The existential quantifier,
∃, indicates that the proposition is true for at least one value of the variable. HereEXAMPLE 12.39

Propositions are a few examples:

∀C[rainy(C) ∧ cold(C)→ snowy(C)]

(For all cities C, if C is rainy and C is cold, then C is snowy.)

∀A, ∀B[(∃C[takes(A, C) ∧ takes(B, C)])→ classmates(A, B)]

(For all students A and B, if there exists a class C such that A takes C and B takes C,
then A and B are classmates.)

∀N[(N > 2)→ ¬(∃A, ∃B, ∃C[AN + BN = CN])]

(Fermat’s last theorem.)
One of the interesting characteristics of predicate calculus is that there are manyEXAMPLE 12.40

Different ways to say things ways to say the same thing. For example,

1 Strictly speaking, what we are describing here is the first-order predicate calculus. There exist
higher-order calculi in which predicates can be applied to predicates, not just to atoms and variables.
Prolog allows the user to construct higher-order predicates using call; the formalization of such
predicates is beyond the scope of our coverage here.

C 261

C 262 Chapter 12 Logic Languages

(P1 → P2) ≡ (¬P1 ∨ P2)

(¬∃X[P(X)]) ≡ (∀X[¬P(X)])

¬(P1 ∧ P2) ≡ (¬P1 ∨ ¬P2)

This flexibility of expression tends to be handy for human beings, but it can
be a nuisance for automatic theorem proving. Propositions are much easier to
manipulate algorithmically if they are placed in some sort of normal form. One
popular candidate is known as clausal form. We consider this form in the following
section.

12.3.1 Clausal Form

As it turns out, clausal form is very closely related to the structure of Prolog pro-
grams: once we have a proposition in clausal form, it will be relatively easy to
translate it into Prolog. We should note at the outset, however, that the translation
is not perfect: there are aspects of predicate calculus that Prolog cannot capture,
and there are aspects of Prolog (e.g., its imperative and database-manipulating
features) that have no analogues in predicate calculus.

Clocksin and Mellish [CM03, Chap. 10] describe a five-step procedure (based
heavily on an article by Martin Davis [Dav63]) to translate an arbitrary first-order
predicate proposition into clausal form. We trace that procedure here.

In the first step, we eliminate implication and equivalence operators. As aEXAMPLE 12.41
Conversion to clausal form concrete example, the proposition

∀A[¬student(A)→ (¬dorm_resident(A) ∧ ¬∃B[takes(A, B) ∧ class(B)])]

would become

∀A[student(A) ∨ (¬dorm_resident(A) ∧ ¬∃B[takes(A, B) ∧ class(B)])]

In the second step, we move negation inward so that the only negated items are
individual terms (predicates applied to arguments):

∀A[student(A) ∨ (¬dorm_resident(A) ∧ ∀B[¬(takes(A, B) ∧ class(B))])]
≡ ∀A[student(A) ∨ (¬dorm_resident(A) ∧ ∀B[¬takes(A, B) ∨ ¬class(B)])]

In the third step, we use a technique known as Skolemization (due to logician
Thoralf Skolem) to eliminate existential quantifiers. We will consider this technique
further in Section C 12.3.3. Our example has no existential quantifiers at this stage,
so we proceed.

In the fourth step, we move all universal quantifiers to the outside of the propo-
sition (in the absence of naming conflicts, this does not change the proposition’s
meaning). We then adopt the convention that all variables are universally quantified,
and drop the explicit quantifiers:

PREPRINT

12.3.2 Limitations C 263

student(A) ∨ (¬dorm_resident(A) ∧ (¬takes(A, B) ∨ ¬class(B)))

Finally, in the fifth step, we use the distributive, associative, and commutative
rules of Boolean algebra to convert the proposition to conjunctive normal form, in
which the operators ∧ and ∨ are nested no more than two levels deep, with ∧ on
the outside and ∨ on the inside:

(student(A) ∨ ¬dorm_resident(A)) ∧ (student(A) ∨ ¬takes(A, B) ∨ ¬class(B))

Our proposition is now in clausal form. Specifically, it is in conjunctive normal
form, with negation only of individual terms, with no existential quantifiers, and
with implied universal quantifiers for all variables (i.e., for all names that are neither
constants nor predicates). The clauses are the items at the outer level—the things
that are and-ed together.

To translate the proposition to Prolog, we convert each logical clause to a PrologEXAMPLE 12.42
Conversion to Prolog fact or rule. Within each clause, we use commutativity to move the negated terms

to the right and the non-negated terms to the left (our example is already in this
form). We then note that we can recast the disjunctions as implications:

(student(A)← ¬(¬dorm_resident(A)))
∧ (student(A)← ¬(¬takes(A, B) ∨ ¬class(B)))

≡ (student(A)← dorm_resident(A))
∧ (student(A)← (takes(A, B) ∧ class(B)))

These are Horn clauses. The translation to Prolog is trivial:

student(A) :- dorm_resident(A).
student(A) :- takes(A, B), class(B).

12.3.2 Limitations

We claimed at the beginning of Section 12.1 that Horn clauses could be used to
capture most, though not all, of first-order predicate calculus. So what is it missing?
What can go wrong in the translation? The answer has to do with the number of
non-negated terms in each clause. If a clause has more than one, then if we attempt
to cast it as an implication there will be a disjunction on the left-hand side of the
← symbol, something that isn’t allowed in a Horn clause. Similarly, if we end up
with no non-negated terms, then the result is a headless Horn clause, something
that Prolog allows only as a query, not as an element of the database.

As an example of a disjunctive head, consider the statement ‘‘every living thingEXAMPLE 12.43
Disjunctive left-hand side is an animal or a plant.’’ In clausal form, we can capture this as

animal(X) ∨ plant(X) ∨ ¬living(X)

PREPRINT

C 264 Chapter 12 Logic Languages

or equivalently
animal(X) ∨ plant(X)← living(X)

Because we are restricted to a single term on the left-hand side of a rule, the closest
we can come to this in Prolog is

animal(X) :- living(X), \+(plant(X)).
plant(X) :- living(X), \+(animal(X)).

But this is not the same, because Prolog’s \+ indicates inability to prove, not
falsehood.

As an example of an empty head, consider Fermat’s last theorem (Exam-EXAMPLE 12.44
Empty left-hand side ple C 12.39). Abstracting out the math, we might write

∀N[big(N)→ ¬(∃A, ∃B, ∃C[works(A, B, C , N)])]

which becomes the following in clausal form:

¬big(N) ∨ ¬works(A, B, C , N)

We can couch this as a Prolog query:

?- big(N), works(A, B, C, N).

(a query that will never terminate), but we cannot express it as a fact or a rule.
The careful reader may have noticed that facts are entered on the left-hand sideEXAMPLE 12.45

Theorem proving as a
search for contradiction

of an (implied) Prolog :- sign:

rainy(rochester).

while queries are entered on the right:

?- rainy(rochester).

The former means
rainy(rochester)← true

The latter means
false ← rainy(rochester)

If we apply resolution to these two propositions, we end up with the contradiction

false ← true

This observation suggests a mechanism for automated theorem proving: if we are
given a collection of axioms and we want to prove a theorem, we temporarily add
the negation of the theorem to the database and then attempt, through a series of
resolution operations, to obtain a contradiction.

PREPRINT

12.3.3 Skolemization C 265

12.3.3 Skolemization

In Example C 12.41 we were able to translate a proposition from predicate calculus
into clausal form without worrying about existential quantifiers. But what about aEXAMPLE 12.46

Skolem constants statement like this one:

∃X[takes(X , cs254) ∧ class_year(X , 2)]

(There is at least one sophomore in cs254.) To get rid of the existential quantifier,
we can introduce a Skolem constant x:

takes(x , cs254), class_year(x , 2)

The mathematical justification for this change is based on something called the
axiom of choice; intuitively, we say that if there exists an X that makes the statement
true, then we can simply pick one, name it x, and proceed. (If there does not exist
an X that makes the statement true, then we can choose some arbitrary x, and
the statement will still be false.) It is worth noting that Skolem constants are not
necessarily distinct; it is quite possible, for example, for x to name the same student
as some other constant y that represents a sophomore in his201.

Sometimes we can replace an existentially quantified variable with an arbitrary
constant x. Often, however, we are constrained by some surrounding universal
quantifier. Consider the following example:EXAMPLE 12.47

Skolem functions
∀X[¬dorm_resident(X) ∨ ∃A[campus_address_of(X , A)]]

(Every dorm resident has a campus address.) To get rid of the existential quantifier,
we must choose an address for X. Since we don’t know who X is (this is a general
statement about all dorm residents), we must choose an address that depends on X:

∀X[¬dorm_resident(X) ∨ campus_address_of(X , f(X))]

Here f is a Skolem function. If we used a simple Skolem constant instead, we’d be
saying that there exists some single address shared by all dorm residents.

Whether Skolemization results in a clausal form that we can translate into
Prolog depends on whether we need to know what the constant is. If we are usingEXAMPLE 12.48

Limitations of
Skolemization

predicates takes and class_year, and we wish to assert as a fact that there is a
sophomore in cs254, we can write

takes(the_distinguished_sophomore_in_254, cs254).
class_year(the_distinguished_sophomore_in_254, 2).

Similarly, we can assert that every dorm resident has a campus address by writing

campus_address_of(X, the_dorm_address_of(X)) :- dorm_resident(X).

Now we can search for classes with sophomores in them:

PREPRINT

C 266 Chapter 12 Logic Languages

sophomore_class(C) :- takes(X, C), class_year(X, 2).
?- sophomore_class(C).
C = cs254

and we can search for people with campus addresses:

has_campus_address(X) :- campus_address_of(X, Y).
dorm_resident(li_ying).
?- has_campus_address(X).
X = li_ying

Unfortunately, we won’t be able to identify a sophomore in cs254 by name, nor
will we be able to identify the address of li_ying.

3CHECK YOUR UNDERSTANDING

15. Define the notion of clausal form in predicate calculus.

16. Outline the procedure to convert an arbitrary predicate calculus statement into
clausal form.

17. Characterize the statements in clausal form that cannot be captured in Prolog.

18. What is Skolemization? Explain the difference between Skolem constants and
Skolem functions.

19. Under what circumstances may Skolemization fail to produce a clausal form
that can be captured usefully in Prolog?

PREPRINT

PREPRINT

12Logic Languages

12.6 Exercises

12.19 Restate the following Prolog rule in predicate calculus, using appropriate
quantifiers:

sibling(X, Y) :- mother(M, X), mother(M, Y),
father(F, X), father(F, Y).

12.20 Consider the following statement in predicate calculus:

empty_class(C)← ¬∃X[takes(X , C)]

(a) Translate this statement to clausal form.
(b) Can you translate the statement into Prolog? Does it make a difference

whether you’re allowed to use \+?
(c) How about the following:

takes_everything(X)← ∀C[takes(X , C)]

Can this be expressed in Prolog?

12.21 Consider the seemingly contradictory statement

¬foo(X) → foo(X)

Convert this statement to clausal form, and then translate into Prolog.
Explain what will happen if you ask

?- foo(bar).

Now consider the straightforward translation, without the intermediate
conversion to clausal form:

C 267

C 268 Chapter 12 Logic Languages

foo(X) :- \+(foo(X)).

Now explain what will happen if you ask

?- foo(bar).

PREPRINT

PREPRINT

12Logic Languages

12.7 Explorations

12.27 In Section C 12.3.1 we translated propositions into conjunctive normal form:
the AND of a collection of ORs. One can also translate propositions into
disjunctive normal form: the OR of a collection of ANDs. Does disjunctive
normal form have any useful properties? What other normal forms exist in
mathematical logic? What are their uses?

12.28 With all the different ways to express the same proposition in predicate
calculus, is there any useful notion of a ‘‘simplest’’ form? Is it possible,
for example, to find, among all equivalent propositions, the one with the
smallest number of symbols? How difficult is this task?

12.29 Satisfiability is the canonical NP-complete problem. Given a formula in
propositional logic (no predicates or quantifiers), it asks whether there exists
an assignment of truth values to variables that makes the overall proposition
true. Can we use Prolog to solve the satisfiability problem? If not, why not?
If so, given that it has to take exponential time, how can we hope to solve
problems full of predicates and quantifiers quickly?

12.30 Suppose we had a form of ‘‘constructive negation’’ in Prolog that allowed us
to capture information of the form ∀X[¬P(X)]. What might such a feature
look like? What would be its implications for the Prolog search strategy?
What portions of predicate calculus (if any) would still be inexpressible?

C 269

C 270 Chapter 12 Logic Languages

PREPRINT

PREPRINT

13Concurrency

13.5 Message Passing

While shared-memory concurrent programming is common on small-scale multi-
core and multiprocessor machines, most programs that run on clusters, supercom-
puters, or geographically distributed machines are currently based on messages. In
Sections C 13.5.1 through C 13.5.3 we consider three principal issues in message-
based computing: naming, sending, and receiving. In Section C 13.5.4 we look
more closely at one particular combination of send and receive semantics, namely
remote procedure call. Most of our examples will be drawn from the Ada, Erlang,
Go, and Rust programming languages, the Java network library, and the MPI library
package.

13.5.1 Naming Communication Partners

To send or receive a message, one must generally specify where to send it to, orEXAMPLE 13.54
Naming processes, ports,
and entries

where to receive it from: communication partners need names for (or references
to) one another. Names may refer directly to a thread or process. Alternatively,
they may refer to an entry or port of a module, or to some sort of socket or channel
abstraction. We illustrate these options in Figure C 13.19.

The first naming option—addressing messages to processes—appears in Hoare’s
original CSP (Communicating Sequential Processes) [Hoa78], an influential pro-
posal for simple communication mechanisms. It also appears in Erlang and in
MPI. Each MPI process has a unique id (an integer), and each send or receive
operation specifies the id of the communication partner. MPI implementations
are required to be reentrant; a process can safely be divided into multiple threads,
each of which can send or receive messages on the process’s behalf.

The second naming option—addressing messages to ports—appears in Ada. AnEXAMPLE 13.55
entry calls in Ada Ada entry call of the form t.foo(args) sends a message to the entry named foo

in task (thread) t (t may be either a task name or the name of a variable whose
value is a pointer to a task). As we saw in Section 13.2.3, an Ada task resembles

C 271

C 272 Chapter 13 Concurrency

(a)

(b) (c)

Figure 13.19 Three common schemes to name communication partners. In (a), processes
name each other explicitly. In (b), senders name an input port of a receiver. The port may be
called an entry or an operation. The receiver is typically a module with one or more threads inside.
In (c), senders and receivers both name an independent channel abstraction, which may be called
a connection or a mailbox.

a module; its entries resemble subroutine headers nested directly inside the task.
A task receives a message that has been sent to one of its entries by executing an
accept statement (to be discussed in Section C 13.5.3). Every entry belongs to
exactly one task; all messages sent to the same entry must be received by that one
task.

The third naming option—addressing messages to channels—appears in Go,EXAMPLE 13.56
Channels in Go Occam, and Rust. (Though their concurrency features are loosely based on CSP,

both Go and Occam differ from Hoare’s proposal in several concrete ways, includ-
ing the use of channels.) Channel declarations in Go are supported with the chan
type constructor:

var c1 chan int

This code declares c1 to be an (initially nil) reference to a channel. A channel
value can be created with the built-in function make:

c1 = make(chan int)

Typically the declaration and initialization appear together:

var c1 = make(chan int)

Here Go infers the type of c1 from the initialization expression.
To send a message on a channel, a thread uses the binary ‘‘arrow’’ operator <-

with a channel variable on the left and a message on the right:

c1 <- 3

To receive, it uses <- as a unary operator, with the channel on the right:

PREPRINT

13.5.1 Naming Communication Partners C 273

my_int = <-c1

To indicate that no further messages will be forthcoming, a thread can close a
channel. A receiving thread can check for this possibility by assigning a receive
expression into a pair, the second element of which is a Boolean:

my_int, ok = <-c1
if (ok) {

// use my_int ...

For the common idiom in which a server thread is willing to accept requestsEXAMPLE 13.57
Remote invocation in Go from any of many possible client threads, each request message can include a

reference to the channel on which to send a response:

type request struct {
name string
reply_to chan string

}
...
// Assume a server thread is listening on chan 'service'
...
var c = make(chan string, 1) // create channel for response
service <- request{"Alice", c} // send look-up request for Alice
println(<-c) // receive response on c

Rust channels, unlike those of Go and Occam, have only a single receiver. MoreEXAMPLE 13.58
Channels in Rust precisely, the receiving end of a channel is owned by a single thread. The sending

end, by default, has a single owner as well, but unlike the receiving end it can be
cloned:

let (tx, rx) = mpsc::channel(); // new channel
// tx is the sending end; rx is the receiving end

for t in 0..2 { // execute twice (for t = 0 and t = 1)
let txc = tx.clone();
thread::spawn(move || {

txc.send(123 + t).unwrap();
});

}

let v1 = rx.recv().unwrap();
let v2 = rx.recv().unwrap();
println!("{} {}", v1, v2); // prints 123 124 or 124 123

Here recv returns a Result<T>—a datatype that can be either a previously sent
value or a RecvError<T>, where T in this case is the integer type. The call to
unwrap returns the value or raises a fatal error. The call to send, likewise, returns

PREPRINT

C 274 Chapter 13 Concurrency

a Result<()>—an empty value or a SendError<T>; the unwrap serves simply to
catch the error.

As might be expected in Rust’s type system (Section 8.5.5), sending a value
on a channel transfers ownership from the sending thread to the receiving. The
following will not compile:

let s = String::from("boo!");
tx.send(s).unwrap();
println!("{}", s); // not allowed!

The error message from the compiler explains that type String does not implement
the Copy trait, so v cannot be accessed after the send. A send of a (trivially copied)
integer would work just fine, as would a send of s.clone().

Internet Messaging

Java’s standard java.net library provides two styles of message passing, corre-
sponding to the UDP and TCP Internet protocols. UDP is the simpler of the two.
It is a datagram protocol, meaning that each message is sent to its destination inde-
pendently and unreliably. The network software will attempt to deliver it, but makes
no guarantees. Moreover two messages sent to the same destination (assuming
they both arrive) may arrive in either order. UDP messages use port-based naming
(Figure C 13.19b): each message is sent to a specific Internet protocol (IP) address
and port number.1 The TCP protocol also uses port-based naming, but only for
the purpose of establishing connections (Figure C 13.19c), which it then uses for all
subsequent communication. Connections deliver messages reliably and in order.

To send or receive UDP messages, a Java thread must create a datagram socket:EXAMPLE 13.59
Datagram messages in Java

DatagramSocket mySocket = new DatagramSocket(portId);

The parameter of the DatagramSocket constructor is optional; if it is not specified,
the operating system will choose an available port. Typically servers specify a port
and clients allow the OS to choose. To send a UDP message, a thread says

DatagramPacket myMsg = new DatagramPacket(buf, len, addr, port);
... // initialize message
mySocket.send(myMsg);

The parameters to the DatagramPacket constructor specify an array of bytes buf,
its length len, and the Internet address and port of the receiver. Receiving is
symmetric:

1 Every publicly visible machine on the Internet has its own unique address. Though a transition to
128-bit addresses has been underway for some time, many sites still use 32-bit integers, usually
printed as four period-separated fields (e.g., 192.5.54.209). Internet name servers translate symbolic
names (e.g., gate.cs.rochester.edu) into numeric addresses. Port numbers are also integers,
but are local to a given Internet address. Ports 1024 through 4999 are generally available for
application programs; larger and smaller numbers are reserved for servers.

PREPRINT

13.5.1 Naming Communication Partners C 275

mySocket.receive(myMsg);
... // parse content of myMsg

For TCP communication, a server typically ‘‘listens’’ on a port to which clientsEXAMPLE 13.60
Connection-based
messages in Java

send requests to establish a connection:

ServerSocket myServerSocket = new ServerSocket(portId);
Socket clientConnection = myServerSocket.accept();

The accept operation blocks until the server receives a connection request from
a client. Typically a server will immediately fork a new thread to communicate
with the client; the parent thread loops back to wait for another connection with
accept.

A client sends a connection request by passing the server’s symbolic name and
port number to the Socket constructor:

Socket serverConnection = new Socket(hostName, portId);

Once a connection has been created, a client and server in Java typically call
methods of the Socket class to create input and output streams, which support
all of the standard Java mechanisms for text I/O (Section C 8.7.3):

BufferedReader in = new BufferedReader(
new InputStreamReader(clientConnection.getInputStream()));

PrintStream out =
new PrintStream(clientConnection.getOutputStream());

// This is in the server; the client would make streams out
// of serverConnection.
...
String s = in.readLine();
out.println("Hi, Mom\n");

Among all the message-passing mechanisms we have considered, datagrams are
the only one that does not provide some sort of ordering constraint. In general,
most message-passing systems guarantee that messages sent over the same ‘‘com-
munication path’’ arrive in order. When naming processes explicitly, a path links a
single sender to a single receiver. All messages from that sender to that receiver
arrive in the order sent. When naming ports, a path links an arbitrary number of
senders to a single receiver. Messages that arrive at a port in a given order will be
seen by receivers in that order. Note, however, that while messages from the same
sender will arrive at a port in order, messages from different senders may arrive
in arbitrary orders.2 When naming channels, a path links all the senders that can

2 Suppose, for example, that process A sends a message to port p of process B, and then sends a
message to process C, while process C first receives the message from A and then sends its own
message to port p of B. If messages are sent over a network with internal delays, and if A is allowed

PREPRINT

C 276 Chapter 13 Concurrency

use the channel to all the receivers that can use it. A Java TCP connection has a
single OS process at each end, but there may be many threads inside, each of which
can use its process’s end of the connection. The connection functions as a queue:
send (enqueue) and receive (dequeue) operations are ordered, so that everything
is received in the order it was sent.

13.5.2 Sending

One of the most important issues to be addressed when designing a send operation
is the extent to which it may block the caller: once a thread has initiated a send
operation, when is it allowed to continue execution? Blocking can serve at least
three purposes:
Resource management: A sending thread should not modify outgoing data until

the underlying system has copied the old values to a safe location. Most systems
block the sender until a point at which it can safely modify its data, without
danger of corrupting the outgoing message.

Failure semantics: Particularly when communicating over a long-distance net-
work, message passing is more error-prone than most other aspects of com-
puting. Many systems block a sender until they are able to guarantee that the
message will be delivered without error.

Return parameters: In many cases a message constitutes a request, for which a
reply is expected. Many systems block a sender until a reply has been received.

When deciding how long to block, we must consider synchronization semantics,
buffering requirements, and the reporting of run-time errors.

Synchronization Semantics

On its way from a sender to a receiver, a message may pass through many interme-
diate steps, particularly if traversing the Internet. It first descends through several
layers of software on the sender’s machine, then through a potentially large number
of intermediate machines, and finally up through several layers of software on the
receiver’s machine. We could imagine unblocking the sender after any of these
steps, but most of the options would be indistinguishable in terms of user-level
program behavior. If we assume for the moment that a message-passing systemEXAMPLE 13.61

Three main options for
send semantics

can always find buffer space to hold an outgoing message, then our three rationales
for delay suggest three principal semantic options:
No-wait send: The sender does not block for more than a small, bounded period of

time. The message-passing implementation copies the message to a safe location
and takes responsibility for its delivery.

to send its message to C before its first message has reached port p, then it is possible for B to
hear from C before it hears from A. This apparent reversal of ordering could easily happen on the
Internet, for example, if the message from A to B traverses a satellite link, while the messages from
A to C and from C to B use ocean-floor fiber-optic cables.

PREPRINT

13.5.2 Sending C 277

(a)

send

receive

(b)

request

(c)

reply

send

receive receive

Figure 13.20 Synchronization semantics for the send operation: no-wait send (a), synchro-
nization send (b), and remote-invocation send (c). In each diagram we have assumed that
the original message arrives before the receiver executes its receive operation; this need not in
general be the case.

Synchronization send: The sender waits until its message has been received.
Remote-invocation send: The sender waits until it receives a reply.

These three alternatives are illustrated in Figure C 13.20.
No-wait send appears in Erlang and its successor Elixir, in Rust, and in the

Java Internet library. Synchronization send appears in Occam and, by default, in
Go. (If a Go channel is declared with an explicit buffering capacity, however, no-
wait send is used.) Remote-invocation send appears in Ada and in Occam. MPI
provides an implementation-oriented hybrid of no-wait send and synchronization
send: a send operation blocks until the data in the outgoing message can safely
be modified. In implementations that do their own internal buffering, this rule
amounts to no-wait send. In other implementations, it amounts to synchronization
send. The programmer has the option, if desired, to insist on no-wait send or
synchronization send; performance may suffer on some systems if the request is
different from the default.

Buffering

In practice, of course, no message-passing system can provide a version of send
that never waits (unless of course it simply throws some messages away). If we
imagine a thread that sits in a loop sending messages to a thread that never receives
them, we quickly see that unlimited amounts of buffer space would be required. At
some point, any implementation must be prepared to block an overactive sender,
to keep it from overwhelming the system. Such blocking is a form of backpressure.
Milder backpressure can also be applied by reducing a thread’s scheduling priority
or by increasing the (still bounded) delay before a ‘‘no-wait’’ send returns.

PREPRINT

C 278 Chapter 13 Concurrency

For any fixed amount of buffer space, it is possible to design a program that
requires a larger amount of space to run correctly. Imagine, for example, that theEXAMPLE 13.62

Buffering-dependent
deadlock

message-passing system is able to buffer n messages on a given communication path.
Now imagine a program in which A sends n + 1 messages to B, followed by one
message to C. C then sends one message to B, on a different communication path.
Finally, B insists on receiving the message from C before receiving the messages
from A. If A blocks after message n, implementation-dependent deadlock will
result. The best that an implementation can do is to provide a sufficiently large
amount of space that realistic applications are unlikely to find the limit to be a
problem.

For synchronization send and remote-invocation send, buffer space is not
generally a problem: the total amount of space required for messages is bounded
by the number of threads, and there are already likely to be limits on how many
threads a program can create. A thread that sends a reply message can always
be permitted to proceed: we know that we shall be able to reuse the buffer space
quickly, because the thread that sent the request is already waiting for the reply.

Error Reporting

If the underlying message-passing system is unreliable, a language or library willEXAMPLE 13.63
Acknowledgments typically employ acknowledgment messages to verify successful transmission (Fig-

ure C 13.21). If an acknowledgment is not received within a reasonable amount of
time, the implementation will typically resend. If several attempts fail to elicit an
acknowledgment, an error will be reported.

DESIGN & IMPLEMENTATION

13.11 The semantic impact of implementation issues
The inability to buffer unlimited amounts of data and, likewise, to report errors
synchronously to a sender that has continued execution are only the most recent
of many examples we have seen in which pragmatic implementation issues may
restrict the language semantics available to the programmer. Other examples
include limitations on the length of source lines or variable names (Section 2.1.1);
limits on the memory available for data (whether global, stack, or heap allocated)
and for recursive function evaluation (Section 3.2); the lack of ranges in case
statement labels (Section 6.4.2); in reverse and constant step sizes for for
loops (Section 6.5.1); limits on set universe size (to accommodate bit vectors—
Section 8.4); limited procedure nesting (to accommodate displays—Section 9.1);
the pointer-only restriction on opaque exports in Modula-2 (Section 10.2.1);
and the lack of nested threads or of unrestricted arms on a cobegin statement
(to avoid the need for cactus stacks—Section 9.5.1). Some of these limitations are
reflected in the formal semantics of the language. Others (generally those that
vary most from one implementation to another) restrict the set of semantically
valid programs that the system will run correctly.

PREPRINT

13.5.2 Sending C 279

Client Server Sender Receiver
request

ack

message

ack

reply

ack

. . .

Figure 13.21 Acknowledgment messages for error detection. In the absence of piggy-backing,
remote-invocation send (left) may require four underlying messages; synchronization send (right)
may require two.

As long as the sender of a message is blocked, errors that occur in attempting
to deliver a message can be reflected back as exceptions, or as status information
in result parameters or global variables. Once a sender has continued, there is no
obvious way in which to report any problems that arise. Like limits on message
buffering, this dilemma poses semantic problems for no-wait send. For UDP,
the solution is to state that messages are unreliable: if something goes wrong,
the message is simply lost, silently. For TCP, the ‘‘solution’’ is to state that only
‘‘catastrophic’’ errors will cause a message to be lost, in which case the connection
will become unusable and future calls will fail immediately. An even more drastic
approach was taken in the original version of MPI: certain implementation-specific
errors could be detected and handled at run time, but in general if a message could
not be delivered then the program as a whole was considered to have failed. Newer
versions of MPI provide a richer set of error-reporting facilities that can be used,
with some effort, to build fault-tolerant programs.

Emulation of Alternatives

All three varieties of send can be emulated by the others. To obtain the effect of
remote-invocation send, a thread can follow a no-wait send of a request with a
receive of the reply, as we saw in Example C 13.57. Similar code will allow us to
emulate remote-invocation send using synchronization send. To obtain the effect
of synchronization send, a thread can follow a no-wait send with a receive of a
high-level acknowledgment, which the receiver will send immediately upon receipt
of the original message. To obtain the effect of synchronization send using remote-
invocation send, a thread that receives a request can simply reply immediately,
with no return parameters.

To obtain the effect of no-wait send using synchronization send or remote-
invocation send, we must interpose a buffer process (the message-passing analogue
of our shared-memory bounded buffer) that replies immediately to ‘‘senders’’ or
‘‘receivers’’ whenever possible. The space available in the buffer process makes
explicit the resource limitations that are always present below the surface in imple-
mentations of no-wait send.

PREPRINT

C 280 Chapter 13 Concurrency

Syntax and Language Integration

In the emulation examples above, our hypothetical syntax assumed a library-based
implementation of message passing. Because send, receive, accept, and so on
are ordinary subroutines in such an implementation, they usually take a fixed,
static number of parameters, two of which typically specify the location and size
of the message to be sent. To send a message containing values held in more than
one program variable, the programmer may need to explicitly gather, or marshal,
those values into the fields of a record. On the receiving end, the programmer
may then need to scatter (unmarshal) the values back into program variables.
By contrast, a concurrent programming language can provide message-passing
operations whose ‘‘argument’’ lists can include an arbitrary number of values to
be sent. Moreover, the compiler can arrange to perform type checking on those
values, using techniques similar to those employed for subroutine linkage across
compilation units (to be described in Section 15.6.2). Finally, as we shall see in
Section C 13.5.3, an explicitly concurrent language can employ non-procedure-call
syntax—for example, to couple a remote-invocation accept and reply in such a way
that the reply doesn’t have to explicitly identify the accept to which it corresponds.

DESIGN & IMPLEMENTATION

13.12 Emulation and efficiency
Unfortunately, user-level emulations of alternative send semantics are seldom as
efficient as optimized implementations using the underlying primitives. Suppose
for example that we wish to use remote-invocation send to emulate synchro-
nization send. Suppose further that our implementation of remote-invocation
send is built on top of network software that needs acknowledgments to ver-
ify message delivery. After sending a reply, the server’s run-time system will
wait for an acknowledgment from the client. If a server thread can work for
an arbitrary amount of time before sending a reply, then the run-time system
will need to send separate acknowledgments for the request and the reply. If a
programmer uses this implementation of remote-invocation send to emulate
synchronization send, then the underlying network may end up transmitting a
total of four messages (more if there are any transmission errors). By contrast, a
‘‘native’’ implementation of synchronization send would require only two under-
lying messages. In some cases the run-time system for remote-invocation send
may be able to delay transmission of the first acknowledgment long enough to
‘‘piggy-back’’ it on the subsequent reply if there is one; in this case an emulation
of synchronization send may transmit three underlying messages instead of
only two. We consider the efficiency of emulations further in Exercise C 13.36
and Exploration C 13.55.

PREPRINT

13.5.3 Receiving C 281

13.5.3 Receiving

Probably the most important dimension on which to categorize mechanisms for
receiving messages is the distinction between explicit receive operations and the
implicit receipt described in Section 13.2.3. Among the languages and systems we
have been using as examples, none provides implicit receipt, but it appears in a
variety of research languages, and in some of the RPC systems we will consider in
Section C 13.5.4).

With implicit receipt, every message that arrives at a given port (or over a given
channel) will create a new thread of control, subject to resource limitations (any
implementation will have to stall incoming requests when the number of threads
grows too large). With explicit receipt, a message will be queued until some already-
existing thread indicates a willingness to receive it. At any given point in time
there may be a potentially large number of messages waiting to be received. Most
languages and libraries with explicit receipt allow a thread to exercise some sort of
selectivity with respect to which messages it wants to consider.

In MPI, every message includes the id of the process that sent it, together with
an integer tag specified by the sender. A receive operation specifies a desired
sender id and message tag. Only matching messages will be received. In many
cases receivers specify ‘‘wild cards’’ for the sender id and/or message tag, allowing
any of a variety of messages to be received. Special versions of receive also allow a
process to test (without blocking) to see if a message of a particular type is currently
available (this operation is known as polling), or to ‘‘time out’’ and continue if a
matching message cannot be received within a specified interval of time.

Because they are languages instead of library packages, Ada, Erlang/Elixir, Go,
and Occam are able to use special, non-procedure-call syntax for selective message
receipt. Moreover because messages are built into the naming and typing system,
these languages are able to receive selectively on the basis of port/channel names
and parameters, rather than the more primitive notion of tags. In all four languages,
the selective receive construct is a special form of guarded command, as described
in Section C 6.7.

Figure C 13.22 contains code for a bounded buffer in Ada 83. Here an activeEXAMPLE 13.64
Bounded buffer in Ada 83 ‘‘manager’’ thread executes a select statement inside a loop. (Recall that it is also

possible to write a bounded buffer in Ada using protected objects, without a manager
thread, as described in Section 13.4.3.) The Ada accept statement receives the
in and in out parameters (Section 9.3.1) of a remote invocation request. At the
matching end, accept returns the in out and out parameters as a reply message.
A client task would communicate with the bounded buffer using an entry call:

-- producer: -- consumer:
buffer.insert(3); buffer.remove(x);

The select statement in our buffer example has two arms. The first arm may
be selected when the buffer is not full and there is an available insert request;
the second arm may be selected when the buffer is not empty and there is an

PREPRINT

C 282 Chapter 13 Concurrency

task buffer is
entry insert(d : in bdata);
entry remove(d : out bdata);

end buffer;

task body buffer is
SIZE : constant integer := 10;
subtype index is integer range 1..SIZE;
buf : array (index) of bdata;
next_empty, next_full : index := 1;
full_slots : integer range 0..SIZE := 0;

begin
loop

select
when full_slots < SIZE =>

accept insert(d : in bdata) do
buf(next_empty) := d;

end;
next_empty := next_empty mod SIZE + 1;
full_slots := full_slots + 1;

or
when full_slots > 0 =>

accept remove(d : out bdata) do
d := buf(next_full);

end;
next_full := next_full mod SIZE + 1;
full_slots := full_slots - 1;

end select;
end loop;

end buffer;

Figure 13.22 Bounded buffer in Ada, with an explicit manager task.

available remove request. Selection among arms is a two-step process: first the
guards (when expressions) are evaluated, then for any that are true the subsequent
accept statements are considered to see if a message is available. (The guard in
front of an accept is optional; if missing it behaves as when true =>.) If both
of the guards in our example are true (the buffer is partly full) and both kinds
of messages are available, then either arm of the statement may be executed, at
the discretion of the implementation. (For a discussion of issues of fairness in the
choice among true guards, see Sidebar C 6.10.)

Every select statement must have at least one arm beginning with acceptEXAMPLE 13.65
Timeout and distributed
termination

(and optionally when). In addition, it may have three other types of arms:

PREPRINT

13.5.3 Receiving C 283

when condition => delay how_long
other_statements

...
or when condition => terminate
...
else ...

A delay arm may be selected if no other arm becomes selectable within how_long
seconds. (Ada implementations are required to support delays as long as 1 day
or as short as 20 ms.) A terminate arm may be selected only if all potential
communication partners have already terminated or are likewise stuck in select
statements with terminate arms. Selection of the arm causes the task that was
executing the select statement to terminate. An else arm, if present, will be
selected when none of the guards are true or when no accept statement can be
executed immediately. A select statement with an else arm is not permitted to
have any delay arms. In practice, one would probably want to include a terminate
arm in the select statement of a manager-style bounded buffer.

In Go, a bounded buffer is trivial: it’s just a buffered channel:EXAMPLE 13.66
Bounded buffer in Go

type bdata struct {
n int // or whatever

}
var buffer = make(chan bdata, 10) // space for ten items of type bdata
...
buffer <- bdata{3} // insert
...
my_int = (<-buffer).n // remove

To illustrate language features, we can also build a bounded buffer with an explicit
thread, an array, and a pair of default (unbuffered) channels, in a manner similar
to the Ada example of Figure C 13.22, but with synchronization send instead of
remote invocation. Code for this alternative appears in Figure C 13.23. Unlike
built-in buffered channels, it could easily be augmented to support functionality like
priority-based (as opposed to FIFO) queueing, or methods to clear the buffer or to
query the number of messages currently queued. To use the basic insert/remove
operations, we might write:

var b = make_buffer()
...
b.insert(bdata{3}) // insert
...
my_int = b.remove().n // remove

As in the Ada example, requests are processed by an active manager thread
(called a ‘‘goroutine’’ in Go), here started with the go command. The select
statement in Go does not support explicit guards; we have achieved a similar effect
in Figure C 13.23 by setting the ic and rc channels to nil when they should not

PREPRINT

C 284 Chapter 13 Concurrency

type buffer struct {
full_slots, next_full, next_empty int
buf [SIZE]bdata
insert_c chan bdata
remove_c chan chan bdata

}
func manager(b *buffer) {

var ic chan bdata = b.insert_c
var rc chan chan bdata = nil
for {

select { // at least one of ic and rc will always be non-nil
case d := <-ic: // := means "declare and initialize"

b.buf[b.next_empty] = d
b.next_empty = (b.next_empty + 1) % SIZE
b.full_slots++
rc = b.remove_c // there is definitely data to remove
if b.full_slots == SIZE { ic = nil }

case c := <-rc:
c <- b.buf[b.next_full]
b.next_full = (b.next_full + 1) % SIZE
b.full_slots--
ic = b.insert_c // there is definitely space to fill
if b.full_slots == 0 { rc = nil }

}
}

}
func make_buffer() (b *buffer) { // return value has name 'b'

b = new(buffer)
b.full_slots = 0
b.next_full = 0
b.next_empty = 0
b.insert_c = make(chan bdata)
b.remove_c = make(chan chan bdata)
go manager(b) // create active manager thread
return

}
func (b *buffer) insert(e bdata) {

b.insert_c <- e // send data to manager
}
func (b *buffer) remove() bdata {

var c = make(chan bdata)
b.remove_c <- c // send temporary channel to manager
return <-c // receive and return response

}

Figure 13.23 Bounded buffer with an explicit manager thread in Go. The insert and remove
functions serve as methods of buffer b. Note that in the absence of additional functionality (not
shown), this code would better be replaced by trivial use of a buffered channel with capacity
SIZE. Also, if using this version, we would probably want a way to terminate the manager thread
when the buffer is no longer needed.

PREPRINT

13.5.3 Receiving C 285

buffer(Max, Free, Q) ->
receive

{insert, D, Client} when Free > 0 ->
Client ! ok, % send ack
buffer(Max, Free-1, queue:in(D, Q)); % enqueue

{remove, Client} when Free < Max ->
{{value, D}, NewQ} = queue:out(Q), % dequeue
Client ! D, % send element
buffer(Max, Free+1, NewQ)

end.

Figure 13.24 Bounded buffer in Erlang. Variables (names that can be instantiated with a value)
begin with a capital letter ; constants begin with a lower-case letter. Queue operations (in, out)
are provided by the standard Erlang library. Typing is dynamic. The send operator (!) is as in
CSP and Occam. Each clause of the receive ends with a tail recursive call.

be selected. Because we have used synchronization send—channels insert_c
and remove_c have zero capacity—there is an asymmetry between the handling
of insert and remove requests: the former need only send the manager data; the
latter must send a channel reference and then wait for the manager to send the
data back.

In Erlang, which uses no-wait send, one might at first expect asymmetry similarEXAMPLE 13.67
Bounded buffer in Erlang to that of Figure C 13.23: a consumer would have to receive a reply from a bounded

buffer, but a producer could simply send data. Such asymmetry would have a
hidden flaw, however: because a process does not wait after sending, the producer
could easily send more items than the buffer can hold, with the excess being
buffered in the message system. If we want the buffer to truly be bounded, we must
require the producer to wait for an acknowledgment. Code for the buffer appears
in Figure C 13.24. Because Erlang is a functional language, we use tail recursion
instead of iteration. Code for the producer and consumer looks like this:

-- producer: -- consumer:
Buffer ! {insert, X, self()}, Buffer ! {remove, self()},
receive ok -> [] end. receive X -> [] end.

The exclamation point (!), borrowed from CSP, is used to send a message.
Several languages—Erlang among them—place the parameters of an incomingEXAMPLE 13.68

Peeking at messages in
Erlang

message within the scope of the guard condition, allowing a receiver to ‘‘peek
inside’’ a message before deciding whether to receive it. In Erlang, we can say

receive
{insert, D} when D rem 2 == 1 -> % accept only odd numbers

The ability to peek implies that the content of incoming messages must be visible
to the language run-time system. An Erlang implementation must therefore be
prepared to accept (and buffer) an arbitrary number of messages; it cannot rely on
the operating system or other underlying software to provide the buffering for it.

PREPRINT

C 286 Chapter 13 Concurrency

Moreover the fact that buffer space can never be truly unlimited means that guards
and scheduling expressions will be unable to see messages whose delivery has been
delayed by backpressure.

13.5.4 Remote Procedure Call

Any of the three principal forms of send (no-wait, synchronization, remote-
invocation) can be paired with either of the principal forms of receive (explicit
or implicit). The combination of remote-invocation send with explicit receipt
(e.g., as in Ada) is sometimes known as rendezvous. The combination of remote-
invocation send with implicit receipt is usually known as remote procedure call.
RPC is available in several concurrent languages, and is also supported on many
systems by augmenting a sequential language with a stub compiler. The stub com-
piler is independent of the language’s regular compiler. It accepts as input a formal
description of the subroutines that are to be called remotely. The description is
roughly equivalent to the subroutine headers and declarations of the types of all
parameters. Based on this input the stub compiler generates source code for client
and server stubs. A client stub for a given subroutine marshals request parameters
and an indication of the desired operation into a message buffer, sends the message
to the server, waits for a reply message, and unmarshals that message into result
parameters. A server stub takes a message buffer as parameter, unmarshals request
parameters, calls the appropriate local subroutine, marshals return parameters into
a reply message, and sends that message back to the appropriate client. Invocation
of a client stub is relatively straightforward. Invocation of server stubs is discussed
under ‘‘Implementation’’ below.

Semantics

A principal goal of most RPC systems is to make the remote nature of calls as
transparent as possible; that is, to make remote calls look as much like local calls
as possible [BN84]. In a stub compiler system, a client stub should have the same
interface as the remote procedure for which it acts as proxy; the programmer
should usually be able to call the routine without knowing or caring whether it is
local or remote.

Several issues make it difficult to achieve transparency in practice:

Parameter modes: It is difficult to implement call-by-reference parameters across
a network, since actual parameters will not be in the address space of the called
routine. (Access to global variables is similarly difficult.)

Performance: There is no escaping the fact that remote procedures may take a
long time to return. In the face of network delays, one cannot use them casually.

Failure semantics: Remote procedures are much more likely to fail than are local
procedures. It is generally acceptable in the local case to assume that a called
procedure will either run exactly once or else the entire program will fail. Such
an assumption is overly restrictive in the remote case.

PREPRINT

13.5.4 Remote Procedure Call C 287

We can use value/result parameters in place of reference parameters so long as
program correctness does not rely on the aliasing created by reference parameters.
As noted in Section 9.3.1, Ada declares that a program is erroneous if it can tell the
difference between pass-by-reference and pass-by-value/result implementations of
in out parameters. If absolutely necessary, reference parameters and global vari-
ables can be implemented with message-passing thunks in a manner reminiscent
of call-by-name parameters (Section C 9.3.2), but only at very high cost. As noted
in Section 7.5, a few languages and systems perform deep copies of linked data
structures passed to remote routines.

Performance differences between local and remote calls can be hidden only by
artificially slowing down the local case. Such an option is clearly unacceptable.

Exactly-once failure semantics can be provided by aborting the caller in the event
of failure or, in highly reliable systems, by delaying the caller until the operating
system or language run-time system is able to rebuild the failed computation
using information previously dumped to disk. (Failure recovery techniques are
beyond the scope of this text.) An attractive alternative is to accept ‘‘at-most-once’’
semantics with notification of failure. The implementation retransmits requests
for remote invocations as necessary in an attempt to recover from lost messages. It
guarantees that retransmissions will never cause an invocation to happen more than
once, but it admits that in the presence of communication failures the invocation
may not happen at all. If the programming language provides exceptions then the
implementation can use them to make communication failures look like any other
kind of run-time error.

DESIGN & IMPLEMENTATION

13.13 Parameters to remote procedures
Ada’s comparatively high-level semantics for parameter modes allows the same
set of modes to be used for both subroutines and entries (rendezvous). An
Ada compiler will generally pass a large argument to a subroutine by reference
whenever possible, to avoid the expense of copying. If tasks are on separate
nodes of a cluster, however, the compiler will generally pass the same argument
to an entry by value-result.

A few concurrent languages provide parameter modes specifically designed
with remote invocation in mind. In Emerald [BHJL07], for example, every
parameter is a reference to an object. References to remote objects are imple-
mented transparently via message passing. To minimize the frequency of such
references, objects passed to remote procedures often migrate with the call: they
are packaged with the request message, sent to the remote site (where they can be
accessed locally), and returned to the caller in the reply. Emerald calls this call by
move. In Hermes [SBG+91] parameter passing is destructive, much like sending
on a channel in Rust (Example C 13.58). Arguments become uninitialized from
the caller’s point of view, and can therefore migrate to a remote callee without
danger of inducing remote references.

PREPRINT

C 288 Chapter 13 Concurrency

Remote procedures

Stubs

1 2

4 5

7

3
8

6

Application
program

Library/run-
time system

OS kernel

...

...

main:
 install stubs
 start dispatcher

dispatcher
 loop
 OS_receive()

 call appropriate stub
OS_send(reply)

Figure 13.25 Implementation of a remote procedure call server. Application code initializes
the RPC system by installing stubs generated by the stub compiler (not shown). It then calls into
the run-time system to enable incoming calls. Depending on details of the particular system in
use, the dispatcher may use the thread from the main program (in which case the call to start the
dispatcher never returns), or it may create a pool of threads that handle incoming requests.

Implementation

At the level of the kernel interface, receive is usually an explicit operation. To
make receive appear implicit to the application programmer, the code produced
by an RPC stub compiler (or the run-time system of an RPC-based language)
must bridge this explicit-to-implicit gap. The typical implementation resembles
the thread-based event handling of Section 9.6.2. We describe it here in terms of
stub compilers; in a concurrent language with implicit receipt the regular compiler
does essentially the same work.

Figure C 13.25 illustrates the layers of a typical RPC system. Code above theEXAMPLE 13.69
An RPC server system upper horizontal line is written by the application programmer. Code in the middle

is a combination of library routines and code produced by the RPC stub compiler.
To initialize the RPC system, the application makes a pair of calls into the run-time
system. The first provides the system with pointers to the stub routines produced
by the stub compiler; the second starts a message dispatcher. What happens after
this second call depends on whether the server is concurrent and, if so, whether its
program threads are implemented on top of one kernel thread or several.

In the simplest case—a single-threaded server on a single kernel thread—the
dispatcher runs a loop that calls into the kernel to receive a message. When a
message arrives, the dispatcher calls the appropriate RPC stub, which unmarshals
request parameters and calls the appropriate application-level procedure. When
that procedure returns, the stub marshals return parameters into a reply message,
calls into the kernel to send the message back to the caller, and then returns to the
dispatcher.

PREPRINT

13.5.4 Remote Procedure Call C 289

This simple organization works well so long as each remote request can be
handled quickly, without ever needing to block. If remote requests must sometimes
wait for user-level synchronization, then the server’s process must manage a ready
list of threads, as described in Section 13.2.4, but with the dispatcher integrated
into the usual thread scheduler. When the current thread blocks (in application
code), the scheduler/dispatcher will grab a new thread from the ready list. If the
ready list is empty, the scheduler/dispatcher will call into the kernel to receive a
message, fork a new user-level thread to handle it, and then continue to execute
runnable threads until the list is empty again (each thread will terminate when it
finishes handling its request).

In a multithreaded server, the call to start the dispatcher will generally ask
the kernel to fork a ‘‘pool’’ of threads to service remote requests. Each of these
threads will then perform the operations described in the previous paragraphs. In
a language or library with a one–one correspondence between program threads
and kernel threads, each will repeatedly receive a message from the kernel, call the
appropriate stub, and loop back for another request. With a more general thread
package, each kernel thread will run threads from the application’s ready list until
the list is empty, at which point it (the kernel thread) will call into the kernel for
another message. So long as the number of runnable program threads is greater
than or equal to the number of kernel threads, no new messages will be received.
When the number of runnable program threads drops below the number of kernel
threads, the extra kernel threads will call into the kernel, where they will block
until requests arrive.

3CHECK YOUR UNDERSTANDING

50. Describe three ways in which processes or threads commonly name their
communication partners.

51. What is a datagram?

52. Why, in general, might a send operation need to block?

53. What are the three principal synchronization options for the sender of a mes-
sage? What are the tradeoffs among them?

54. What are gather and scatter operations in a message-passing program? What
are marshalling and unmarshalling?

55. Describe the tradeoffs between explicit and implicit message receipt.

56. What is a remote procedure call (RPC)? What is a stub compiler?

57. What are the obstacles to transparency in an RPC system?

58. What is a rendezvous? How does it differ from a remote procedure call?

59. Explain the purpose of a select statement in Ada or Go.

PREPRINT

C 290 Chapter 13 Concurrency

60. What semantic and pragmatic challenges are introduced by the ability to ‘‘peek’’
inside messages before they are received?

PREPRINT

PREPRINT

13Concurrency

13.7 Exercises

13.34 In Section 13.4.2 we cast monitors as a mechanism for synchronizing ac-
cess to shared memory, and we described their implementation in terms
of semaphores. It is also possible to think of a monitor as a module in-
habited by a single thread, which accepts request messages from other
threads, performs appropriate operations, and replies. Give the details of a
monitor implementation consistent with this conceptual model. Be sure
to include condition variables. (Hint: See the discussion of early reply in
Section 13.2.3.)

13.35 Show how shared memory can be used to implement message passing.
Specifically, choose a set of message-passing operations (e.g., no-wait send
and explicit message receipt) and show how to implement them in your
favorite shared-memory notation.

13.36 When implementing reliable messages on top of unreliable messages, a
sender can wait for an acknowledgment message, and retransmit if it doesn’t
receive it within a bounded period of time. But how does the receiver know
that its acknowledgment has been received? Why doesn’t the sender have
to acknowledge the acknowledgment (and the receiver acknowledge the
acknowledgment of the acknowledgment . . .)? (For more information on
the design of fast, reliable protocols, you might want to consult a text on
computer networks [TFW21, PD21].)

13.37 Write a channel-based bounded buffer with an explicit manager thread in
Rust, patterned after the Go version of Figure C 13.23. You will want to read
up on the select macro of the crossbeam_channel crate.

13.38 While Go allows both input (receive) and output (send) guards on its
select statements, Occam and CSP allow only input guards. The differ-
ence has to do with the fact that Go is designed for communication among
threads in a single address space, while Occam and CSP were designed for a

C 291

C 292 Chapter 13 Concurrency

distributed environment. Why should this make a difference? Suppose you
wished to add output guards to Occam. How would the implementation
work? (Hint: For ideas, see the article by Bagrodia [Bag89].)

13.39 In Section C 13.5.3 we described the semantics of a terminate arm on
an Ada select statement: this arm may be selected if and only if all po-
tential communication partners have terminated, or are likewise stuck in
select statements with terminate arms. Erlang and Occam have no
similar facility, though the original CSP proposal does. How would you im-
plement terminate arms in Ada? Why do you suppose they were left
out of Erlang and Occam? (Hint: For ideas, see the work of Apt and
Francez [Fra80, AF84].)

PREPRINT

PREPRINT

13Concurrency

13.8 Explorations

13.55 Find out how message passing is implemented in some locally available
concurrent language or library. Does this system provide no-wait send,
synchronization send, remote-invocation send, or some related hybrid?
If you wanted to emulate the other options using the one available, how
expensive would emulation be, in terms of low-level operations performed
by the underlying system? How would this overhead compare to what could
be achieved on the same underlying system by a language or library that
provided an optimized implementation of the other varieties of send?

13.56 Learn about Elixir, the Erlang successor due to José Valim. What are the
principle differences between the two languages? How compatible are their
implementations?

13.57 MPI provides extensive facilities for collective communication, in which there
are more than two communicating parties. Examples include multicast, in
which a message is sent simultaneously to a group of recipients; scatter,
in which elements of an array-structured message are sent, one each, to a
group of recipients; gather, in which an array-structured message is created,
at the sole recipient, from elements provided by a group of senders; all-to-
all, in which participants provide one element each of an array-structured
message that is received by all; and reduction, in which messages from a
group of senders are combined, using a commutative operator, into a result
that is received by one or all. Learn more about both the semantics and the
implementation of collective communication. What opportunities does it
provide for optimizations that are difficult to implement at the application
level?

13.58 Language designers and concurrency experts have argued for nearly 40
years over whether shared memory or message passing is a more appealing
programming model. The argument is to a large extent subjective—and

C 293

C 294 Chapter 13 Concurrency

hence not subject to definitive settlement—but it includes substantive issues
of fault containment, implementation efficiency, hardware requirements,
and algorithmic expressiveness as well. Do a literature search on ‘‘shared
memory versus message passing.’’ How many papers do you find? Read a
sampling of these and summarize their arguments. Do you find any of the
positions particularly convincing? What do you think of the decision to
include both options in Rust?

PREPRINT

PREPRINT

14Scripting

14.3 Scripting the World Wide Web

Much of the content of the World Wide Web—particularly the content that is visible
to search engines—is static: pages that seldom, if ever, change. But hypertext, the
abstract notion on which the Web is based, was always conceived as a way to
represent ‘‘the complex, the changing, and the indeterminate’’ [Nel65]. Much of
the power of the Web today lies in its ability to deliver pages that move, play sounds,
respond to user actions, or—perhaps most important—contain information created
or formatted on demand, in response to the page-fetch request.

From a programming languages point of view, simple playback of recorded
audio or video is not particularly interesting. We therefore focus our attention here
on content that is generated on the fly by a program—a script—associated with an
Internet URI (uniform resource identifier).1 Suppose we type a URI into a browser
on a client machine, and the browser sends a request to the appropriate web server.
If the content is dynamically created, an obvious first question is: does the script
that creates it run on the server or the client machine? These options are known as
server-side and client-side web scripting, respectively.

Server-side scripts are typically used when the service provider wants to retain
complete control over the content of the page, but can’t (or doesn’t want to) create
the content in advance. Examples include the pages returned by search engines,
Internet retailers, auction sites, and any organization that provides its clients with
on-line access to personal accounts. Client-side scripts are typically used for tasks
that don’t need access to proprietary information, and are more efficient if executed
on the client’s machine. Examples include interactive animation, error-checking of
fill-in forms, and a wide variety of other self-contained calculations.

1 The term ‘‘URI’’ is often used interchangeably with ‘‘URL’’ (uniform resource locator), but the
World Wide Web Consortium distinguishes between the two. All URIs are hierarchical (multipart)
names. URLs are one kind of URIs; they use a naming scheme that indicates where to find the
resource. Other URIs can use other naming schemes.

C 295

C 296 Chapter 14 Scripting

#!/usr/bin/perl

print "Content-type: text/html\n\n";
print "<!DOCTYPE html>\n";

print "<html lang=\"en\">\n";
$host = `hostname`; chop $host;
print "<head>\n";
print "<meta charset=\"utf-8\">\n";
print "<title>Status of ", $host, "</title>\n";
print "</head>\n<body>\n";
print "<h1>", $host, "</h1>\n";
print "<pre>\n", `uptime`, "\n", `who`;
print "</pre>\n</body>\n</html>\n";

Figure 14.14 A simple CGI script in Perl. If this script is named status.perl, and is installed
in the server’s cgi-bin directory, then a user anywhere on the Internet can obtain summary
statistics and a list of users currently logged into the server by typing hostname/cgi-bin/status.perl
into a browser window.

14.3.1 CGI Scripts

The original mechanism for server-side web scripting was the Common Gateway
Interface (CGI). A CGI script is an executable program residing in a special
directory known to the web server program. When a client requests the URI
corresponding to such a program, the server executes the program and sends its
output back to the client. Naturally, this output needs to be something that the
browser will understand—typically HTML.

CGI scripts may be written in any language available on the server’s machine,
though Perl is particularly popular: its string-handling and ‘‘glue’’ mechanisms
are ideally suited to generating HTML, and it was already widely available during
the early years of the Web. As a simple if somewhat artificial example, suppose weEXAMPLE 14.77

Remote monitoring with a
CGI script

would like to be able to monitor the status of a server machine shared by some
community of users. The Perl script in Figure C 14.14 creates a web page titled
by the name of the server machine, and containing the output of the uptime and
who commands (two simple sources of status information). The script’s initial
print command produces an HTTP message header, indicating that what follows
is HTML. Sample output from executing the script appears in Figure C 14.15.

CGI scripts are commonly used to process on-line forms. A simple exampleEXAMPLE 14.78
Adder web form with a
CGI script

appears in Figure C 14.16. The form element in the HTML file specifies the URI
of the CGI script, which is invoked when the user hits the Submit button. Values
previously entered into the input fields are passed to the script either as a trailing
part of the URI (for a get-type form) or on the standard input stream (for a post-
type form, shown here).2 With either method, we can access the values using the

PREPRINT

14.3.2 Embedded Server-Side Scripts C 297

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Status of sigma.cs.rochester.edu</title>
</head>
<body>
<h1>sigma.cs.rochester.edu</h1>
<pre>
22:10 up 5 days, 12:50, 5 users, load averages: 0.40 0.37 0.31

scott console Feb 13 09:21
scott ttyp2 Feb 17 15:27
test ttyp3 Feb 18 17:10
test ttyp4 Feb 18 17:11
</pre>
</body>
</html>

Status of sigma.cs.rochester.edu

sigma.cs.rochester.edu
22:10 up 5 days, 12:50, 5 users, load averages: 0.40 0.37 0.31

scott console Feb 13 09:21
scott ttyp2 Feb 17 15:27
test ttyp3 Feb 18 17:10
test ttyp4 Feb 18 17:11

Figure 14.15 Sample output from the script of Figure C 14.14. HTML source appears at top;
the rendered page is below.

param routine of the standard CGI Perl library, loaded at the beginning of our
script.

14.3.2 Embedded Server-Side Scripts

Though widely used, CGI scripts have several disadvantages:
The web server must launch each script as a separate program, with potentially
significant overhead (though a CGI script compiled to native code can be very
fast once running).

2 One typically uses post type forms for one-time requests. A get type form appears a little clumsier,
because arguments are visibly embedded in the URI, but this gives it the advantage of repeatability:
it can be ‘‘bookmarked’’ by client browsers.

PREPRINT

C 298 Chapter 14 Scripting

<!DOCTYPE html>
<html lang="en">
<head><meta charset="utf-8"><title>Adder</title></head>
<body>
<form action="/cgi-bin/add.perl" method="post">
<p><input name="argA" size=3>First addend

<input name="argB" size=3>Second addend</p>
<p><input type="submit"></p>
</form>
</body>
</html>

Adder

12 First addend
34 Second addend�
 �	Submit

#!/usr/bin/perl

use CGI qw(:standard); # provides access to CGI input fields
$argA = param("argA"); $argB = param("argB"); $sum = $argA + $argB;

print "Content-type: text/html\n\n";
print "<!DOCTYPE html>\n";

print "<html lang=\"en\">\n";
print "<head><meta charset=\"utf-8\"><title>Sum</title></head>\n<body>\n";
print "<p>$argA plus $argB is $sum</p>\n";
print "</body>\n</html>\n";

<!DOCTYPE html>
<html lang="en">
<head><meta charset="utf-8"><title>Sum</title></head>
<body>
<p>12 plus 34 is 46</p>
</body>
</html>

Sum

12 plus 34 is 46

Figure 14.16 An interactive CGI form. Source for the original web page is shown at the upper left, with the rendered page to
the right. The user has entered 12 and 34 in the text fields. When the Submit button is pressed, the client browser sends a
request to the server for URI /cgi-bin/add.perl. The values 12 and 13 are contained within the request. The Perl script, shown in
the middle, uses these values to generate a new web page, shown in HTML at the bottom left, with the rendered page to the
right.

Because the server has little control over the behavior of a script, scripts must
generally be installed in a trusted directory by trusted system administrators;
they cannot reside in arbitrary locations as ordinary pages do.
The name of the script appears in the URI, typically prefixed with the name of
the trusted directory, so static and dynamic pages look different to end users.

PREPRINT

14.3.2 Embedded Server-Side Scripts C 299

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Status of <?php echo $host = chop(`hostname`) ?></title>
</head>
<body>
<h1><?php echo $host ?></h1>
<pre>
<?php echo `uptime`, "\n", `who` ?>
</pre>
</body>
</html>

Figure 14.17 A simple PHP script embedded in a web page. When served by a PHP-enabled
host, this page performs the equivalent of the CGI script of Figure C 14.14.

Each script must generate not only dynamic content but also the HTML tags
that are needed to format and display it. This extra ‘‘boilerplate’’ makes scripts
more difficult to write.

To address these disadvantages, most web servers provide a ‘‘module-loading’’
mechanism that allows interpreters for one or more scripting languages to be
incorporated into the server itself. Scripts in the supported language(s) can then be
embedded in ‘‘ordinary’’ web pages. The web server interprets such scripts directly,
without launching an external program. It then replaces the scripts with the output
they produce, before sending the page to the client. Clients have no way to even
know that the scripts exist.

Embeddable server-side scripting languages include PHP, PowerShell (in Mi-
crosoft Active Server Pages), Ruby, Cold Fusion (from Macromedia Corp.), and
Java (via ‘‘Servlets’’ in Java Server Pages). The most common of these is PHP.
Though descended from Perl, PHP has been extensively customized for its target
domain, with built-in support for (among other things) email and MIME encoding,
all the standard Internet communication protocols, authentication and security,
HTML and URI manipulation, and interaction with dozens of database systems.

The PHP equivalent of Figure C 14.14 appears in Figure C 14.17. Most of theEXAMPLE 14.79
Remote monitoring with a
PHP script

text in this figure is standard HTML. PHP code is embedded between <?php and
?> delimiters. These delimiters are not themselves HTML; rather, they indicate a
processing instruction that needs to be executed by the PHP interpreter to generate
replacement text. The ‘‘boilerplate’’ parts of the page can thus appear verbatim;
they need not be generated by print (Perl) or echo (PHP) commands. Note that
the separate script fragments are part of a single program. The $host variable, for
example, is set in the first fragment and used again in the second.

PHP scripts can even be broken into fragments in the middle of structuredEXAMPLE 14.80
A fragmented PHP script statements. Figure C 14.18 contains a script in which if and for statements span

fragments. In effect, the HTML text between the end of one script fragment and
the beginning of the next behaves as if it had been output by an echo command.

PREPRINT

C 300 Chapter 14 Scripting

<!DOCTYPE html>
<html lang="en">
<head><meta charset="utf-8"><title>20 numbers</title></head>
<body>
<p>
<?php

for ($i = 0; $i < 20; $i++) {
if ($i % 2) { ?>

<?php
echo " $i"; ?>

<?php
} else echo " $i";

}
?>

</p>
</body>
</html>

Figure 14.18 A fragmented PHP script. The if and for statements work as one might expect,
despite the intervening raw HTML. When requested by a browser, this page displays the numbers
from 0 to 19, with odd numbers written in bold.

Web designers are free to use whichever approach (echo or escape to raw HTML)
seems most convenient for the task at hand.

Self-Posting Forms

By changing the action attribute of the FORM element, we can arrange for theEXAMPLE 14.81
Adder web form with a
PHP script

Adder page of Figure C 14.16 to invoke a PHP script instead of a CGI script:

<form action="add.php" method="post">

The PHP script itself is shown in the top half of Figure C 14.19. Form values are
made available to the script in an associative array (hash table) named _REQUEST.
No special library is required.

Because our PHP script is executed directly by the web server, it can safely resideEXAMPLE 14.82
Self-posting Adder web
form

in an arbitrary web directory, including the one in which the Adder page resides.
In fact, by checking to see how a page was requested, we can merge the form and
the script into a single page, and let it service its own requests! We illustrate this
option in the bottom half of Figure C 14.19.

14.3.3 Client-Side Scripts

While embedded server-side scripts are generally faster than CGI scripts, at least
when start-up cost predominates, communication across the Internet is still too
slow for truly interactive pages. If we want the behavior or appearance of the page

PREPRINT

14.3.3 Client-Side Scripts C 301

<!DOCTYPE html>
<html lang="en">
<head><meta charset="utf-8"><title>Adder</title></head>
<body><p>
<?php

$argA = $_REQUEST['argA']; $argB = $_REQUEST['argB'];
$sum = $argA + $argB;
echo "$argA plus $argB is $sum\n";

?>
</p></body></html>

<!DOCTYPE html>
<html lang="en">
<head><meta charset="utf-8">
<?php

$argA = $_REQUEST['argA']; $argB = $_REQUEST['argB'];
if ($argA == "" || $argB == "") {

?>
<title>Adder</title></head><body>
<form action="adder.php" method="post">
<p><input name="argA" size="3"> First addend

<input name="argB" size="3"> Second addend</p>
<p><input type="submit"></p>
</form></body></html>

<?php
} else {

?>
<title>Sum</title></head><body><p>

<?php
$sum = $argA + $argB;
echo "$argA plus $argB is $sum\n";

?>
</p></body></html>

<?php
}

?>

Figure 14.19 An interactive PHP web page. The script at top could be used in place of the
script in the middle of Figure C 14.16. The lower script in the current figure replaces both the
web page at the top and the script in the middle of Figure C 14.16. It checks to see if it has
received a full set of arguments. If it hasn’t, it displays the fill-in form; if it has, it displays results.

PREPRINT

C 302 Chapter 14 Scripting

to change as the user moves the mouse, clicks, types, or hides or exposes windows,
we really need to execute some sort of script on the client’s machine.

Because they run on the web designer’s site, CGI scripts and, to a lesser extent,
embeddable server-side scripts can be written in many different languages. All
the client ever sees is standard HTML. Client-side scripts, by contrast, require an
interpreter on the client’s machine. By virtue of having been ‘‘in the right place
at the right time’’ historically, JavaScript is supported with at least some degree of
consistency by almost all of the world’s web browsers. Moreover, given the number
of legacy browsers still running, and the difficulty of convincing users to upgrade
or to install new plug-ins, it has been difficult for any other option for client-side
scripting to gain traction. Only recently, with the advent of WebAssembly, has the
dominance of JavaAcript begun to wane.

Figure C 14.20 shows a page with embedded JavaScript that imitates (on theEXAMPLE 14.83
Adder web form in
JavaScript

client) the behavior of the Adder scripts of Figures C 14.16 and C 14.19. Function
doAdd is defined in the header of the page so it is available throughout. In particular,
it will be invoked when the user clicks on the Calculate button. By default, the
input values are character strings; we use the parseInt function to convert them
to integers. The parentheses around (argA + argB) in the final assignment state-
ment then force the use of integer addition. The other occurrences of + are string
concatenation. To disable the usual mechanism whereby input data are submitted
to the server when the user hits the enter or return key, we have specified a dummy
behavior for the onsubmit attribute of the form.

Rather than replace the page with output text, as our CGI and PHP scripts
did, we have chosen in our JavaScript version to append the output at the bottom.
The HTML SPAN element provides a named place in the document where this
output can be inserted, and the getElementById JavaScript method provides us
with a reference to this element. The HTML Document Object Model (DOM),
standardized by the World Wide Web Consortium (W3C), specifies a very large
number of other elements, attributes, and user actions, all of which are accessible in
JavaScript. Through them scripts can, at appropriate times, inspect or alter almost
any aspect of the content, structure, or style of a page.

14.3.4 Java Applets and Other Embedded Elements

As an alternative to requiring client-side scripts to interact with the DOM of a
web page, many browsers once supported an embedding mechanism that allowed a
browser plug-in to assume responsibility for some rectangular region of the page,
in which it could then display whatever it wanted. In other words, plug-ins were
less a matter of scripting the browser than of bypassing it entirely. Historically,
they were widely used for content—animations and video in particular—that were
poorly supported by early versions of HTML.

Programs designed to be run by a Java plug-in were commonly known as applets.
Consider, for example, an applet to display a clock with moving hands. LegacyEXAMPLE 14.84

Embedding an applet in a
web page

browsers supported several different applet tags, but as of HTML5 the standard
syntax looked like this:

PREPRINT

14.3.4 Java Applets and Other Embedded Elements C 303

<!DOCTYPE html>
<html lang="en">
<head><meta charset="utf-8"><title>Adder</title>
<script type="text/javascript">
function doAdd() {

argA = parseInt(document.adder.argA.value)
argB = parseInt(document.adder.argB.value)
x = document.getElementById('sum')
while (x.hasChildNodes())

x.removeChild(x.lastChild) // delete old content
t = document.createTextNode(argA + " plus "

+ argB + " is " + (argA + argB))
x.appendChild(t)

}
</script>
</head>
<body>
<form name="adder" onsubmit="return false">
<p><INPUT name="argA" size=3> First addend

<INPUT name="argB" size=3> Second addend</p>
<p><input type="button" onclick="doAdd()" value="Calculate"></p>
</form>
<p></p>
</body>
</html>

Adder

12 First addend
34 Second addend�
 �	Calculate

12 plus 34 is 46

Figure 14.20 An interactive JavaScript web page. Source appears at left. The rendered version on the right shows the
appearance of the page after the user has entered two values and hit the Calculate button, causing the output message to
appear. By entering new values and clicking again, the user can calculate as many sums as desired. Each new calculation will
replace the output message.

<embed type="application/x-java-applet" code="Clock.class">

The type attribute informed the browser that the embedded element was expected
to be a Java applet; the code element provided the applet’s URI. Additional at-
tributes could be used to specify such properties as the required interpreter version
number and the size of the needed display space.

As one might infer from the existence of the type attribute, embed tags (and
similar object tags) can request execution by a variety of plug-ins—not just a Java
Virtual Machine. Historically, the most widely used plug-in was Adobe’s Flash
Player. Though scriptable, Flash Player is more accurately described as a multimedia
display engine than a general purpose programming language interpreter.

Over time, plug-ins have proven to be a major source of browser security
bugs. Almost any nontrivial plug-in requires access to operating system services—
network IO, local file space, graphics acceleration, and so on. Providing just enough
service to make the plug-in useful—but not enough to allow it to do any harm—has
proven extremely difficult. To address this problem, extensive multimedia support
has been built into HTML5, allowing the browser itself to assume responsibility for

PREPRINT

C 304 Chapter 14 Scripting

much of what was once accomplished with plug-ins. Security is still a problem, but
the number of software modules that must be trusted—and the number of points
at which an attacker might try to gain entrance—is significantly reduced. Almost
all browsers now disable Java by default. Most disable Flash as well.

3CHECK YOUR UNDERSTANDING

47. Explain the distinction between server-side and client-side web scripting.

48. List the tradeoffs between CGI scripts and embedded PHP.

49. Why are CGI scripts usually installed only in a special directory?

50. Explain how a PHP page can service its own requests.

51. Why might we prefer to execute a web script on the server rather than the
client? Why might we sometimes prefer the client instead?

52. What is the HTML Document Object Model? What is its significance for client-
side scripting?

53. What is the relationship between JavaScript and Java?

54. What is an applet? Why are applets usually not considered an example of
scripting?

55. Why are Java applets and Flash objects no longer commonly supported by web
browsers?

DESIGN & IMPLEMENTATION

14.12 JavaScript and Java
Despite its name, JavaScript has no connection to Java beyond some superficial
syntactic similarity. The language was originally developed by Brendan Eich at
Netscape Corp. in 1995. Eich called his creation LiveScript, but the company
chose to rename it as part of a joint marketing agreement with Sun Microsystems,
prior to its public release. Trademark on the JavaScript name is actually owned
by Oracle, which acquired Sun in 2010.

Netscape’s browser was the market leader in 1995, and JavaScript usage grew
extremely fast. To remain competitive, developers at Microsoft added JavaScript
support to Internet Explorer, but they used the name JScript instead, and they
introduced a number of incompatibilities with the Netscape version of the lan-
guage. A common version was standardized as ECMAScript by the European
standards body in 1997 (and subsequently by the ISO), but major incompatibili-
ties remained in the Document Object Models provided by different browsers.
These have been gradually resolved through a series of standards from the W3C
and WHATWG, but legacy pages and legacy browsers continue to plague web
developers.

PREPRINT

14.3.5 XSLT C 305

14.3.5 XSLT

Most readers will undoubtedly have had the opportunity to write—or at least
to read—the HTML (hypertext markup language) used to compose web pages.
HTML has, for the most part, a nested structure in which fragments of documents
(elements) are delimited by tags that indicate their purpose or appearance. We
saw in Section 14.2.2, for example, that top-level headings are delimited with
<h1> and </h1>. HTML was inspired by an older standard known as SGML
(standard generalized markup language), developed in the 1980s and used, among
other things, to computerize both the Oxford English Dictionary and the technical
documentation of Boeing Corp.

DESIGN & IMPLEMENTATION

14.13 How far can you trust a script?
Security becomes an issue whenever code is executed using someone else’s
resources. On a hosting machine, web servers are usually installed with very
limited access rights, and with only a limited view of the host’s file system. This
strategy limits the set of pages accessible through the server to a well-defined
subset of what would be visible to users logged into the hosting machine directly.
By contrast, CGI scripts are separate executable programs, and can potentially
run with the privileges of whoever installs them. To prevent users on the hosting
machine from accidentally or intentionally passing their privileges to arbitrary
users on the Internet, most system administrators configure their machines
so that CGI scripts must reside in a special directory, and be installed by a
trusted user. Embedded server-side scripts can reside in any file because they
are guaranteed to run with the (limited) rights of the server itself.

A larger risk is posed by code downloaded over the Internet and executed
on a client machine. Because such code is in general untrusted, it must be
executed in a carefully controlled environment, sometimes called a sandbox (a
place where a child can safely play), to prevent it from doing any damage. As a
general rule, embedded JavaScript cannot access the local file system, memory
management system, or network, nor can it manipulate documents from other
sites. Java applets, likewise, have only limited ability to access external resources.
Reality is a bit more complicated, of course: Sometimes a script needs access to,
say, a temporary file of limited size, or a network connection to a trusted server.
Mechanisms exist to certify sites as trusted, or to allow a trusted site to certify the
trustworthiness of pages from other sites. Scripts on pages obtained through a
trusted mechanism may then be given extended rights. Such mechanisms must
be used with care. Finding the right balance between security and functionality
remains one of the central challenges of the Web, and of distributed computing
in general. (More on this topic can be found in Sections 15.2.3 and 16.2.4, and
in Explorations 16.21 and 16.22.)

PREPRINT

C 306 Chapter 14 Scripting

In the early days of the Web, SGML was clearly too complex and formal for
web pages, which needed to be written by hand and rendered in real time by
slow computers. The simpler HTML evolved in an informal and ad hoc way, with
incompatible extensions made by competing vendors. Standardization has been a
long and difficult process: incompatibilities among browsers continue to frustrate
web designers, and several features of the language that have been deprecated3 in
the most recent standards are nonetheless still widely used. Other features, while
not deprecated, are widely regarded in hindsight to have been mistakes.

Probably the biggest problem with HTML is that it does not adequately dis-
tinguish between the content and the presentation (appearance) of a document.
As a trivial example, web designers sometimes use <i> . . . </i> tags to requestEXAMPLE 14.85

Content versus
presentation in HTML

that text be set in an italic font, when . . . (emphasis) would be more
appropriate. A browser for the visually impaired might choose to emphasize text
with something other than italics, and might render book titles (also often specified
with <i> . . . </i>) in some entirely different fashion. More significantly, many
web designers use tables (<table> . . . </table>) to control the relative position-
ing of elements on a page, when the content isn’t tabular at all. As the Web has
extended across cell phones, televisions, tablets, watches, and audio-only devices,
the need to distinguish between content and presentation has become increasingly
essential.

This is where XML stepped in. A streamlined descendant of SGML, developed
by the W3C in the mid to late 1990s, XML has at least three important advantages
over HTML for data and document representation: (1) its syntax and semantics are
more regular and consistent, and more consistently implemented across platforms;
(2) it is extensible, meaning that users can define new tags; (3) it specifies content
only, leaving presentation to a companion standard known as XSL (extensible
stylesheet language). XSLT is a portion of XSL devoted to transforming XML:
selecting, reorganizing, and modifying tags and the elements they delimit—in
effect, scripting the processing of data represented in XML.

Internet Alphabet Soup

Learning about web standards can be a daunting task: there is an enormous number
of buzzwords, standards, and multiletter abbreviations. The standards—and the
relationships among them—are also moving targets, promulgated by groups whose
interests are not always in sync. To start, it may help to note that each of the major
markup languages—SGML, HTML, and XML—has a corresponding stylesheet
language: DSSSL, CSS, and XSL, respectively. A stylesheet language is used to
control the presentation of a document, separate from its content. Stylesheet
languages are essential for SGML and XML; without them there is no way to know
whether a <RECORD> represents a database entry, an antique phonograph album,
or an Olympic achievement, much less how to display it. HTML is less dependent

3 A deprecated feature is one whose use is officially discouraged, but permitted on a temporary basis,
to ease the transition to new and presumably better alternatives.

PREPRINT

14.3.5 XSLT C 307

on stylesheets, but most professionally maintained web sites use CSS to create a
uniform ‘‘look and feel’’ across a collection of pages without embedding redundant
information in every page.

SGML is still used for large-scale projects in the business world, though many
newer projects have chosen to use XML or JSON, the JavaScript Object Notation.
JSON is more compact and self-descriptive than XML, and is commonly used
to transmit structured data between web servers and clients. It does not have a
stylesheet language comparable to XSL, however. HTML continues to evolve (see
sidebar C 14.14). HTML5, codified by the World Wide Web Consortium in 2014,
added extensive support for multimedia content, and specified both general and
XML-compliant versions of the syntax.

XML and XHTML

As a general rule, the syntax of XML is simpler than that of SGML or HTML. To
allow XML tools (XSLT in particular) to be used to process web pages, the HTML5
standard defines a restricted version of the HTML syntax, known as XHTML. With
a few minor exceptions, any web page that can be specified in HTML can also be
specified in XHTML, and vice versa. The content-type header that precedes a
web page when transmitted over the Internet tells the browser which parser to use:

DESIGN & IMPLEMENTATION

14.14 W3C and WHATWG
Standardization efforts for HTML have a complicated history. With the comple-
tion in 1998 of the XML 1.0 specification, the World Wide Web Consortium
(W3C) focused on XHTML, in an effort to push the world toward a ‘‘cleaned-
up,’’ XML-compliant version of HTML. Over the next few years, this strategy
proved increasingly contentious. In 2004, a group of influential individuals from
Apple, Mozilla, and Opera split off to form a separate Web Hypertext Application
Technology Working Group (WHATWG), with the goal of evolving HTML in a
way that preserved complete backward compatibility and interoperability. In
2006, the W3C reconsidered its position, and began to work with WHATWG
toward what eventually became HTML5. Both groups continued to work on
HTML evolution, largely but not entirely in sync. In 2019, they agreed that
future development would belong to WHATWG, though W3C continues to
participate.

While W3C would prefer a dated, finalized document (which it would num-
ber HTML5), WHATWG’s ‘‘Living Standard’’ for HTML has been continuously
evolving (without version numbers) since 2012. WHATWG believes that the
standard should reflect without necessarily dictating current practice, as em-
bodied in the browsers of all major vendors. Both the W3C and WHATWG
distinguish carefully between what a conforming document should contain and
what a conforming browser should be able to render: the latter is significant
superset of the former.

PREPRINT

C 308 Chapter 14 Scripting

text/html means ‘‘regular’’ HTML; application/xhtml+xml means XHTML.
In practice, the principal differences between the notations are that XHTML is
harder for human beings to write, because the rules are stricter, and XML parsers
are designed to reject (and decline to render) any page that is not well formed
(syntactically correct). HTML parsers are designed to tolerate—and do something
reasonable with—even the worst ‘‘tag soup.’’ With some care, it is possible to write
pages that will be processed correctly by both HTML and XHTML parsers; such
pages are said to use polyglot markup (syntax).

In any well-formed XML document (including those written in XHTML), tags
must either constitute properly nested, matched pairs, or be explicit singletons,
which end with a ‘‘/>’’ delimiter. Similarly, the values of attributes (key–value
pairs embedded within tags) must always be specified with quotes. The followingEXAMPLE 14.86

Well-formed XHTML fragment, for example, is well formed (though incomplete) XHTML:

<q id="favorite">I defy the tyranny of precedent</q>

(Clara Barton)

Here the quotation element (<q> . . . </q>) is nested inside the emphasis element
(. . .). Moreover the ‘‘break’’ element (
), which usually causes
subsequent text to start on a new line, is explicitly a singleton; it has a slash before its
closing ‘‘>’’ delimiter. (To avoid confusing certain legacy browsers, one sometimes
needs a space in front of the slash.) The example fragment would be malformed if
the slash were missing, if the opening <q> tags were reversed (<q>), or
if the attribute value "favorite" had not be enclosed in quote marks. An HTML
parser would tolerate these errors; an XML parser will not.

The set of tags to be used in an XML document can be specified by naming a
document type definition (DTD) in the document’s DOCTYPE header, or by naming
an XML Schema in an attribute of the document’s top-level tag. (XML Schemas are a
newer format, but DTDs remain in widespread use.) Among other things, a DTD or
Schema indicates which tags are allowed, whether those tags are pairs or singletons,
whether they permit attributes, and whether any attributes are mandatory. If a
document has no DTD or Schema, it is said to define a DTD implicitly by virtue of
which tags are actually used. Implicit definition suffices for the examples in this
chapter.

Because tags must nest in XML, a document has a natural tree-based structure.
Figure C 14.21 shows the source for a small but complete polyglot HTML5 doc-EXAMPLE 14.87

XHTML to display a
favorite quote

ument, together with the tree it represents. There are three kinds of nodes in the
tree: elements (delimited by tags in the source), text, and attributes. The internal
(nonleaf) nodes are all elements. Everything nested between the beginning and
ending tags of an element is an attribute or child of that element in the tree.

The root of our document, named ‘‘/’’ by convention, has one child—the html
element. This in turn has three attributes—xmlns, lang, and xml:lang—and
two child elements—head and body. The xmlns attribute specifies a URI for our
document’s namespace. This serves a purpose similar to that of C++ namespaces
or Java packages (Section 3.8): it allows us to give tag names a disambiguating

PREPRINT

14.3.5 XSLT C 309

<!DOCTYPE html>
<html xmlns="https://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<meta charset="UTF-8" />
<title>Favorite Quote</title>
</head>
<body>
<p>
<q id="favorite">I defy
the tyranny of precedent</q>

(Clara Barton)
</p>
</body>
</html>

html

bodyhead

titlemeta p

text

xml:langlangxmlns

id

charset em br text

q

text

/

Figure 14.21 A complete XHTML document and its corresponding tree. Child elements are shown with solid lines, attributes
with dashed lines.

prefix: xhtml:table versus furniture:table. With the value we have specified
for the xmlns attribute, any tag in the document that doesn’t have a prefix will
automatically be interpreted as being in the xhtml namespace. The lang and
xml:lang tags specify the source language (English) for HTML and XML parsers,
respectively.

XSLT and XPath

XSL (extensible stylesheet language) can be thought of as a language for specifying
what to do with an XML document. It has four sublanguages, called XSLT, XPath,
XSL-FO, and XQuery. XSLT is a scripting language that takes XML as input and
produces textual output—often transformed XML or HTML, but potentially other
formats as well.

XPath is a language used to name things in XML documents. XPath names
frequently appear in the attributes of XSLT elements. Returning to Figure C 14.21,EXAMPLE 14.88

XPath names for XHTML
elements

the quotation element of our document could be named in XPath as /html/body/
p/em/q. The emphasis element and its break and text-node siblings, together, could
be named as /html/body/p/*. XPath includes a rich set of naming mechanisms,
including absolute (from the root) and relative (from the current node) navigation,
wildcards, predicates, substring and regular expression manipulation, and counting
and arithmetic functions. We will see some of these in the extended example
below.

XSL-FO (XSL formatting objects) is a set of tags to specify the layout (presenta-
tion) of a document, in terms of pages, regions (e.g., header, body, footer), blocks
(paragraph, table, list), lines, and in-line elements (character, image). An XSLT
script might be used to add XSL-FO tags to an XML document, or to transform a
document that already has XSL-FO tags in it—perhaps to split a long single-page

PREPRINT

C 310 Chapter 14 Scripting

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="bib.xsl"?>
<bibliography>

<book>
<author>Guido van Rossum</author>
<editor>Fred L. Drake, Jr.</editor>
<title>The Python Language Reference Manual (version 3.2)</title>
<publisher>Network Theory, Ltd.</publisher>
<address>Bristol, UK</address>
<year>2011</year>
<note>Available at <uri>https://books.google.com/books/about

/The_Python_Language_Reference_Manual.html?id=Ut4BuQAACAAJ</uri></note>
</book>
<article>

<author>John K. Ousterhout</author>
<title>Scripting: Higher-Level Programming for the 21st Century</title>
<journal>Computer</journal>
<volume>31</volume>
<number>3</number>
<month>March</month>
<year>1998</year>
<pages>23–30</pages>

</article>
<inproceedings>

<author>Theodor Holm Nelson</author>
<title>Complex Information Processing: A File Structure for the

Complex, the Changing, and the Indeterminate</title>
<booktitle>Proceedings of the Twentieth ACM National Conference</booktitle>
<month>August</month>
<year>1965</year>
<address>Cleveland, OH</address>
<pages>84–100</pages>

</inproceedings>
<inproceedings>

<author>Stephan Kepser</author>
<title>A Simple Proof for the Turing-Completeness of XSLT and XQuery</title>
<booktitle>Proceedings, Extreme Markup Languages 2004</booktitle>
<address>Montréal, Canada</address>
<year>2004</year>
<month>August</month>
<note>Available at <uri>https://citeseerx.ist.psu.edu/document?

doi=5f7ad1d9c17c01e3321b44ad996ff3fcd3ddbea3</uri></note>
</inproceedings>

Figure 14.22 A bibliography in XML. References (two books, a journal article, and three conference papers) appear in arbitrary
order. The two URIs have been wrapped to fit on the printed page. (continued)

PREPRINT

14.3.5 XSLT C 311

<inproceedings>
<author>David G. Korn</author>
<title><code>ksh</code>: An Extensible High Level Language</title>
<booktitle>Proceedings of the USENIX Very High Level Languages Symposium</booktitle>
<address>Santa Fe, NM</address>
<year>1994</year>
<month>October</month>
<pages>129–146</pages>

</inproceedings>
<book>

<author>Tom Christiansen</author>
<author>brian d foy</author>
<author>Larry Wall</author>
<author>Jon Orwant</author>
<title>Programming Perl</title>
<edition>fourth</edition>
<publisher>O’Reilly Media</publisher>
<address>Sebastopol, CA</address>
<year>2012</year>

</book>
</bibliography>

Figure 14.22 (continued)

document intended for the Web into a multipage document intended for printing
on paper.

XQuery is a language in which to frame information-retrieval questions for
a database stored in XML format. (In a bibliographic database, for example, we
might use XQuery look for journal articles written since the turn of the century.)
The purpose and behavior of XQuery parallel those of SQL, the standard language
used for relational database queries. For the sake of simplicity, we will not use
XSL-FO or XQuery in our extended example. Rather we will peruse an entire XML
document, using XSLT to format its content as HTML.

An XML document can explicitly specify an XSLT script that should be used to
transform or format it. This is a common but somewhat restrictive way to go about
things: by tying a single stylesheet to the XML file we compromise the separation
between content and presentation that was a principal motivation for creating
XML in the first place. An alternative is to use client-side JavaScript or server-side
PHP to invoke the XSLT processor, passing the XML document and the XSLT
script as arguments. As of 2023, the XSLT 3 is the newest version of the language.
XSLT 1 support is included in all major browsers; newer versions typically require
a JavaScript library.

Extended Example: Bibliographic Formatting

As an example of a task for which we might realistically use XSLT, consider theEXAMPLE 14.89
Creating a reference list
with XSLT

creation of a bibliographic reference list. Figure C 14.22 contains XML source for

PREPRINT

C 312 Chapter 14 Scripting

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="https://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<html><head><title>Bibliography</title></head><body><h1>Bibliography</h1>

<xsl:for-each select="bibliography/*"><xsl:sort select="title"/>
<xsl:apply-templates select="."/>

</xsl:for-each>
</body></html>

</xsl:template>

<xsl:template match="bibliography/article">
<q><xsl:apply-templates select="title/node()"/>,</q>
by <xsl:call-template name="author-list"/>.
<xsl:apply-templates select="journal/node()"/>
<xsl:text> </xsl:text><xsl:apply-templates select="volume/node()"/>
:<xsl:apply-templates select="number/node()"/>
(<xsl:apply-templates select="month/node()"/><xsl:text> </xsl:text>

<xsl:apply-templates select="year/node()"/>),
pages <xsl:apply-templates select="pages/node()"/>.
<xsl:if test="note"><xsl:apply-templates select="note/node()"/>.</xsl:if>

</xsl:template>

<xsl:template match="bibliography/book">
<xsl:apply-templates select="title/node()"/>,
by <xsl:call-template name="author-list"/>.
<xsl:apply-templates select="publisher/node()"/>,
<xsl:apply-templates select="address/node()"/>,
<xsl:if test="edition">

<xsl:apply-templates select="edition/node()"/> edition, </xsl:if>
<xsl:apply-templates select="year/node()"/>.
<xsl:if test="note"><xsl:apply-templates select="note/node()"/>.</xsl:if>

</xsl:template>

<xsl:template match="bibliography/inproceedings">
<q><xsl:apply-templates select="title/node()"/>,</q>
by <xsl:call-template name="author-list"/>.
In <xsl:apply-templates select="booktitle/node()"/>
<xsl:if test="pages">, pages <xsl:apply-templates select="pages/node()"/></xsl:if>
<xsl:if test="address">, <xsl:apply-templates select="address/node()"/></xsl:if>
<xsl:if test="month">, <xsl:apply-templates select="month/node()"/></xsl:if>
<xsl:if test="year">, <xsl:apply-templates select="year/node()"/></xsl:if>.
<xsl:if test="note"><xsl:apply-templates select="note/node()"/>.</xsl:if>

</xsl:template>

Figure 14.23 Bibliography stylesheet in XSL. This script will generate HTML when applied to a bibliography like that of
Figure C 14.22. (continued)

PREPRINT

14.3.5 XSLT C 313

<xsl:template name="author-list"> <!-- format author list -->
<xsl:for-each select="author|editor">

<xsl:if test="last() > 1 and position() = last()"> and </xsl:if>
<xsl:apply-templates select="./node()"/>
<xsl:if test="self::editor"> (editor)</xsl:if>
<xsl:if test="last() > 2 and last() > position()">, </xsl:if>

</xsl:for-each>
</xsl:template>

<xsl:template match="uri"> <!-- format link -->
<a><xsl:attribute name="href"><xsl:value-of select="."/></xsl:attribute>
<xsl:value-of select="substring-after(., 'https://')"/>

</xsl:template>

<xsl:template match="@*|node()"> <!-- default: copy content -->
<xsl:copy><xsl:apply-templates select="@*|node()"/></xsl:copy>

</xsl:template>

</xsl:stylesheet>

Figure 14.23 (continued)

such a list. (Field names have been borrowed from BibTEX [Lam94, App. B].) The
document begins with a declaration to specify the XML version and character
encoding, and a processing instruction to specify the XSL stylesheet to be used
to format the file. These declarations are included for the benefit of tools that
process the document; they aren’t part of the XML source itself. (Note the syntactic
resemblance to the processing instructions used in Section C 14.3.2 to provide input
to the PHP interpreter.)

At the top level, the bibliography element consists of a series of book,
article, and inproceedings elements, each of which may contain elements
for author and editor names, title, publisher, date and address, and so on. Some
elements may contain nested uri elements, which specify on-line links. Characters
that cannot be represented in ASCII are shown as Unicode character entities, as
described in Sidebar 7.3.

Figure C 14.23 contains an XSLT stylesheet (script) to format the bibliography
as HTML, which may then be rendered in a browser. This script was named at
the beginning of the XML document (Figure C 14.22). In a manner analogous to
that of the XML document, the script begins with a declaration to specify the XML
version and character encoding, and an xsl:stylesheet element to specify the
XSL version and namespace. The remainder of the script contains a mix of XSL and
HTML elements. The XSL tags all specify the xsl: namespace explicitly. They are
recognized by the XSLT processor. Elements from other namespaces are treated as
ordinary text, to be copied through to the output when encountered.

The fundamental construct in XSLT is the template, which specifies a set of
instructions to be applied to nodes in an XML source tree. Templates are typically

PREPRINT

C 314 Chapter 14 Scripting

invoked by executing an apply-templates or a call-template instruction in
some other template. Each invocation has a concept of current node. The execution
as a whole begins by invoking an initial template with the root of the source tree
(/) as current node. In our bibliographic example, the initial template is the one at
the top of the script, because its match attribute is the XPath expression "/". The
body of the initial template begins with a string of HTML elements and text. This
string is copied directly to the output. The for-each element, however, is an XSLT
instruction, so it is executed.

The select attribute of the for-each element uses an XPath expression
("bibliography/*") to build a node set consisting of all top-level entries in
our bibliography. Other expressions could have been used if we wanted to
be selective: "bibliography/*[year>=2000]" would match only recent en-
tries; "bibliography/*[note]" would match only entries with note elements;
"bibliography/article|bibliography/book" would match only articles and
books.

The nested sort instruction forces the selected node set to be ordered alpha-
betically by title. The body of the for-each is then executed with each entry
in turn selected as current node. The body contains a recursive invocation of
apply-templates, bracketed by HTML list tags (. . .). These tags are
copied to the output, with the result of the recursive call nested in between.

So how does the recursive call work? Its select attribute, like that of for-each,
uses XPath to build a node set. In this case it is the trivial node set containing only
".", the current node of the current iteration of for-each. The XSLT processor
searches for a template that matches this node. We have created three appropriate
candidates, one for each kind of bibliographic entry. When it finds the matching
template, the processor invokes it, with an updated notion of current node.

Each of our three main templates contains a set of instructions to format its kind
of entry (article, book, conference paper). Most of the instructions use additional
invocations of apply-templates to format individual portions of an entry (author,
title, publisher, etc.). Interspersed in these instructions are snippets of text and
HTML elements. In several cases we use an if instruction to generate output
only when a given XML element is present in the source. In most of these the
recursive call uses the XPath node() function to select all children of the element
in question.

White space is ignored when it comes between the end of one instruction and
the beginning of the next. To force white space into the output in this case, we must
delimit it with <text> . . . </text> tags. Extra white space (e.g., after the ends of
sentences) is specified with the ‘‘nonbreaking space’’ character entity, .

Three extra templates end our script. The most interesting of these serves to
format author lists. It has a name attribute rather than a match attribute, and is
invoked with call-template rather than apply-templates. A called template
always takes the current node of the caller—in this case the node that represents
a bibliographic entry. Internally, the author list template executes a for-each in-
struction that selects all child nodes representing authors or editors. The for-each,
in turn, uses the XPath last() and position() functions to determine how many

PREPRINT

14.3.5 XSLT C 315

<html><head><title>Bibliography</title></head>
<body><h1>Bibliography</h1>

<q>A Simple Proof for the Turing-Completeness of XSLT and XQuery,</q>
by Stephan Kepser. In Proceedings, Extreme Markup Languages
2004, Montréal, Canada, August, 2004. Available at
<a href="https://citeseerx.ist.psu.edu/document?doi=

5f7ad1d9c17c01e3321b44ad996ff3fcd3ddbea3">citeseerx.ist.psu.edu
/document?doi=5f7ad1d9c17c01e3321b44ad996ff3fcd3ddbea3.

<q>Complex Information Processing: A File Structure for the Complex,
the Changing, and the Indeterminate,</q> by Theodor Holm Nelson.
In Proceedings of the Twentieth ACM National Conference,
pages 84–100, Cleveland, OH, August, 1965.

<q><code>ksh</code>: An Extensible High Level Language,</q> by David
G. Korn. In Proceedings of the USENIX Very High Level Languages
Symposium, pages 129–146, Santa Fe, NM, October, 1994.

Programming Perl, by Tom Christiansen, brian d foy, Larry Wall,
and Jon Orwant. O’Reilly Media, Sebastopol, CA, fourth
edition, 2012.

<q>Scripting: Higher-Level Programming for the 21st Century,</q> by
John K. Ousterhout. Computer 31:3 (March 1998), pages
23–30.

The Python Language Reference Manual (version 3.2), by Guido
van Rossum and Fred L. Drake, Jr. (editor). Network Theory, Ltd.,
Bristol, UK, 2011. Available at <a href="https://books.google.com/books/about

/The_Python_Language_Reference_Manual.html?id=Ut4BuQAACAAJ">books.google.com/books
/about/The_Python_Language_Reference_Manual.html?id=Ut4BuQAACAAJ.

</body></html>

Figure 14.24 Result of applying the stylesheet of Figure C 14.23 to the bibliography of Figure C 14.22.

names there are, and where each name falls in the list. It inserts the word ‘‘and’’
between the final two names, and puts commas after all names but the last in lists
of three or more.

The template with match="uri" serves to format URIs that appear anywhere
in the XML source. It creates an HTML link in the output, but uses the XPath
substring-after function to strip the leading https:// off the visible text. XPath
provides a variety of similar functions for string and regular expression manipu-
lation. The value-of instruction copies the contents of the selected node to the
output, as a character string.

Our final template serves as a default case. The XPath expression "@*|node()"
will match any attribute or other node in the XML source. Inside, the copy instruc-

PREPRINT

C 316 Chapter 14 Scripting

Bibliography

Bibliography

1. ‘‘A Simple Proof for the Turing-Completeness of XSLT and XQuery,’’ by Stephan Kepser. In
Proceedings, Extreme Markup Languages 2004, Montréal, Canada, August, 2004. Available at
https://citeseerx.ist.psu.edu/document?doi=5f7ad1d9c17c01e3321b44ad996ff3fcd3ddbea3.

2. ‘‘Complex Information Processing: A File Structure for the Complex, the Changing, and the
Indeterminate,’’ by Theodor Holm Nelson. In Proceedings of the Twentieth ACM National
Conference, pages 84–100, Cleveland, OH, August, 1965.

3. ksh: An Extensible High Level Language, by David G. Korn. In Proceedings of the USENIX Very
High Level Languages Symposium, pages 129–146, Santa Fe, NM, October, 1994.

4. Programming Perl, by Tom Christiansen, brian d foy, Larry Wall, and Jon Orwant. O’Reilly
Media, Sebastopol, CA, fourth edition, 2012.

5. ‘‘Scripting: Higher-Level Programming for the 21st Century,’’ by John K. Ousterhout. Computer
31:3 (March 1998), pages 23–30.

6. The Python Language Reference Manual (version 3.2), by Guido van Rossum and Fred L. Drake,
Jr. (editor). Network Theory, Ltd., Bristol, UK, 2011. Available at https://books.google.com
/books/about/The_Python_Language_Reference_Manual.html?id=Ut4BuQAACAAJ.

Figure 14.25 Rendered version of the HTML in Figure C 14.24.

tion copies the node’s tags, if any, to the output, with the result of a recursive call to
apply-templates in between. The "@*|node()" on the recursive call selects a
node set consisting of all the current node’s attributes and children. The end result
is that any XML elements in the source that are delimited by tags for which we do
not have special templates will be regenerated in the output just as they appear in
the source. The recursion stops at text nodes and attributes, which are the leaves of
the XML tree.

HTML output from our script appears in Figure C 14.24. The rendered web
page appears in Figure C 14.25.

While lengthy by the standards of this text, our example illustrates only a frac-
tion of the capabilities of XSLT. In the standard categorization of programming
languages, the notation is strongly declarative: values may have names, but there
are no mutable variables, and no side effects. There is a limited looping mechanism
(for-each), but the real power comes from recursion, and from recursive traversal
of XML trees in particular.

3CHECK YOUR UNDERSTANDING

56. Explain the relationships among SGML, HTML, and XML. What are their
corresponding stylesheet languages?

57. Why does XML work so hard to distinguish between content and presentation?

PREPRINT

14.3.5 XSLT C 317

58. What are the four main components of XSL? What are their respective pur-
poses?

59. What is XHTML? How does it differ from ‘‘ordinary’’ HTML?

60. Explain the correspondence between XML documents and trees.

61. What does it mean for an XML document to be well formed?

62. Explain the distinctions (syntactic and semantic) among elements, declara-
tions, and processing instructions in XML. Also explain the distinctions among
elements, tags, and attributes.

63. Summarize the execution model of XSLT. In a nutshell, how does it work?

64. Explain the difference between applying templates and calling them in XSLT.

PREPRINT

C 318 Chapter 14 Scripting

PREPRINT

PREPRINT

14Scripting

14.6 Exercises

14.15 Explain the circumstances under which it makes sense to realize an inter-
active task on the Web as a CGI script, an embedded server-side script, or
a client-side script. For each of these implementation choices, give three
examples of tasks for which it is clearly the preferred approach.

14.16 (a) Write a web page with embedded PHP to print the first 10 rows of
Pascal’s triangle (see Example C 17.10 if you don’t know what this is).
When rendered, your output should look like Figure C 14.26.

(b) Modify your page to create a self-posting form that accepts the number
of desired rows in an input field.

(c) Rewrite your page in JavaScript.
14.17 Create a fill-in web form that uses a JavaScript implementation of the Luhn

formula (Exercise C 4.27) to check for typos in credit card numbers. (But
don’t use real credit card numbers; homework exercises don’t tend to be
very secure!)

14.18 (a) Modify the code of Figure C 14.20 (Example C 14.83) so that it replaces
the form with its output, as the CGI and PHP versions of Figures C 14.16
and C 14.19 do.

(b) Modify the CGI and PHP scripts of Figures C 14.16 and C 14.19 (Exam-
ples C 14.78 and C 14.82) so they appear to append their output to the
bottom of the form, as the JavaScript version of Figure C 14.20 does.

14.19 Modify the XSLT of Figure C 14.23 to do one or more of the following:
(a) Alter the titles of conference papers so that only first words, words that

follow a dash or colon (and thus begin a subtitle), and proper nouns are
capitalized. You will need to adopt a convention by which the creator
of the document can identify proper nouns.

C 319

C 320 Chapter 14 Scripting

Pascal’s Triangle

Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

Figure 14.26 Pascal’s triangle rendered in a web page (Exercise C 14.16).

(b) Sort entries by the last name of the first author or editor. You will
need to adopt a convention by which the creator of the document can
identify compound last names (‘‘von Neumann,’’ for example, should
be alphabetized under ‘v’).

(c) Allow bibliographic entries to contain an abstract element, which
when formatted appears as an indented block of text in a smaller font.

(d) In addition to the book, article, and inproceedings elements, add
support for other kinds of entries, such as manuals, technical reports,
theses, newspaper articles, web sites, and so on. You may want to draw
inspiration from the categories supported by BibTEX [Lam94, App. B].

(e) Format entries according to some standard style convention (e.g., that
of the Chicago Manual of Style [chicagomanualofstyle.org/book/ed17/
part3/ch14/toc.html] or the ACM Transactions [acm.org/publications/
authors/submissions]).

14.20 Suppose bibliographic entries in Figure C 14.22 contain a mandatory key
element, and that other documents can contain matching cite elements.
Create an XSLT script that imitates the work of BibTEX. Your script should
(a) read an XML document, find all the cite elements, collect the keys

they contain, and replace them with bibref elements that contain
small integers instead.

(b) read a separate XML bibliography document, extract the entries with
matching keys, and write them, in sorted order, to a new (and probably
smaller) bibliography.

PREPRINT

14.6 Exercises C 321

The small numbers in the bibref elements of the new document from (a)
should match the corresponding numbered entries in the new bibliography
from (b).

14.21 Write a program that will read an XHTML file and print an outline of its
contents, by extracting all <title>, <h1>, <h2>, and <h3> elements, and
printing them at varying levels of indentation. Write
(a) in C or Java
(b) in sed or awk
(c) in Perl, Python, or Ruby
(d) in XSLT
Compare and contrast your solutions.

PREPRINT

C 322 Chapter 14 Scripting

PREPRINT

PREPRINT

14Scripting

14.7 Explorations

14.32 Learn about Dart, a language developed at Google. Initially intended as a
successor to JavaScript, Dart is now supported only as a language in which
to develop code that will be translated into JavaScript. What explains the
change in strategy?

14.33 Learn more about WebAssembly. Why has it been successful when previous
proposed alternatives to JavaScript were not?

14.34 Learn more about DTDs and XML Schemas. Compare the DTD and XML
Schema definitions of XHTML. What appear to the prospects for migrating
to the newer specification language?

14.35 Academics often keep lists of publications in multiple places and formats:
an on-line web page, a printable resume, a BibTEX database for paper writ-
ing [Lam94, App. B]. Using XSLT, build a set of tools that will construct
these lists automatically from a single XML source file.

14.36 Learn about XSL-FO. Use it to reimplement Example C 14.89. Your new
version should be a two-stage process: one XSLT script should add format-
ting tags to the XML bibliography; a second should convert the tagged
bibliography to XHTML. Try to make these stages as general as possible:
you should be able to modify the appearance of the output list by changing
the first script only. You should also be able to write alternative versions of
the second script that generate output in formats other than XHTML (e.g.,
LaTeX).

14.37 Learn more about the history of W3C and WHATWG. What are the compar-
ative advantages and disadvantages of their approaches to standardization?
Do you find yourself more in sympathy with one approach or the other?
How large are the technical differences between the most recent versions of
the HTML standards? Are these differences significant enough to pose a
problem for web developers?

C 323

C 324 Chapter 14 Scripting

PREPRINT

PREPRINT

15Building a Runnable Program

15.2.1 GCC and LLVM

Traditionally, all machine-independent code improvement in gcc was based on
RTL. Over time it became clear that the IF had become an obstacle to further
improvements in the compiler, and that a higher-level form was needed. GIMPLE
was introduced to meet that need. Since gcc v.4.9 (2014), GENERIC has been
used for semantic analysis and, in a few cases, for certain language-specific code
improvement. As its final task, each front end converts the program from GENERIC
into GIMPLE. Depending on the requested level of code improvement, the ‘‘middle
end’’ may perform over 140 phases of code improvement and transformation on
the GIMPLE representation, after which it converts to RTL and performs as many
as 70 additional phases before handing the result to the back end for target code
generation.

Both GIMPLE and RTL are meant to be kept in memory across compiler phases,
rather than being written to a file. Both IFs have a human-readable external format,
which the compiler can write and (partially) read, but this format is not needed by
the compiler: the internal version is much better suited for automatic manipulation.

GIMPLE

The GIMPLE code generated by a gcc front end is essentially a distillation of
GENERIC, with many of the most complex (and often language-specific) features
‘‘lowered’’ into a smaller, common set of tree node types. As a simple example,EXAMPLE 15.19

GCD program in GIMPLE consider the gcd program of Example 1.20:

int main () {
int i = getint();
int j = getint();
while (i != j) {

if (i > j) i = i - j;
else j = j - i;

}
putint(i);

}

C 325

C 326 Chapter 15 Building a Runnable Program

Figure C 15.11 illustrates the ‘‘high GIMPLE’’ produced by gcc’s C front end when
given this program as input. If we compare this GIMPLE code to Figure 15.2,
which loosely1 resembles GENERIC, we see at least two significant differences.
First, all of the nodes that comprise a subroutine appear on a single list, with
control flow represented by explicit gotos and by true and false branches for
conditions. Second, both conditions and assignments have been designed to capture
an embedded binary expression, allowing us in many cases to collapse a small
subtree into a GIMPLE single node.

Over the course of its many phases, the gcc middle end will make many addi-
tional changes to this code, not only to improve its quality but also to further lower
its level of abstraction. This ‘‘flattening’’ of the tree makes it easier to translate into
RTL.

Perhaps the most significant transformation of GIMPLE is the conversion to
static single assignment (SSA) form. As noted in the main text and explored more
fully in Section C 17.4.1, SSA conversion facilitates subsequent code transforma-
tions by introducing extra variable names into the program in such a way that
nothing is ever written in more than one place.

RTL

RTL is loosely based on the S-expressions of Lisp. Each RTL expression consists of
an operator or expression type and a sequence of operands. In its external form,
these are represented by a parenthesized list in which the element immediately
inside the left parenthesis is the operator. Each such list is then embedded in
a wrapper that points to predecessor and successor expressions in linear order.
Internally, RTL expressions are represented by C structs and pointers. This pointer-
rich structure constitutes the interface among the compiler’s many back-end phases.
There are several dozen expression types, including constants, references to values
in memory or registers, arithmetic and logical operations, comparisons, bit-field
manipulations, type conversions, and stores to memory or registers.

The body of a subroutine consists of a sequence of RTL expressions. Each
expression in the sequence is called an insn (instruction). Each insn begins with
one of six special codes:

insn: an ‘‘ordinary’’ RTL expression.
jump_insn: an expression that may transfer control to a label.
call_insn: an expression that may make a subroutine call.
code_label: a possible target of a jump.
barrier: an indication that the previous insn always jumps away. Control will

never ‘‘fall through’’ to here.

1 Unlike the informal notation of Figure 15.2, GENERIC and GIMPLE make no distinction between
syntax tree nodes and symbol table nodes. In effect, the symbol table is merged into the syntax
tree.

PREPRINT

15.2.1 GCC and LLVM C 327

callint

bind

(getint) (i)

cond

> (i) (j)

label

i

int

j

call

call

(getint) (j)

(putint) (void) (i)

goto

label
assign

goto

label
cond

label

label
assign

label

− (i) (i) (j)

− (j) (j) (i)

(i) (j)=/

Figure 15.11 Simplified GIMPLE for the gcd program. The left child of the bind node holds
local symbol table information; references to this information—and to global functions getint
and putint—are indicated in the rest of the figure with parenthesized names. The first child of a
call node names the function, the second the place to assign the return value, and the rest the
arguments. An assign node with children ⟨op, a, b, c⟩ represents the assignment a := b op c. In
each condition node, the first three children are a comparison operator and its operands; the last
two are pointers to the subtrees for the outcomes true and false.

note: a pure annotation. There are nine different kinds of these, to identify the
tops and bottoms of loops, scopes, subroutines, and so on.

The sequence is not always completely linear; insns are sometimes collected into
pairs or triples that correspond to target machine instructions with delay slots. Over
a dozen different kinds of (non-note) annotations can be attached to an individual
insn, to identify side effects, specify target machine instructions or registers, keep
track of the points at which values are defined and used, automatically increment

PREPRINT

C 328 Chapter 15 Building a Runnable Program

or decrement registers that are used to iterate over an array, and so on. Insns may
also refer to various dynamically allocated structures, including the symbol table.

A simplified insn sequence for the code of Example C 15.19 appears in Fig-EXAMPLE 15.20
An RTL insn sequence ure C 15.12. The three leading numbers in each insn represent the insn’s unique

id and those of its predecessor and successor, respectively. The fourth, when present,
identifies the insn’s basic block. Fields for the various insn annotations are not
shown. The :SI mode specifier on a memory or register reference indicates access
to a single (4-byte) integer; :DI and :QI modes correspond to double (8-byte) and
quarter (1-byte) integers.

A full explanation of the RTL notation is beyond what we can cover here. As an
example, however, insn 26 loads the memory location found 4 bytes back from
the frame pointer (namely, i) into virtual register 64. The following insn, 27, sets
the memory location found 8 bytes back from the frame pointer (namely, j) to the
result of subtracting register 64 from that same memory location. In parallel (as a
side effect), insn 27 also ‘‘clobbers’’ (overwrites) the contents of virtual condition
code register 17.

In order to generate target code, the back end matches insns against patterns
stored in a semiformal description of the target machine. Both this description
and the routines that manipulate the machine-dependent parts of an insn are
segregated into a relatively small number of separately compiled files. As a result,
much of the compiler back end is machine independent, and need not actually be
modified when porting to a new machine.

Clang AST format

As noted in the main text, the clang front end for LLVM employs a fairly conven-
tional high-level AST format, not unlike gcc’s GENERIC. Figure C 15.13 shows aEXAMPLE 15.21

GCD program as a clang
AST

simplified version of the tree for our gcd program. The resemblance to Figure 15.2
is immediately apparent. Unlike the GIMPLE code of Figure reffig-high-gimple,
with its explicit gotos, the clang AST nodes encode high-level control structures
explicitly. Each CompoundStmt node has one child for every statement in the
block; a CallExpr node has one child for the function to be called and one for each
argument. Symbol table information is implicit in the declaration nodes of the
tree—in this case, FunctionDecl and VarDecl. The cinit annotation on a VarDecl
node indicates the presence of a child node to specify the initial value.

LLVM IR

LLVM’s IR is central to the design of the compiler suite; it has been carefully
crafted to represent programs in almost any language, to be easily mapped to
almost any modern processor, and to facilitate the full range of modern code
improvement techniques. As explained in system documentation (at llvm.org), it
can be represented, equivalently, as data structures in memory, as compact binary
‘‘bitcode,’’ or as human-readable pseudo-assembly notation. Programs are normally
passed from one compiler phase to the next as in-memory data structures, but they
can also be exported to—or imported from—bitcode files. The pseudo-assembly
notation is mainly intended for compiler debugging and development.

PREPRINT

15.2.1 GCC and LLVM C 329

(insn 5 2 6 2 (set (reg:QI 0 ax) (const_int 0)))
(call_insn 6 5 7 2 (set (reg:SI 0 ax) (call (mem:QI (symbol_ref:DI ("getint"))) (const_int 0))))
(insn 7 6 8 2 (set (reg:SI 60) (reg:SI 0 ax)))
(insn 8 7 9 2 (set (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4))) (reg:SI 60)))
(insn 9 8 10 2 (set (reg:QI 0 ax) (const_int 0)))
(call_insn 10 9 11 2 (set (reg:SI 0 ax) (call (mem:QI (symbol_ref:DI ("getint"))) (const_int 0))))
(insn 11 10 12 2 (set (reg:SI 61) (reg:SI 0 ax)))
(insn 12 11 13 2 (set (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -8))) (reg:SI 61)))
(jump_insn 13 12 14 2 (set (pc) (label_ref 28)))
(barrier 14 13 30)
(code_label 30 14 15 4 4 "")
(insn 16 15 17 4 (set (reg:SI 62) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4)))))
(insn 17 16 18 4 (set (reg:CCGC 17)

(compare:CCGC (reg:SI 62) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -8))))))
(jump_insn 18 17 19 4 (set (pc) (if_then_else (le (reg:CCGC 17) (const_int 0)) (label_ref 24) (pc))))
(insn 20 19 21 5 (set (reg:SI 63) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -8)))))
(insn 21 20 22 5 (parallel [

(set (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4)))
(minus:SI (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4))) (reg:SI 63)))

(clobber (reg:CC 17))
]))
(jump_insn 22 21 23 5 (set (pc) (label_ref 28)))
(barrier 23 22 24)
(code_label 24 23 25 6 3 "")
(insn 26 25 27 6 (set (reg:SI 64) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4)))))
(insn 27 26 28 6 (parallel [

(set (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -8)))
(minus:SI (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -8))) (reg:SI 64)))

(clobber (reg:CC 17))
]))
(code_label 28 27 29 7 2 "")
(insn 31 29 32 7 (set (reg:SI 65) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4)))))
(insn 32 31 33 7 (set (reg:CCZ 17)

(compare:CCZ (reg:SI 65) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -8))))))
(jump_insn 33 32 34 7 (set (pc) (if_then_else (ne (reg:CCZ 17) (const_int 0)) (label_ref 30) (pc))))
(insn 35 34 36 8 (set (reg:SI 66) (mem/c:SI (plus:DI (reg/f:DI 54) (const_int -4)))))
(insn 36 35 37 8 (set (reg:SI 5 di) (reg:SI 66)))
(call_insn 37 36 40 8 (call (mem:QI (symbol_ref:DI ("putint"))) (const_int 0)))
(insn 40 37 41 8 (clobber (reg/i:SI 0 ax)))
(insn 41 40 39 8 (clobber (reg:SI 59 [<retval>])))
(insn 39 41 42 8 (set (reg/i:SI 0 ax) (reg:SI 59 [<retval>])))
(insn 42 39 0 8 (use (reg/i:SI 0 ax)))

Figure 15.12 Simplified textual RTL for the gcd program. Most annotations (more than half the original length) have been
elided here. Register 54 is the frame pointer. Local variable i is at offset −4. Local variable j is at offset −8.

PREPRINT

C 330 Chapter 15 Building a Runnable Program

FunctionDecl
(‘main‘, ‘int()’)

CompoundStmt

CompoundStmt

IfStmt

CallExpr
(‘int’)

VarDecl
(‘i‘, ‘int’, cinit)

DeclRefExpr
(‘getint’, ‘int()’)

CallExpr
(‘void’)

DeclRefExpr
(‘putint’, ‘void(int)’)

DeclRefExpr
(‘i’, ‘int’)

CallExpr
(‘int’)

VarDecl
(‘j‘, ‘int’, cinit)

DeclRefExpr
(‘getint’, ‘int()’)

BinaryOperator
(‘int’, ‘!=’)

BinaryOperator
(‘int’, ‘>’)

BinaryOperator
(‘int’, ‘=’)

BinaryOperator
(‘int’, ‘=’)

WhileStmt

DeclRefExpr
(‘i’, ‘int’)

DeclRefExpr
(‘j’, ‘int’)

DeclRefExpr
(‘i’, ‘int’)

DeclRefExpr
(‘j’, ‘int’)

BinaryOperator
(‘int’, ‘-’)

DeclRefExpr
(‘i’, ‘int’)

DeclRefExpr
(‘j’, ‘int’)

BinaryOperator
(‘int’, ‘-’)

DeclRefExpr
(‘j’, ‘int’)

DeclRefExpr
(‘i’, ‘int’)

DeclRefExpr
(‘i’, ‘int’)

DeclRefExpr
(‘j’, ‘int’)

Figure 15.13 Simplified clang AST for the gcd program. Nodes that implicitly dereference variables (lvalues) to obtain their
contents (rvalues) have been elided.

LLVM IR for our gcd program appears in Figure C 15.14. Unlike the RTL ofEXAMPLE 15.22
LLVM IR for the GCD
program.

Figure C 15.12, which was generated at the low, default level of optimization, the
code here was generated with a -O3 command line switch. As a result, variables i
and j are kept in (virtual) registers throughout the computation, rather than being
repeatedly read from and written to memory. Because they remain in memory, SSA
form requires that we assign the proper incoming values into new virtual registers
whenever control paths merge. Specifically, at the top of the loop (label 4), a phi
instruction assigns virtual register %5 (the current location of j) the value from

PREPRINT

15.2.1 GCC and LLVM C 331

define i32 @main() local_unnamed_addr #0 {
%1 = tail call i32 (...) @getint() #2
%2 = tail call i32 (...) @getint() #2
%3 = icmp eq i32 %1, %2
br i1 %3, label %13, label %4

4: ; preds = %0, %4
%5 = phi i32 [%11, %4], [%2, %0]
%6 = phi i32 [%9, %4], [%1, %0]
%7 = icmp slt i32 %5, %6
%8 = select i1 %7, i32 %5, i32 0
%9 = sub nsw i32 %6, %8
%10 = select i1 %7, i32 0, i32 %6
%11 = sub nsw i32 %5, %10
%12 = icmp eq i32 %9, %11
br i1 %12, label %13, label %4, !llvm.loop !6

13: ; preds = %4, %0
%14 = phi i32 [%1, %0], [%9, %4]
tail call void @putint(i32 noundef %14) #2
ret i32 0

}

Figure 15.14 Textual LLVM IR for function main in the gcd program, generated at optimization
level -O3. Comments begin with a semicolon; metadata begins with an exclamation point.
(Function calls are labeled tail not because they are actually tail recursive, but because they do
not violate any of the rules that would prevent reuse of the stack frame if they were tail recursive.)

register %2 if control has entered from the header block, and from register %11 if
control has come around from the bottom of the loop. A second phi instruction
makes a similar choice for i at the top of the loop, and a third for i at the beginning
of the footer. Among other things, the fact that every virtual register has only one
assignment in the code means that instructions can safely be reordered so long as
operands are always computed before they are used. We never have to worry about
‘‘overwriting’’ a virtual register before its final use, or about writing values to it out
of order.

In addition to promoting i and j to registers, -O3 optimization causes the
compiler to use predication (Section C 5.3.2), rather than branching, for the if. . .
then . . . else in the loop. Specifically, the icmp instruction at the top of the loop
assigns the outcome of the if comparison into virtual register %7. The select
instructions then use this register to chose whether to place a zero or one of j and i,
respectively, into registers %8 and %10. Finally, the sub instructions subtract these
values from i and j, effectively updating one and leaving the other unchanged.

3CHECK YOUR UNDERSTANDING

24. Characterize GIMPLE, RTL, clang AST format, LLVM IR, Java bytecode, and
Common Intermediate Language as high-, medium-, or low-level intermediate
forms.

PREPRINT

C 332 Chapter 15 Building a Runnable Program

25. Name three languages (other than C) for which there exist gcc front ends.

26. Name three languages (other than C) for which there exist LLVM front ends
but not gcc front ends.

27. What is the internal IF of gcc’s front ends?

28. Give brief descriptions of GIMPLE and RTL. How do they differ? Why was
GIMPLE introduced?

29. Compare RTL and LLVM IR. In what ways does the latter more closely resemble
typical assembly language?

PREPRINT

PREPRINT

15Building a Runnable Program

15.7 Dynamic Linking

To be amenable to dynamic linking, a library must either (1) be located at the
same address in every program that uses it, or (2) have no relocatable words in its
code segment, so that the content of the segment does not depend on its address.
The first approach is straightforward but restrictive: it generally requires that we
assign a unique address to every sharable library; otherwise we run the risk that
some newly created program will want to use two libraries that have been given
overlapping address ranges. In Unix System V R3, which took the unique-address
approach, shared libraries could only be installed by the system administrator. This
requirement tended to limit the use of dynamic linking to a relatively small number
of popular libraries. The second approach, in which a shared library can be linked at
any address, requires the generation of position-independent code. It allows users to
employ dynamic linking whenever they want, without administrator intervention.

The cost of user-managed dynamic linking is that executable programs are no
longer self-contained. They depend for correct execution on the availability of
appropriate dynamic libraries at execution time. If different programs are built
with different expectations of (which versions of) which libraries will be available,
conflicts can arise. On Microsoft platforms, where dynamic libraries have names
ending in .dll, compatibility problems are sometimes referred to as ‘‘DLL hell.’’
The frequency and severity of the problem can be minimized with good software
engineering practice. In particular, a package management system may maintain a
database of dependences between programs and libraries, and among the libraries
themselves. If installer programs use the database correctly, problems will be
detected at install time, when they can reasonably be addressed, rather than at the
arbitrarily delayed point at which a program first attempts to use an incompatible
or missing library.

C 333

C 334 Chapter 15 Building a Runnable Program

15.7.1 Position-Independent Code

A code segment that contains no relocatable words is said to constitute position-
independent code (PIC). To generate PIC, the compiler must observe the following
rules:

1. Use PC-relative addressing, rather than jumps to absolute addresses, for all
internal branches.

2. Similarly, avoid absolute references to statically allocated data, by using displace-
ment addressing with respect to some standard base register. If the code and
data segments are guaranteed to lie at a known offset from one another, then
the program counter can be used for this purpose. Otherwise, the caller must
initialize some other base register as part of the entry point’s calling sequence.

3. Use an extra level of indirection for every control transfer out of the PIC segment,
and for every load or store of static memory outside the corresponding data
segment. The indirection allows the (non-PIC) target address to be kept in the
data segment, which is private to each program instance.

Exact details vary among processors, vendors, and operating systems. ConventionsEXAMPLE 15.23
PIC under x86/Linux for gcc on recent versions of x86 Linux are illustrated in Figure C 15.15. Each

code segment is accompanied by a linkage table—known in Linux as the segment’s
global offset table (GOT). This table lists the locations of all code and data whose
addresses were not statically determined. All processes that use the same library
share a single copy of the library’s code segment, but each process has its own
copy of the library’s GOT. Both the code segment and the GOT can lie at different
locations in the address spaces of different processes, but the offset between the
two must always be the same.

Like the main program, each shared library is typically composed of multiple
compilation units, joined together by a static linker, which resolves internal refer-
ences. Resolution of references from the main program into shared libraries—or
among the libraries themselves—is delayed until load time or run time, and is the
job of the dynamic linker. By construction, shared libraries never make references
back into the main program.

Libraries are permitted to have (process-private) data as well as code, but the
total amount of such data is assumed (in Linux, at least) to be small enough that
the data can be statically linked without wasting significant space. Each process
therefore has a single data segment (shown in the figure at the lower left), containing
the data of the main program and of all the libraries it may call, directly or indirectly.
(Extensions to delay the linking of library data are considered in Exercise C 15.14.)

Focusing for the moment on the dashed arrows of the figure (and ignoring
the dotted arrows), a read of X or Y in main can use a statically resolved address.
A read of X or Y in foo uses PC-relative addressing to find the appropriate slot
in foo’s GOT, and then loads X or Y indirectly. Similar indirection is required
for subroutine calls into dynamically linked libraries. To avoid duplication of
the indirection code, the compiler incorporates a (shared, read-only) procedure

PREPRINT

15.7.1 Position-Independent Code C 335

Dynamically linked
shared library

Main program
(addresses all statically known)

Shared code
(PIC)

GOT for foo
(separate copy
for each process)

Data
segment

GOT
for

main

int X;
extern int Y;

main:
 ...
--load X:
 eax := X
 ...
--load Y:
 eax := Y
 ...
--foo():
 call foo_stub

int Y;
extern int X;

foo:
 ...
 ebx := pc + B
 ...
--load X:
 eax := *(ebx + E)
 ...
--load Y:
 eax := *(ebx + F)
 ...
--bar():
 call bar_stub
 -- (pc-relative)

X:

foo_ptr:

foo_stub:
 jmp *foo_ptr
 push A
 jmp t1
 ...
t1:
 push GOT_main
 jmp linker

Y:

A

D
E

B

PLT
for
foo

PLT
for

main

F

C

bar_stub:
 jmp *(ebx + C)
 push C
 jmp t2
 -- (pc-relative)
 ...
t2:
 push GOT_main
 jmp *(ebx + D)

linker

ebx

Figure 15.15 A dynamically linked shared library. Calls to foo and bar are made indirectly, using an address stored in the
global offset tables (GOTs) of main and foo, respectively. Similarly, references to global variables X and Y, when made from
foo, must employ a level of indirection. Resolved values are shown with dashed lines; initial values to support lazy linking
(Section C 15.7.2) are shown with dotted lines. In the prologue of foo, register ebx is set to point to foo’s GOT, using
pc-relative arithmetic.

linkage table (PLT) in each code segment. To effect a call to foo, main calls
a stub routine, here named foo_stub. This, in turn, performs an indirect jump
to the address of foo found in main’s GOT. Inside foo, the call to bar is only
slightly more complicated: the compiler must use PC-relative addressing to find
the appropriate slot in foo’s GOT.

PREPRINT

C 336 Chapter 15 Building a Runnable Program

Most machines—including the x86—can perform branches and calls using PC-EXAMPLE 15.24
PC-relative addressing on
the x86

relative addressing. In our Linux example (Figure C 15.15), the machine-language
encoding of call bar_stub in library foo will specify the offset between the call
instruction and the bar_stub location in foo’s PLT.

Many machines can also use PC-relative addressing in load and store instruc-
tions. On the x86-64, for example, the load of X in foo could say rax := *(rip
+ G), where G is the offset from the load instruction to X’s entry in foo’s GOT
(on the x86-64, rip [instruction pointer register] is the name of the program
counter). Unfortunately, the x86-32 does not support PC-relative addressing for
loads and stores. To compensate, each PIC code segment on x86-32 Linux defines
the following tiny subroutine:

get_pc:
ebx := *esp -- load location referred to by esp
ret -- i.e., the return address -- into ebx

Given this definition, the pseudo-instruction ebx := pc + B in Figure C 15.15
can be implemented as

call get_pc
ebx += B

after which ebx can be used as the base for displacement addressing within foo’s
GOT.

15.7.2 Fully Dynamic (Lazy) Linking

If all or most of the symbols exported by a shared library were always referenced
by the parent program, it might make sense to link the library in its entirety at load
time. When the program began running, its GOTs would then appear as suggested
by the dashed arrows in Figure C 15.15. Certain systems indeed work in this fashion.
In any given execution of a program, however, there may be references to libraries
that are not actually used, because the input data never cause execution to follow
the code path(s) on which the references appear. If these ‘‘potentially unnecessary’’
references are numerous, we may avoid a significant amount of work by linking
the library lazily on demand. Moreover even in a program that uses all its symbols,
incremental lazy linking may improve the system’s interactive responsiveness by
allowing programs to begin execution faster. A language system that allows the
dynamic creation or discovery of program components (e.g., as in Common Lisp
or Java) must also use lazy linking to delay the resolution of external references in
dynamically compiled components.

When a Linux program first starts running, the data entries in its GOTs areEXAMPLE 15.25
Dynamic linking in Linux on
the x86

indeed initialized as previously discussed; all addresses are known, because data
locations are statically assigned. Code entries in the GOTs, however, point back
into the corresponding PLTs, as suggested by the dotted arrows in Figure C 15.15.

PREPRINT

15.7.2 Fully Dynamic (Lazy) Linking C 337

Now consider what happens when main calls foo_stub. The foo_ptr entry
in main’s GOT points to the second instruction of foo_stub—immediately after
the indirect jump. That jump, in other words, ends up targeting the very next
instruction, as if it had not happened at all. The next instruction, for its part, pushes
onto the stack the offset of foo’s entry in main’s GOT. It then jumps (using PC-
relative addressing) to a special entry in the PLT. This entry in turn pushes the
address of main’s GOT and jumps to the dynamic linker, whose address is statically
known. The dynamic linker consults symbol table information found in main’s
executable file. Specifically, it looks up the GOT address and offset that were passed
to it on the stack and discovers that they correspond to foo. It chooses a place
for foo in the process’s address space, creates a (process-specific) foo GOT at the
appropriate offset (using symbol table information from foo’s own object file),
initializes any data locations in that GOT to point to appropriate locations in the
process’s data segment, and initializes code locations in the GOT to point to the
second instructions of the corresponding entries in foo’s PLT.

Now that foo has been given a location in the process’s address space, the
dynamic linker can modify foo’s entry in main’s PLT so that subsequent calls from
main to foo will skip the linking step, and instead follow the single indirection
suggested by the dashed arrow in Figure C 15.15. Last of all, the linker pops its
arguments from the stack (leaving the return address pushed by main in its original
call to foo_stub) and branches directly to foo. When foo completes, it will return
to the correct address in main.

If and when foo calls bar, a similar series of events will take place. The principal
difference is that both the body of foo and the stubs in its PLT must use PC-relative
addressing to access entries in foo’s GOT.

3CHECK YOUR UNDERSTANDING

30. Explain the addressing challenge faced by dynamic linking systems.

31. What is position-independent code? What is it good for? What special precau-
tions must a compiler follow in order to produce it?

32. Explain the need for PC-relative addressing in position-independent code.
How is it accomplished on the x86-32?

33. What is the purpose of a linkage table?

34. What is lazy dynamic linking? What is its purpose? How does it work?

PREPRINT

C 338 Chapter 15 Building a Runnable Program

PREPRINT

PREPRINT

15Building a Runnable Program

15.9 Exercises

15.12 Compare and contrast GIMPLE with the notation we have been using for
abstract grammars (Section 4.1).

15.13 PC-relative branches on many processors are limited in range—they can
only target locations within 2k bytes of the current PC, for some k less than
the wordsize of the machine. Explain how to generate position-independent
code that needs to branch farther than this.

15.14 We have noted that Linux creates a single data segment containing all the
static data of libraries that might be called (directly or indirectly) by a given
program. The space required for this segment is usually not a problem: most
libraries have little static data—often none at all. Suppose this were not
the case. If we wanted to perform dynamic linking for modules with large
amounts of per-module static data, how could we extend Linux’s dynamic
linking mechanisms to perform fully dynamic (lazy) linking not only of
code, but also of data?

15.15 In Example C 9.72 we described how the GNU Ada Translator (gnat) for
the x86 uses dynamically generated code to represent a subroutine closure.
Explain how a similar technique could be used to simplify the mechanism
of Figure C 15.15, if we were willing to modify code segments at run time.

C 339

C 340 Chapter 15 Building a Runnable Program

PREPRINT

PREPRINT

15Building a Runnable Program

15.10 Explorations

15.21 Find the on-line documentation for gcc, which explains both GIMPLE and
RTL, and enumerates command-line flags that will cause the compiler to
dump its intermediate forms to standard output. (Version 4.8.4 of the com-
piler supports 26 such flags for GIMPLE and 67 for RTL.) Using appropriate
flags and a small but nontrivial input program, arrange for the compiler
to dump several versions of both GIMPLE and RTL. Study the output and
describe how it has been changed by the intervening code improvement
phases.

15.22 Find out how linking works under your favorite non-Linux system. Can
code be dynamically linked? Can (nonprivileged) users create shared li-
braries? How does the loader or dynamic linker determine which libraries
a program will need? How does it locate their object code? If your compiler
can generate both position-independent and non-position-independent
code, how do the two compare in size and run-time efficiency?

15.23 Learn about pointer swizzling [Wil92], originally developed to run programs
on machines with insufficient virtual address space. Explain its connection
to dynamic linking.

15.24 Learn about ASIS, the Ada Semantic Interface Specification. How does it
improve on tools based on the earlier Diana notation? How does it work in
gnat?

15.25 Learn about MLIR, the Multi-Level Intermediate Representation being
developed as an extension to the LLVM framework. In contrast to LLVM
IR, MLIR aims to represent programs at multiple levels of abstraction, and
in particular to facilitate high-level optimization for GPUs, tensor units,
and other specialized accelerators. Explore the origins of MLIR in Google’s
TPU project. What exactly does MLIR enable that traditional medium- and
low-level IFs do not?

C 341

C 342 Chapter 15 Building a Runnable Program

PREPRINT

PREPRINT

16Run-time Program Management

16.1.2 The Common Language Infrastructure

Work on the system that became the Common Language Infrastructure (CLI) began
at Microsoft Corporation in the late 1990s, and was able to benefit from experience
with Java and the JVM, which were already well established. The most significant
differences between the virtual machines, however, stem from Microsoft’s emphasis
on cross-language interoperability—an emphasis that predates the JVM by many
years.

Growing out of earlier work on the DDE, OLE, COM, ActiveX, and DCOM
projects, the beta version of .NET was released in 2000. In addition to a virtual
machine, it includes libraries, servers, and tools for a wide variety of local and
distributed services, including user interface management, database access, net-
working, and security. A specification for the virtual machine—the CLI—was
standardized by ECMA in 2001 and by the ISO in 2003. The standard has been
updated several times over the years; version 6 was released in June 2012 [Int12a].

Perhaps the most significant contribution of the CLI is the definition of a Com-
mon Type System (CTS) for all supported languages. Encompassing nearly every-
thing described in Chapters 8 and 10 of this book, the CTS provides a superset
of what any particular language needs, while requiring common semantics and
implementation wherever the type systems of more than one language intersect.
In addition to the CTS, the CLI defines a virtual machine architecture, the VES
(Virtual Execution System); an instruction set for that machine, the CIL (Common
Intermediate Language); and a portable file format for code and metadata, PE
(Portable Executable) assemblies.

C# is in some sense the premier language for .NET, and was developed concur-
rently with it. Several dozen languages have been ported to the CLI, however, and
several of these, including Visual Basic, C++/CLI (formerly Managed C++), and
F# (a descendant of OCaml) are now in widespread use.

Thanks to the ECMA/ISO standard, it is possible for organizations other than
Microsoft to build implementations of the CLI. The leading such implementation
is the open-source Mono project, led by Xamarin, Inc. (a Microsoft subsidiary).
Mono runs on a wide variety of platforms, but tends to lag slightly behind .NET in

C 343

C 344 Chapter 16 Run-time Program Management

the addition of new features. Outside Microsoft, Java and the JVM still dominate.
Within Microsoft, most new development today employs C#. Microsoft calls its
CLI implementation the Common Language Runtime (CLR).

Architecture and Comparison to the JVM

In many ways, the CLI resembles the JVM. Both systems define a multithreaded,
stack-based virtual machine, with built-in support for garbage collection, excep-
tions, virtual method dispatch, and interface inheritance. Both represent programs
using a platform-independent, self-descriptive, bytecode notation. For languages
like C#, the CLI provides all the safety of the JVM, including definite assignment,
strong typing, and protection against overflow or underflow of the operand stack.

The biggest contrasts between the JVM and CLI stem from the latter’s support
for multiple programming languages (the following is not a comprehensive list).

Richer Type System The Common Type System (discussed below) supports both
value and reference variables of structured types (the JVM is limited to refer-
ences). The CTS also has true multidimensional arrays (allocated, contiguously,
as a single operation); function pointers; explicit support for generics; and the
ability to enforce structural type equivalence.

Richer Calling Mechanisms To facilitate the implementation of functional lan-
guages, the CLI provides explicit tail-recursive function calls (Section 6.6.1);

DESIGN & IMPLEMENTATION

16.7 Assuming a just-in-time compiler
Like the JVM, the CLI has behavior defined in terms of an abstract virtual
machine. Where Java’s virtual machine may in practice be either interpreted or
just-in-time compiled, however, the CLI was designed from the outset for just-
in-time compilation. Several minor differences between the virtual machines
reflect this difference in expected implementations. Arithmetic instructions in
Java bytecode generally include an explicit indication of operand type: there are,
for example, four separate opcodes for 32- and 64-bit integer and floating-point
addition. In the CLI’s Common Intermediate Language (CIL), there is only one
add instruction: it figures out what to do based on the types of its operands.
In type-safe code, of course, the type of every operand is statically known, and
either a compiler or an interpreter can inspect the types of arguments and figure
out what to do. The compiler, however, only has to do this once, at compile time;
the interpreter has to do it every time it encounters the instruction. In a similar
vein, slots in the local variable array of the CLI VES can be of arbitrary size, and
are required to hold a value of a single, statically known type throughout the
execution of the method. For the sake of space efficiency and rapid indexing,
the JVM reserves exactly 32 bits for every slot (longs and doubles take two
consecutive slots), and a given slot can be used for values of different types at
different points in time.

PREPRINT

16.1.2 The Common Language Infrastructure C 345

these discard the caller’s frame while retaining the dynamic link. The CLI also
supports both value and reference parameters, variable numbers of parameters
(in the fully general sense of C), multiple return values, and nonvirtual methods,
all of which the JVM lacks.

Unsafe Code For the benefit of C, C++, and other non-type-safe languages, the
CLI supports explicitly unsafe operations: nonconverting type casts, dynamic
allocation of non-garbage-collected memory, pointers to non-heap data, and
pointer arithmetic. The CLI distinguishes explicitly between verifiable code,
which cannot use these features, and unverifiable code, which can. (Verifiable
code must also follow a host of other rules.)

Miscellaneous Again for the sake of multiple languages, the CLI supports global
data and functions, local variables whose shapes and sizes are not statically
known, optional detection of arithmetic overflow, and rich facilities for ‘‘scoped’’
security and access control.

As in the JVM, every CLI thread has a small set of base registers and a stack
of method call frames, each of which contains an array of local variables and an
operand stack for expression evaluation. Each frame also contains a local memory
pool for variables of dynamic and elaboration-time shape. Incoming parameters
have their own separate space in the CLI; in the JVM they occupy the first few slots
of the local variable array.

The Common Type System

The VES and CIL provide instructions to manipulate data of certain built-in types.
A few additional types are predefined, and have built-in names in CLI metadata.
To these, the CTS adds a wide variety of type constructors. For each, it defines both
behavior and representation. No single language provides all the types of the CTS,
but (with occasional compromises) each provides a subset.

The Common Language Specification (CLS) defines a subset of the CTS intended
for cross-language interaction. It omits several type constructors provided by
the CTS, and places restrictions on others. Standard libraries (collection classes,
XML, network support, reflection, extended numerics) restrict themselves (with
occasional exceptions) to types in the CLS. Not all languages support the full CLS;
code written in those languages cannot make use of library facilities that require
unsupported types.

Built-in Types The VES and CIL provide instructions to manipulate the following
types:

Integers in 8-, 16-, 32-, and 64-bit lengths, both signed and unsigned
‘‘Native’’ integers, of the length supported by the underlying hardware, again
both signed and unsigned
IEEE floating point, both single and double precision
Object references and ‘‘managed’’ pointers

PREPRINT

C 346 Chapter 16 Run-time Program Management

Managed pointers are different from references: while typed, they don’t neces-
sarily point to the beginning of a dynamically created object. Specifically, they can
refer to fields within an object or to data outside the heap. The CIL makes sure
these pointers are known to the garbage collector, which must avoid reclaiming
any object O when a managed pointer refers to a field inside O. More details on
pointers and references can be found in Sidebar C 16.8.

Beyond the basic hardware-level types, CLI metadata treats Booleans, characters,
and strings as built-ins. Booleans and characters are manipulated in the VES using
instructions intended for short integers; strings are manipulated by accessing their
internal structure.

Constructed Types To the built-in types, the CTS adds the following:
Dynamically allocated instances of class, interface, array, and delegate types. These

are the things to which references (the built-in type) can refer. Arrays can be
multidimensional, and are stored in row-major order. Delegates are closures
(subroutine references paired with referencing environments).

Methods — function types.
Properties — getters and setters for objects.
Events — lists of delegates, associated with an object, that should be called in

response to changes to the object.
Value types — records (structures), unions, and enumerations.
Boxed value types — values embedded in a dynamically allocated object so that

one can create references to them.
Function pointers — references to static functions: type-safe, but without a refer-

encing environment.
Typed references — pointers bundled together with a type descriptor, used for

C-style variable argument lists.
Unmanaged pointers — as in C, these can point to just about anything, and support

pointer arithmetic. They cannot point to garbage-collectible objects (or parts of
objects) in the heap.
With these type constructors come extensive semantic rules, covering such topics

as identity and equality,1 casting and coercion, scoping and visibility, interface
inheritance, hiding and overriding of members, memory layout, initialization,
type safety, and verification. The details occupy hundreds of pages in the CLI
documentation.

The Common Language Specification Because no single language implements
the entire CTS, one cannot use arbitrary CTS types in a general-purpose interface
intended for use from many different languages. The Common Language Speci-
fication (CLS) defines a subset of the CTS that most (though not all) languages

1 These are reminiscent of the relationships discussed in Sections 7.5 and 11.3.3.

PREPRINT

16.1.2 The Common Language Infrastructure C 347

can accommodate. Among other things, it omits several of the types provided
by the CTS, including signed 8-bit integers; unsigned native, 16-, 32-, and 64-bit
integers; boxed value types; global static fields and methods; unmanaged pointers;
typed references; and methods with variable numbers and types of arguments. The
CLS also imposes a variety of restrictions on the use of other types. It establishes
naming conventions, limits the use of overloading, and defines the operators and
conversions that programs can assume are supported on built-in types. It requires
a lower bound of zero on each dimension of array indexing. It prohibits fields and
static methods in interfaces. It insists that a constructor be called exactly once for
each created object, and that each constructor begin with a call to a constructor
of its base class. None of these restrictions applies to program components that
operate only within a given language.

Generics As described in Section C 7.3.5, generics were added to Java and C#
in very different ways. Partly to avoid the need to modify the JVM, Java generics
were defined in terms of type erasure, which effectively converts all generic types to
Object before generating bytecode. C# generics were defined in terms of reification,
which creates a new concrete type every time a generic is instantiated with different
arguments. Reified generics have been supported directly by the CLI since .NET

DESIGN & IMPLEMENTATION

16.8 References and pointers
The reference and pointer types of the CTS are a source of potential confusion.
In a language like Java, reference types provide the only means of indirection.
They refer to dynamically allocated instances of class, interface, and array types.
Managed pointers provide additional functionality for languages like C# and
Microsoft’s C++/CLI, which permit references to the insides of objects and to
values outside the CLI heap. Managed pointers are understood by the garbage
collector, and can be used in type-safe code: If a managed pointer p refers to a
field of object O, then the collector will know that O is live. It will also update p
automatically whenever it moves O.

Unmanaged pointers exist for the sake of languages like C. They are incom-
patible with garbage collection, and cannot point to objects in the heap. They
are also incompatible with type safety, and cannot be used in verifiable code.

Typed references (typedrefs) in the CLI include the information needed to
correctly manipulate references to values (e.g., in variable argument lists) whose
type cannot be statically determined.

Version 2.0 of the CLI introduced controlled-mutability managed pointers
(also known, somewhat inaccurately, as read-only pointers). Operations on
these pointers are constrained to prevent modification of the referenced object.
Read-only pointers are used in boxing and array contexts where generics require
the ability to generate a pointer to data of a value type, but modification of that
data might not be safe.

PREPRINT

C 348 Chapter 16 Run-time Program Management

version 2.0, introduced by Microsoft in 2005 and codified by ECMA and ISO in
2006.

Reified generic types are fully described in CLI metadata, allowing full type
checking and reflection. Consider the following code in C#:EXAMPLE 16.39

Generics in the CLI and
JVM class Node<T> {

public T val;
public Node<T> next;

}
...
Node<int> n = new Node<int>();
Console.WriteLine(n.GetType().ToString());

If Node is an outermost class, the final line will print Node`1[System.Int32].
The equivalent code in Java (running on the JVM) will simply print class Node.
To support generics, CLI version 2 extended the rules for type compatibility and
verification, and introduced new versions of several CIL instructions.

Metadata and Assemblies

Portable Executable (PE) assemblies are the rough equivalent of Java .jar files: they
contain the code for a collection of CLI classes. PE is based on the Common Object
File Format (COFF), originally developed for AT&T’s System V Unix. It is the
native object file format for Windows systems, extended to accommodate CIL as
an optional instruction set. Given the requirements of native-code executable files
(e.g., relocation—see Section 15.4), PE is quite a bit more complicated than Java
.class and .jar format. A PE assembly contains a general-purpose PE header, a
special CLI header, metadata describing the assembly’s types and methods, and
CIL code for the methods.

The metadata of an assembly has a complex internal structure. (A diagram of the
interconnections among some two dozen different kinds of tables fills two pages of
the annotated CLI standard [MR04, pp. 322–323].) The metadata begins with a
manifest that specifies the files included and directly referenced, the types exported
and imported, versioning information, and security permissions. This is followed
by descriptions of all the types, and signatures for all the methods. Unlike the Java
constant pool, the metadata of an assembly is not directly visible to the assembly’s
code; it may be rearranged by the JIT compiler in implementation-dependent ways,
so long as it remains available to reflection routines at run time (obviously, those
routines are also implementation dependent).

The Common Intermediate Language

Just as the CLI VES bears a strong resemblance to the JVM, CIL bears a strong
resemblance to Java bytecode. Version 6 of the ECMA standard defines some
219 instructions, most with single-byte opcodes. Most instructions take their
arguments from, and return results to, the operand stack of the current method
frame. Others take explicit arguments representing variables, types, or methods.

PREPRINT

16.1.2 The Common Language Infrastructure C 349

Java bytecode and CIL are similarly dense—they require roughly the same number
of bytes per instruction on average.

Many of the differences between the two intermediate languages are essentially
trivial. Java bytecode is big-endian; CIL is little-endian. Java bytecode has explicit
instructions for monitor entry and exit; these are method calls in the CLI. CIL
allows arbitrary offsets for branches; Java bytecode limits them to 64K bytes.

A few more significant differences stem from the assumption that CIL will always
be JIT-compiled, as described in Sidebar C 16.7. The most obvious difference here
is that Java bytecode encodes type information explicitly in opcodes, while CIL
requires it to be inferred from arguments. CIL also includes an explicit instruction
(ldtoken) that will push a ‘‘run-time handle’’ for a method, type, or field. While
the metadata of a CIL assembly must all be available at run time, its format may
be implementation dependent; the JIT compiler translates ldtoken into machine
code consistent with that format. In the JVM, the class file constant pool is assumed
to be available at run time, in its standard format; an ordinary ‘‘load constant’’
instruction suffices to push the desired reference.

A more subtle difference is the separation of arguments from local variables
in the CLI (they share one array in the JVM). Separate arrays admit special one-
byte load instructions for both the first few arguments and the first local variables,
without requiring that they have interleaved slots; this in turn may make it eas-
ier to generate object code in which arguments occupy contiguous locations in
memory (as, for example, in the argument build area of the stack described in
Section C 9.2.2).

Finally, as already suggested, several features of CIL, not found in Java bytecode,
stem from the need to support multiple source languages. We have noted that the
CLI provides value types, reference parameters, and optional overflow checking
on arithmetic; all of these are reflected in the CIL instruction set. There are also
several extra ways to make subroutine calls. Where Java bytecode supports only
static, virtual, and dynamic method invocations, CIL has (1) nonvirtual method
calls, as in C++ (these implicitly pass this, as virtual calls do); (2) indirect calls
(i.e., calls through function pointers); (3) tail calls, which discard the caller’s frame;
and (4) jumps, which redirect control to a method after executing some optional
prologue (e.g., for this pointer adjustment in languages with multiple inheritance;
see Section C 10.6).

To illustrate CIL, let us return to the linked-list set of Example ??. The declara-EXAMPLE 16.40
CIL for a list insert
operation

tions given there are valid in both Java and C#. The insert method for this class
appears in Figure C 16.7. C# source (which is again identical to the Java version)
is on the left; a symbolic representation of the corresponding CIL is on the right.
As in Example ??, there are many examples of special one-byte load and store
instructions (here specified with a .index suffix on the opcode), and of instructions
that operate implicitly on the operand stack.

Verification As we have noted, the CLI distinguishes between verifiable and
unverifiable code. Verifiable code must satisfy a large variety of constraints that
guarantee type safety and catch many common programming errors. In particular,

PREPRINT

C 350 Chapter 16 Run-time Program Management

public void insert(int v) {

node n = head;

while (n.next != null
&& n.next.val < v) {

n = n.next;
}
if (n.next == null

|| n.next.val > v) {

node t = new node();

t.val = v;

t.next = n.next;

n.next = t;

} // else v already in set
}

.method private hidebysig
instance default void insert (int32 v) cil managed

{
// Method begins at RVA 0x2070 // RVA == relative
// Code size 108 (0x6c) // virtual address
.maxstack 3
.locals init (

class LLset/node V_0, // n
class LLset/node V_1) // t

IL_0000: ldarg.0
IL_0001: ldfld class LLset/node LLset::head
IL_0006: stloc.0
IL_0007: br IL_0013 // jump to header of rotated loop
IL_000c: ldloc.0 // n -- beginning of loop body
IL_000d: ldfld class LLset/node LLset/node::next
IL_0012: stloc.0 // n = n.next
IL_0013: ldloc.0 // n -- beginning of loop test
IL_0014: ldfld class LLset/node LLset/node::next
IL_0019: brfalse IL_002f // exit loop if n null
IL_001e: ldloc.0 // n
IL_001f: ldfld class LLset/node LLset/node::next
IL_0024: ldfld int32 LLset/node::val
IL_0029: ldarg.1 // v
IL_002a: blt IL_000c // continue loop
IL_002f: ldloc.0 // n
IL_0030: ldfld class LLset/node LLset/node::next
IL_0035: brfalse IL_004b
IL_003a: ldloc.0 // n
IL_003b: ldfld class LLset/node LLset/node::next
IL_0040: ldfld int32 LLset/node::val
IL_0045: ldarg.1 // v
IL_0046: ble IL_006b
IL_004b: newobj instance void class LLset/node::'.ctor'()
IL_0050: stloc.1 // t
IL_0051: ldloc.1 // t
IL_0052: ldarg.1 // v
IL_0053: stfld int32 LLset/node::val
IL_0058: ldloc.1 // t
IL_0059: ldloc.0 // n
IL_005a: ldfld class LLset/node LLset/node::next
IL_005f: stfld class LLset/node LLset/node::next
IL_0064: ldloc.0 // n
IL_0065: ldloc.1 // t
IL_0066: stfld class LLset/node LLset/node::next
IL_006b: ret

} // end of method LLset::insert

Figure 16.7 C# source and CIL for a list insertion method. Output on the right was produced by the Mono project’s mcs
(compiler) and monodis (disassembler) tools, with additional comments inserted by hand. Note that the compiler has rotated
the test to the bottom of the while loop, which occupies lines IL_000c through IL_002a in the output code.

PREPRINT

16.1.2 The Common Language Infrastructure C 351

the VES can be sure that a verifiable program will never access data outside its
logical address space. Among other things, this guarantee ensures fault containment
for verifiable modules that share a single physical address space.

Unverifiable code can make use of unsafe language features (e.g., unions and
pointer arithmetic in C), but must still conform to more basic rules for validity (well-
formedness) of CIL. Together, the components of the VES (i.e., the JIT compiler,
loader, and run-time libraries) validate all loaded assemblies, and verify those that
claim to be verifiable. Any standard-conforming implementation of the CLI must
run all verifiable programs. Optionally, it may also run validated but not verifiable
programs.

As in the JVM, verification requires data flow analysis to check type consistency
and lack of underflow and overflow in the operand stack. The CLI standard requires
verifiable routines to specify that all local variables are initialized to zero. CLI
implementations typically perform definite assignment data flow analysis anyway,
to identify cases in which those initializations can safely be omitted. The standard
also requires numerous checks on individual instructions. Many of these are also
performed by the JVM. Local variable references, for example, are statically checked
to make sure they lie within the declared bounds of the stack frame. Other checks
stem from the presence of unsafe features in the CLI. Verifiable code cannot use
unmanaged pointers or unions, for example, nor can it perform most indirect
method calls.

3CHECK YOUR UNDERSTANDING

38. Summarize the architecture of the Common Language Infrastructure. Contrast
it with the JVM. Highlight those features intended to facilitate cross-language
interoperability.

39. Describe how the choice of just-in-time compilation (and the rejection of
interpretation) influenced the structure of the CLI.

40. Describe several different kinds of references supported by the CLI. Why are
there so many?

41. What is the purpose of the Common Language Specification? Why is it only a
subset of the Common Type System?

42. Describe the CLI’s support for unsafe code. How can this support be reconciled
with the need for safety in embedded settings?

PREPRINT

C 352 Chapter 16 Run-time Program Management

PREPRINT

PREPRINT

16Run-time Program Management

16.5 Exercises

16.14 Using Oracle’s jaotc compiler and mono --aot, compile the code of Fig-
ures 16.2 and C 16.7 all the way to machine language. Disassemble and
compare the results. Can all the differences be attributed to variations in
the quality of the compilers, or are any reflective of more fundamental
differences between the source languages or virtual machines?

16.15 Rewrite the list insertion method of Example C 16.40 in F# instead of C#.
Compile to CIL and compare to the right side of Figure C 16.7. Discuss any
differences you find.

16.16 Building on the previous exercise, rewrite your list insertion routine (both
C# and F# versions) to be generic in the type of the list elements. Compare
the generic and nongeneric versions of the resulting CIL and discuss the
differences.

16.17 Extend your F# code from Exercise C 16.16 to include list removal and
search routines. After finding and reading appropriate documentation,
package these routines in a library that can be called in a natural way not
only from F# but also from C#.

C 353

C 354 Chapter 16 Run-time Program Management

PREPRINT

PREPRINT

16Run-time Program Management

16.6 Explorations

16.26 Learn the details of the CLI verification algorithm (Partition III, Section 1.8
of the ECMA standard, version 4 [Int12a]). Pay particular attention to the
rules for merging compatible types at joins in the control flow graph, and
for dealing with generics.

16.27 Learn more about the .NET Language-Integrated Query mechanism
(LINQ), mentioned in Example 16.29. Discuss its use of attributes. Write
a program that uses it to interface to a database through SQL. Write
another program that uses it to process the elements of a set from the
System.Collections library.

16.28 Like most scripting languages, Perl 5 compiles its input to an internal syntax
tree format, which it then interprets. Explore this implementation, and
characterize the circumstances under which the interpreter may need to
call back into the compiler during execution. Also explore the perlcc
command-line script (itself written in Perl), which translates source code
to either bytecode or machine code.

In several cases, the interpreter may need to call back into the compiler
during execution. Features that force such dynamic compilation include
eval, which compiles and then interprets a string; require, which loads a
library package; and the ee version of the substitution command, which
performs expression evaluation on the replacement string:

$foo = "abc";
$foo =~ s/b/2 + 3/ee; # replace b with the value of 2 + 3
print "$foo\n"; # prints a5c

Perl can also be directed, via library calls or the perlcc command-line
script (itself written in Perl), to translate source code to either bytecode
or machine code. In the former case, the output is an ‘‘executable’’ file

C 355

C 356 Chapter 16 Run-time Program Management

beginning with #! /usr/bin/perl (see Sidebar 14.4 for a discussion of the
#! convention). If invoked from the shell, this file will feed itself back into
Perl 5, which will notice that the rest of the file contains bytecode instead of
source, and will perform a quick reconstruction of the syntax tree, ready
for interpretation.

If directed to produce machine code, perlcc generates a C program,
which it then runs through the C compiler. The C program builds an ap-
propriate syntax tree and passes it directly to the Perl interpreter, bypassing
both the compiler and the byte-code-to-syntax-tree reconstruction. Both
the bytecode and machine code back ends are considered experimental;
they do not work for all programs.

PREPRINT

PREPRINT

17Code Improvement

In Chapter 15 we discussed the generation, assembly, and linking of target
code in the middle and back end of a compiler. The techniques we presented led to
correct but highly suboptimal code: there were many redundant computations, and
inefficient use of the registers, multiple functional units, and cache of a modern
microprocessor. This chapter takes a look at code improvement: the phases of
compilation devoted to generating good code. For the most part we will interpret
‘‘good’’ to mean fast. In a few cases we will also consider program transformations
that decrease memory requirements. On occasion a real compiler may try to
minimize power consumption, dollar cost of execution on a commercial cloud
server, or demand for some other resource; we will not consider these issues here.

There are several possible levels of ‘‘aggressiveness’’ in code improvement. In
a very simple compiler, or in a ‘‘nonoptimizing’’ run of a more sophisticated
compiler, we can use a peephole optimizer to peruse already-generated target code
for obviously suboptimal sequences of adjacent instructions. At a slightly higher
level, typical of the baseline behavior of production-quality compilers, we can
generate near-optimal code for basic blocks. As described in Chapter 15, a basic
block is a maximal-length sequence of instructions that will always execute in its
entirety (assuming it executes at all). In the absence of delayed branches, each
basic block in assembly language or machine code begins with the target of a
branch or with the instruction after a conditional branch, and ends with a branch
or with the instruction before the target of a branch. As a result, in the absence of
hardware exceptions, control never enters a basic block except at the beginning,
and never exits except at the end. Code improvement at the level of basic blocks is
known as local optimization. It focuses on the elimination of redundant operations
(e.g., unnecessary loads or common subexpression calculations), and on effective
instruction scheduling and register allocation.

At higher levels of aggressiveness, production-quality compilers employ tech-
niques that analyze entire subroutines for further speed improvements. These
techniques are known as global optimization.1 They include multi-basic-block
versions of redundancy elimination, instruction scheduling, and register allocation,

C 357

C 358 Chapter 17 Code Improvement

plus code modifications designed to improve the performance of loops. Both global
redundancy elimination and loop improvement typically employ a control flow
graph representation of the program, as described in Section 15.1.1. Both employ
a family of algorithms known as data flow analysis to trace the flow of information
across the boundaries between basic blocks.

At the highest levels of aggressiveness, compilers may perform various forms of
interprocedural code improvement. Interprocedural improvement is difficult for
two main reasons. First, because a subroutine may be called from many different
places in a program, it is difficult to identify (or fabricate) conditions (available
registers, common subexpressions, etc.) that are guaranteed to hold at all call sites.
Second, because many subroutines are separately compiled, an interprocedural
code improver must generally subsume some of the work of the linker.

In the sections below we consider peephole, local, and global code improvement.
We will not cover interprocedural improvement; interested readers are referred to
other texts (see the Bibliographic Notes at the end of the chapter). Moreover, even
for the subjects we cover, our intent will be more to ‘‘demystify’’ code improve-
ment than to describe the process in detail. Much of the discussion (beginning in
Section C 17.3) will revolve around the successive refinement of code for a single
subroutine. This extended example will allow us to illustrate the effect of several
key forms of code improvement without dwelling on the details of how they are
achieved. Entire books continue to be written on code improvement; it remains a
very active research topic.

As in most texts, we will sometimes refer to code improvement as ‘‘optimization,’’
though this term is really a misnomer: we will seldom have any guarantee that our
techniques will lead to optimal code. As it turns out, even some of the relatively
simple aspects of code improvement (e.g., minimizing the number of registers
needed in a basic block) can be shown to be NP-hard. True optimization is a realistic
option only for small, special-purpose program fragments [Mas87]. Our discussion
will focus on the improvement of code for imperative programs. Optimizations
specific to functional or logic languages are beyond the scope of this book.

We begin in Section C 17.1 with a more detailed consideration of the phases
of code improvement. We then turn to peephole optimization in Section C 17.2.
It can be performed in the absence of other optimizations if desired, and the
discussion introduces some useful terminology. In Sections C 17.3 and C 17.4
we consider local and global redundancy elimination. Sections C 17.5 and C 17.7
cover code improvement for loops. Section C 17.6 covers instruction scheduling.
Section C 17.8 covers register allocation.

1 The adjective ‘‘global’’ is standard but somewhat misleading in this context, since the improvements
do not consider the program as a whole; ‘‘subroutine-level’’ might be more accurate.

PREPRINT

17.1 Phases of Code Improvement C 359

17.1 Phases of Code Improvement

As we noted in Chapter 15, the structure of the middle and back end varies consid-
erably from compiler to compiler. For simplicity of presentation we will continue to
focus on the structure introduced in Section 15.1. In that section (as in Section 1.6)
we characterized machine-independent and machine-specific code improvement
as individual phases of compilation, separated by target code generation. We mustEXAMPLE 17.1

Code improvement phases now acknowledge that this was an oversimplification. In reality, code improvement
is a substantially more complicated process, often comprising a very large num-
ber of phases. As noted in Section C 15.2.1, gcc has more than 140 phases in its
middle end, and 70 in the back end—far more than we can cover in this chapter.
In some cases optimizations depend on one another, and must be performed in a
particular order. In other cases they are independent, and can be performed in any
order. In still other cases it can be important to repeat an optimization, in order
to recognize new opportunities for improvement that were not visible until some
other optimization was applied.

We will concentrate in our discussion on the forms of code improvement that
tend to achieve the largest increases in execution speed, and are most widely used.
Compiler phases to implement these improvements are shown in Figure C 17.1.
Within this structure, the middle end begins with intermediate code generation.
This phase identifies fragments of the syntax tree that correspond to basic blocks. It
then creates a control flow graph in which each node contains a linear sequence of
three-address instructions for an idealized machine, typically one with an unlimited
supply of virtual registers. The (machine-specific) back end begins with target code
generation. This phase strings the basic blocks together into a linear program,
translating each block into the instruction set of the target machine and generating
branch instructions that correspond to the arcs of the control flow graph.

Machine-independent code improvement in Figure C 17.1 is shown as three
key phases. The first of these identifies and eliminates redundant loads, stores, and
computations within each basic block. The second deals with similar redundancies
across the boundaries between basic blocks (but within the bounds of a single
subroutine). The third effects several improvements specific to loops; these are
particularly important, since most programs spend most of their time in loops. In
Sections C 17.4, C 17.5, and C 17.7, we shall see that global redundancy elimination
and loop improvement may actually be subdivided into several separate phases.

We have shown machine-specific code improvement as four separate phases.
The first and third of these are essentially identical. As we noted in Section C 5.5.2,
register allocation and instruction scheduling tend to interfere with one another:
the instruction schedules that do the best job of minimizing pipeline stalls tend to
increase the demand for architectural registers (this demand is commonly known
as register pressure). A common strategy, assumed in our discussion, is to schedule
instructions first, then allocate architectural registers, then schedule instructions
again. If it turns out that there aren’t enough architectural registers to go around,
the register allocator will generate additional load and store instructions to spill

PREPRINT

C 360 Chapter 17 Code Improvement

Scanner (lexical analysis)
Character stream

Token stream

Abstract syntax tree (AST)

Abstract syntax tree with
annotations (high-level IF)

Front end

Control �ow graph with
pseudoinstructions in basic

blocks (medium-level IF)

Machine-
independent

Machine-
speci�c

Modi�ed control �ow graph

Modi�ed control �ow graph

Modi�ed control �ow graph

Modi�ed assembly language

Modi�ed assembly language

Modi�ed assembly language

Final assembly language

(Almost) assembly language
(low-level IF)

Parser and AST generation

Semantic analysis

Local redundancy
elimination

Global redundancy
elimination

Loop improvement

Target code generation

Preliminary
instruction scheduling

Register allocation

Final instruction scheduling

Peephole optimization

Intermediate
code generation

Back end

Figure 17.1 A more detailed view of the compiler structure originally presented in Figure 15.1.
Both machine-independent and machine-specific code improvement have been divided into
multiple phases. As before, the dashed line shows a common ‘‘break point’’ for a two-pass
compiler. Machine-independent code improvement may sometimes be located in a separate
‘‘middle end’’ pass.

PREPRINT

17.2 Peephole Optimization C 361

registers temporarily to memory. The second round of instruction scheduling
attempts to fill any delays induced by the extra loads.

17.2 Peephole Optimization

In a simple compiler with no machine-independent code improvement, a code
generator can simply walk the abstract syntax tree, producing naive code, either as
output to a file or global list, or as annotations in the tree. As we saw in Chapters 1
and 15, however, the result is generally of very poor quality (contrast the code of
Example 1.2 with that of Figure 1.7). Among other things, every use of a variable
as an r-value results in a load, and every assignment results in a store.

A relatively simple way to significantly improve the quality of naive code is to
run a peephole optimizer over the target code. A peephole optimizer works by
sliding a several-instruction window (a peephole) over the target code, looking
for suboptimal patterns of instructions. The set of patterns to look for is heuristic;
generally one creates patterns to match common suboptimal idioms produced by
a particular code generator, or to exploit special instructions available on a given
machine. Here are a few examples:

Elimination of redundant loads and stores: The peephole optimizer can often rec-EXAMPLE 17.2
ognize that the value produced by a load instruction is already available in a
register. For example:

r2 := r1 + 5
i := r2
r3 := i
r3 := r3 × 3

becomes
r2 := r1 + 5
i := r2
r3 := r2 × 3

In a similar but less common vein, if there are two stores to the same location
within the optimizer’s peephole (with no possible intervening load from that
location), then we can generally eliminate the first.

Constant folding: A naive code generator may produce code that performs calcula-EXAMPLE 17.3
tions at run time that could actually be performed at compile time. A peephole
optimizer can often recognize such code. For example:

r2 := 3 × 2 becomes r2 := 6

Constant propagation: Sometimes we can tell that a variable will have a constantEXAMPLE 17.4
value at a particular point in a program. We can then replace occurrences of the
variable with occurrences of the constant:
r2 := 4
r3 := r1 + r2
r2 := . . .

becomes
r2 := 4
r3 := r1 + 4
r2 := . . .

and then r3 := r1 + 4
r2 := . . .

The final assignment to r2 tells us that the previous value (the 4) in r2 was
dead—it was never going to be needed. (By analogy, a value that may be needed

PREPRINT

C 362 Chapter 17 Code Improvement

in some future computation is said to be live.) Loads of dead values can be
eliminated. Similarly,

r2 := 4
r3 := r1 + r2
r3 := ∗r3
r2 := . . .

becomes
r3 := r1 + 4
r3 := ∗r3
r2 := . . .

and then r3 := ∗(r1 +4)
r2 := . . .

(This again leverages that fact that the 4 in r2 is dead at the final assignment.)
Often constant folding will reveal an opportunity for constant propagation.

Sometimes the reverse occurs:
r1 := 3
r2 := r1 × 2

becomes r1 := 3
r2 := 3 × 2

and then r1 := 3
r2 := 6

If the 3 in r1 is dead, then the initial load can also be eliminated.
Common subexpression elimination: When the same calculation occurs twiceEXAMPLE 17.5

within the peephole of the optimizer, we can often eliminate the second calcula-
tion:
r2 := r1 × 5
r2 := r2 + r3
r3 := r1 × 5

becomes
r4 := r1 × 5
r2 := r4 + r3
r3 := r4

Often, as shown here, an extra register will be needed to hold the common
value.

Copy propagation: Even when we cannot tell that the contents of register b willEXAMPLE 17.6
be constant, we may sometimes be able to tell that register b will contain the
same value as register a. We can then replace uses of b with uses of a, so long as
neither a nor b is modified:
r2 := r1
r3 := r1 + r2
r2 := 5

becomes
r2 := r1
r3 := r1 + r1
r2 := 5

and then r3 := r1 + r1
r2 := 5

Performed early in code improvement, copy propagation can serve to decrease
register pressure. In a peephole optimizer it may allow us (as in this case, in
which the copy of r1 in r2 is dead) to eliminate one or more instructions.

Strength reduction: Numeric identities can sometimes be used to replace a com-EXAMPLE 17.7
paratively expensive instruction with a cheaper one. In particular, multiplication
or division by powers of two can be replaced with adds or shifts:

r1 := r2 × 2 becomes r1 := r2 + r2 or r1 := r2 << 1

r1 := r2 / 2 becomes r1 := r2 >> 1

(This last replacement may not be correct when r2 is negative; see Exer-
cise C 17.1.) In a similar vein, algebraic identities allow us to perform sim-
plifications like the following:

r1 := r2 × 0 becomes r1 := 0

PREPRINT

17.2 Peephole Optimization C 363

Elimination of useless instructions: Instructions like the following can be droppedEXAMPLE 17.8
entirely:

r1 := r1 + 0
r1 := r1 × 1

Filling of load and branch delays: Several examples of delay-filling transforma-
tions were presented in Section C 5.5.1.

Exploitation of the instruction set: Particularly on CISC machines, sequences ofEXAMPLE 17.9
simple instructions can often be replaced by a smaller number of more complex
instructions. For example,

r1 := r1 & 0x0000FF00
r1 := r1 >> 8

can be replaced by an ‘‘extract byte’’ instruction. The sequence

r1 := r2 + 8
r3 := ∗r1

where r1 is dead at the end can be replaced by a single load of r3 using a base
plus displacement addressing mode. Similarly,

r1 := ∗r2
r2 := r2 + 4

where ∗r2 is a 4-byte quantity can be replaced by a single load with an auto-
increment addressing mode. On many machines, a series of loads from consec-
utive locations can be replaced by a single, multiple-register load.

Because they use a small, fixed-size window, peephole optimizers tend to be
very fast: they impose a small, constant amount of overhead per instruction. They
are also relatively easy to write and, when used on naive code, can yield dramatic
performance improvements.

It should be emphasized, however, that most of the forms of code improvement
in Examples C 17.2 through C 17.9 are not specific to peephole optimization. In fact,
all but the last (exploitation of the instruction set) will appear in our discussion of
more general forms of code improvement. The more general forms will do a better
job, because they won’t be limited to looking at a narrow window of instructions. In
a compiler with good machine-specific and machine-independent code improvers,

DESIGN & IMPLEMENTATION

17.1 Peephole optimization
In many cases, it is easier to count on the code improver to catch and fix subop-
timal idioms than it is to generate better code in the first place. Even a peephole
optimizer will catch such common examples as multiplication by one or addition
of zero; there is no point adding complexity to the code generator to treat these
cases specially.

PREPRINT

C 364 Chapter 17 Code Improvement

there may be no need for the peephole optimizer to eliminate redundancies or
useless instructions, fold constants, perform strength reduction, or fill load and
branch delays. In such a compiler the peephole optimizer serves mainly to exploit
idiosyncrasies of the target machine, and perhaps to clean up certain suboptimal
code idioms that leak through the rest of the back end.

17.3 Redundancy Elimination in Basic Blocks

To implement local optimizations, the compiler must first identify the fragments
of the syntax tree that correspond to basic blocks, as described in Section 15.1.1.
Roughly speaking, these fragments consist of tree nodes that are adjacent according
to in-order traversal, and contain no selection or iteration constructs. In Figure 15.6,
we presented inference rules to generate linear (goto-containing) code for simple
syntax trees. A similar set of inference rules can be used to create a control flow
graph (Exercise 15.6).

A call to a user subroutine within a control flow graph could be treated as a pair
of branches, defining a boundary between basic blocks, but as long as we know
that the call will return we can simply treat it as an instruction with potentially
wide-ranging side effects (i.e., as an instruction that may overwrite many registers
and memory locations). As we noted in Section 9.2.4, the compiler may also
choose to expand small subroutines in-line. In this case the behavior of the ‘‘call’’ is
completely visible. If the called routine consists of a single basic block, it becomes a
part of the calling block. If it consists of multiple blocks, its prologue and epilogue
become part of the blocks before and after the call.

17.3.1 A Running Example

Throughout much of the remainder of this chapter we will trace the improvementEXAMPLE 17.10
The combinations
subroutine

of code for a single subroutine: specifically, one that calculates into an array the

DESIGN & IMPLEMENTATION

17.2 Basic blocks
Many of a program’s basic blocks are obvious in the source. Some, however, are
created by the compiler during the translation process. Loops may be created, for
example, to copy or initialize large records or subroutine parameters. Run-time
semantic checks, likewise, induce large numbers of implicit selection statements.
Moreover, as we shall see in Sections C 17.4.2, C 17.5, and C 17.7, many opti-
mizations move code from one basic block to another, create or destroy basic
blocks, or completely restructure loop nests. As a result of these optimizations,
the final control flow graph may be very different from what the programmer
might naively expect.

PREPRINT

17.3.1 A Running Example C 365

Block 4

Block 1

Block 3

Block 2

:=

[] 1 [] 1
t 1

A 0
A n

i 1 i div

n

t div

× i

t −

+ i

n 1

[]
[]

t

A i

t

A −

n i

++

i
2

for
return

:= :=

:=
:=

:=

:= <_

Figure 17.2 Syntax tree for the combinations subroutine. Portions of the tree corresponding
to basic blocks have been circled.

binomial coefficients
(n

m
)

for all 0 ≤ m ≤ n. These are the elements of the nth row
of Pascal’s triangle. The mth element of the row indicates the number of distinct
combinations of m items that may be chosen from among a collection of n items.
In C, the code looks like this:

void combinations(int n, int *A) {
int i, t;
A[0] = 1;
A[n] = 1;
t = 1;
for (i = 1; i <= n/2; i++) {

t = (t * (n+1-i)) / i;
A[i] = t;
A[n-i] = t;

}
}

This code capitalizes on the fact that
(n

m
)

=
(n

n−m
)

for all 0 ≤ m ≤ n. One can
prove (Exercise C 17.2) that the use of integer arithmetic will not lead to round-off
errors.

A syntax tree for our subroutine appears in Figure C 17.2, with basic blocksEXAMPLE 17.11
Syntax tree and naive
control flow graph

identified. The corresponding control flow graph appears in Figure C 17.3. To avoid
artificial interference between instructions at this early stage of code improvement,
we employ a medium-level intermediate form (IF) in which every calculated value
is placed in a separate register. To emphasize that these are virtual registers (of

PREPRINT

C 366 Chapter 17 Code Improvement

Block 1:
 sp := sp – 8
 v1 := r0 –– n
 n := v1
 v2 := r1 –– A
 A := v2

 v3 := A
 v4 := 1
 *v3 := v4
 v5 := A
 v6 := n
 v7 := 4
 v8 := v6 × v7
 v9 := v5 + v8
 v10 := 1
 *v9 := v10
 v11 := 1
 t := v11
 v12 := 1
 i := v12
 goto Block 3

Block 4:
 sp := sp + 8
 goto *lr

Block 3:
 v39 := i
 v40 := n
 v41 := 2
 v42 := v40 div v41
 v43 := v39 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v13 := t
 v14 := n
 v15 := 1
 v16 := v14 + v15
 v17 := i
 v18 := v16 − v17
 v19 := v13 × v18
 v20 := i
 v21 := v19 div v20
 t := v21
 v22 := A
 v23 := i
 v24 := 4
 v25 := v23 × v24
 v26 := v22 + v25
 v27 := t
 *v26 := v27
 v28 := A
 v29 := n
 v30 := i
 v31 := v29 − v30
 v32 := 4
 v33 := v31 × v32
 v34 := v28 + v33
 v35 := t
 *v34 := v35
 v36 := i
 v37 := 1
 v38 := v36 + v37
 i := v38
 goto Block 3

Figure 17.3 Naive control flow graph for the combinations subroutine. Note that reference
parameter A contains the address of the array into which to write results; hence we write v3 :=
A instead of v3 := &A.

PREPRINT

17.3.2 Value Numbering C 367

which there is an unlimited supply), we name them v1, v2, We will use r1,
r2, . . . to represent architectural registers in Section C 17.8.

The fact that no virtual register is assigned a value by more than one instruction
in the original control flow graph is crucial to the success of our code improvement
techniques. Informally, it says that every value that could eventually end up in a
separate architectural register will, at least at first, be placed in a separate virtual
register. Of course if an assignment to a virtual register appears within a loop, then
the register may take on a different value in every iteration. In addition, as we move
through the various phases of code improvement we will relax our rules to allow a
virtual register to be assigned a value in more than one place. The key point is that
by employing a new virtual register whenever possible at the outset we maximize
the degrees of freedom available to later phases of code improvement.

In the initial (entry) and final (exit) blocks, we have included code for the
subroutine prologue and epilogue. We have assumed naive Arm calling conventions,
as described in Section C 9.2.2. We have also assumed that the compiler has
recognized that our subroutine is a leaf, and that it therefore has no need to save
the return address (link register—lr) or frame pointer (r7) registers. In all cases,
accesses to n, A, i, and t in memory should be interpreted as performing the
appropriate displacement addressing with respect to the stack pointer (sp) register.
Though we assume that parameter values were passed in registers (architectural
registers r0 and r1 on Arm), our original (naive) code immediately saves these
values to memory, so that subsequent accesses can be handled in the same way
as they are for local variables. We make the saves by way of virtual registers so
that they will be visible to the global value numbering algorithm described in
Section C 17.4.1. Eventually, after several stages of improvement, we will find that
both the parameters and the local variables can be kept permanently in registers,
eliminating the need for the various loads, stores, and copy operations.

17.3.2 Value Numbering

To improve the code within basic blocks, we need to minimize loads and stores,
and to identify redundant calculations. One common way to accomplish these
tasks is to translate the syntax tree for a basic block into an expression DAG (di-
rected acyclic graph) in which redundant loads and computations are merged into
individual nodes with multiple parents [ALSU07, Secs. 6.1.1 and 8.5.1]. Similar
functionality can also be obtained without an explicitly graphical program repre-
sentation, through a technique known as local value numbering [Muc97, Sec. 12.4].
We describe this technique below.

Value numbering assigns the same name (a ‘‘number’’—historically, a table
index) to any two or more symbolically equivalent computations (‘‘values’’), so
that redundant instances will be recognizable by their common name. In the for-
mulation here, our names are virtual registers, which we merge whenever they are
guaranteed to hold a common value. While performing local value numbering, we
will also implement local constant folding, constant propagation, copy propagation,

PREPRINT

C 368 Chapter 17 Code Improvement

common subexpression elimination, strength reduction, and useless instruction
elimination. (The distinctions among these optimizations will be clearer in the
global case.)

We scan the instructions of a basic block in order, maintaining a dictionary
to keep track of values that have already been loaded or computed, and writing
instructions to a new, improved basic block that will replace the original one. For
a load instruction, vi := x, we consult the dictionary to see whether x is already
in some register v j. If so, we simply add an entry to the dictionary indicating
that uses of vi should be replaced by uses of v j. If x is not in the dictionary, we
generate a load in the new version of the basic block, and add an entry to the
dictionary indicating that x is available in vi . For a load of a constant, vi := c,
we check to see whether c is small enough to fit in the immediate operand of a
compute instruction. If so, we add an entry to the dictionary indicating that uses
of vi should be replaced by uses of the constant, but we generate no code: we’ll
embed the constant directly in the appropriate instructions when we come to them.
If the constant is large, we consult the dictionary to see whether it has already been
loaded (or computed) into some other register v j; if so, we note that uses of vi
should be replaced by uses of v j. If the constant is large and not already available,
then we generate instructions to load it into vi and then note its availability with
an appropriate dictionary entry. In all cases, we create a dictionary entry for the
target register of a load, indicating whether that register (1) should be used under
its own name in subsequent instructions, (2) should be replaced by uses of some
other register, or (3) should be replaced by some small immediate constant.

For a compute instruction, vi := v j op vk , we first consult the dictionary to see
whether uses of v j or vk should be replaced by uses of some other registers or small
constants vl and vm . If both operands are constants, then we can perform the
operation at compile time, effecting constant folding. We then treat the constant
as we did for loads above: keeping a note of its value if small, or of the register in
which it resides if large. We also note opportunities to perform strength reduction
or to eliminate useless instructions. If at least one of the operands is nonconstant
(and the instruction is not useless), we consult the dictionary again to see whether
the result of the (potentially modified) computation is already available in some
register vn . This final lookup operation is keyed by a combination of the operator
op and the operand registers or constants v j (or vl) and vk (or vm). If the lookup
is successful, we add an entry to the dictionary indicating that uses of vi should be
replaced by uses of vn . If the lookup is unsuccessful, we generate an appropriate
instruction (e.g., vi := v j op vk or vi := vl op vm) in the new version of the basic
block, and add a corresponding entry to the dictionary.

As we work our way through the basic block, the dictionary provides us with
four kinds of information:

1. For each already-computed virtual register: whether it should be used under
its own name, replaced by some other register, or replaced by an immediate
constant

2. For certain variables: what register holds the (current) value

PREPRINT

17.3.2 Value Numbering C 369

3. For certain large constants: what register holds the value
4. For some (op, arg1, arg2) triples, where argi can be a register name or a constant:

what register already holds the result

For a store instruction, x := vi , we remove any existing entry for x in the
dictionary, and add an entry indicating that x is available in vi . We also note (in
that entry) that the value of x in memory is stale. If x may be an alias for some
other variable y, we must also remove any existing entry for y from the dictionary.
(If we are certain that y is an alias for x, then we can add an entry indicating that
the value of y is available in vi .) A similar precaution, ignored in the discussion
above, applies to loads: if x may be an alias for y, and if there is an entry for y in
the dictionary indicating that the value in memory is stale, then a load instruction
vi := x must be preceded by a store to y. When we reach the end of the block, we
traverse the dictionary, generating store instructions for all variables whose values
in memory are stale. If any variables may be aliases for each other, we must take
care to generate the stores in the order in which the values were produced. After
generating the stores, we generate the branch (if any) that ends the block.

Local Code Improvement

In the process of local value numbering we automatically perform several impor-
tant operations. We identify common subexpressions (none of which occur in

DESIGN & IMPLEMENTATION

17.3 Common subexpressions
It is natural to think of common subexpressions as something that could be
eliminated at the source code level, and programmers are sometimes tempted
to do so. The following, for example,

x = a + b + c;
y = a + b + d;

could be replaced with

t = a + b;
x = t + c;
y = t + d;

Such changes do not always make the code easier to read, however, and if the
compiler is doing its job they don’t make it any faster either. Moreover numerous
examples of common subexpressions are entirely invisible in the source code.
Examples include array subscript calculations (Section 8.2.3), references to
variables in lexically enclosing scopes (Section 9.2), and references to nearby
fields in complex records (Section 8.1.3). Like the pointer arithmetic discussed
in Sidebar 8.8, hand elimination of common subexpressions, unless it makes
the code easier to read, is usually not a good idea.

PREPRINT

C 370 Chapter 17 Code Improvement

our combinations example), allowing us to compute them only once. We also
implement constant folding and certain strength reductions. Finally, we perform
local constant and copy propagation, and eliminate redundant loads and stores:
our use of the dictionary to delay store instructions ensures that (in the absence of
potential aliases) we never write a variable twice, or write and then read it again
within the same basic block.

To increase the number of common subexpressions we can find, we may want
to traverse the syntax tree prior to linearizing it, rearranging expressions into
some sort of normal form. For commutative operations, for example, we can swap
subtrees if necessary to put operands in lexicographic order. We can then recognize
that a + b and b + a are common subexpressions. In some cases (e.g., in the context
of array address calculations, or with explicit permission from the programmer), we
may use associative or distributive rules to normalize expressions as well, though as
we noted in Section 6.1.4 such changes can in general lead to arithmetic overflow
or numerical instability. Unfortunately, straightforward normalization techniques
will fail to recognize the redundancy in a + b + c and a + c; lexicographic ordering
is simply a heuristic.

A naive approach to aliases is to assume that assignment to element i of an array
may alter element j, for any j; that assignment through a pointer to an object of
type t (in a type-safe language) may alter any variable of that type; and that a call to
a subroutine may alter any variable visible in the subroutine’s scope (including at a
minimum all globals). These assumptions are overly conservative and can greatly
limit the ability of a compiler to generate good code. More aggressive compilers
perform extensive symbolic analysis of array subscripts in order to narrow the
set of potential aliases for an array assignment. Similar analysis may be able to
determine that particular array or record elements can be treated as unaliased
scalars, making them candidates for allocation to registers. Recent years have
also seen the development of very good alias analysis techniques for pointers (see
Sidebar C 17.4).

Figure C 17.4 shows the control flow graph for our combinations subroutineEXAMPLE 17.12
Result of local redundancy
elimination

after local redundancy elimination. We have eliminated 21 of the instructions in
Figure C 17.3, all of them loads of variables or constants. Thirteen of the eliminated

DESIGN & IMPLEMENTATION

17.4 Pointer analysis
The tendency of pointers to introduce aliases is one of the reasons why Fortran
compilers have traditionally produced faster code than C compilers. Prior to
Fortran 90, the language had no pointers, and many Fortran programs are
still written without them. C programs, by contrast, tend to be pointer-rich.
Some time ago, alias analysis for pointers reached the point at which good C
compilers could rival their Fortran counterparts; it remains an active research
topic. For a survey of the field as of 2015, see the tutorial by Smaragdakis and
Balatsouras [SB15].

PREPRINT

17.3.2 Value Numbering C 371

Block 1:
 sp := sp − 8
 v1 := r0 –– n
 n := v1
 v2 := r1 –– A
 A := v2
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 t := 1
 i := 1
 goto Block 3

Block 4:
 sp := sp + 8
 goto *lr

Block 3:
 v39 := i
 v40 := n
 v42 := v40 >> 1
 v43 := v39 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v13 := t
 v14 := n
 v16 := v14 + 1
 v17 := i
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17
 v22 := A
 v25 := v17 << 2
 v26 := v22 + v25
 *v26 := v21
 v31 := v14 − v17
 v33 := v31 << 2
 v34 := v22 + v33
 *v34 := v21
 v38 := v17 + 1
 t := v21
 i := v38
 goto Block 3

Figure 17.4 Control flow graph for the combinations subroutine after local redundancy
elimination and strength reduction. Changes from Figure C 17.3 are shown in boldface type.

instructions are in the body of the loop (Blocks 2 and 3) where improvements are
particularly important. We have also performed strength reduction on the two
instructions that multiply a register by the constant 4 and the one that divides a
register by 2, replacing them by equivalent shifts.

3CHECK YOUR UNDERSTANDING

1. Describe several increasing levels of ‘‘aggressiveness’’ in code improvement.

2. Give three examples of code improvements that must be performed in a partic-
ular order. Give two examples of code improvements that should probably be
performed more than once (with other improvements in between).

PREPRINT

C 372 Chapter 17 Code Improvement

3. What is peephole optimization? Describe at least four different ways in which a
peephole optimizer might transform a program.

4. What is constant folding? Constant propagation? Copy propagation? Strength
reduction?

5. What does it mean for a value in a register to be live?

6. What is a control flow graph? Why is it central to so many forms of global code
improvement? How does it accommodate subroutine calls?

7. What is value numbering? What purpose does it serve?

8. Explain the connection between common subexpressions and expression rear-
rangement.

9. Why is it not practical in general for the programmer to eliminate common
subexpressions at the source level?

17.4 Global Redundancy and Data Flow Analysis

In this section we will concentrate on the elimination of redundant loads and
computations across the boundaries between basic blocks. We will translate the
code of our basic blocks into static single assignment (SSA) form, which will allow
us to perform global value numbering. Once value numbers have been assigned,
we shall be able to perform global common subexpression elimination, constant
propagation, and copy propagation. In a compiler both the translation to SSA form
and the various global optimizations would be driven by data flow analysis. We will
go into some of the details for global optimization (specifically, for the problems of
identifying common subexpressions and useless store instructions) after a much
more informal presentation of the translation to SSA form. We will also give data
flow equations in Section C 17.5 for the calculation of reaching definitions, used
(among other things) to move invariant computations out of loops.

Global redundancy elimination can be structured in such a way that it catches
local redundancies as well, eliminating the need for a separate local pass. The global
algorithms are easier to implement and to explain, however, if we assume that a
local pass has already occurred. In particular, local redundancy elimination allows
us to assume (in the absence of aliases, which we will ignore in our discussion) that
no variable is read or written more than once in a basic block.

17.4.1 SSA Form and Global Value Numbering

Value numbering, as introduced in Section C 17.3, assigns a distinct virtual register
name to every symbolically distinct value that is loaded or computed in a given
body of code, allowing us to recognize when certain loads or computations are

PREPRINT

17.4.1 SSA Form and Global Value Numbering C 373

redundant. The first step in global value numbering is to distinguish among the
values that may be written to a variable in different basic blocks. We accomplish
this step using static single assignment (SSA) form.

Our initial translation to medium-level IF ensured that each virtual register
was assigned a value by a unique instruction. This uniqueness was preserved by
local value numbering. Variables, however, may be assigned in more than one
basic block. Our translation to SSA form therefore begins by adding subscripts to
variable names: a different one for each distinct store instruction. This convention
makes it easier to identify global redundancies. It also explains the terminology:
each subscripted variable in an SSA program has a single static (compile time)
assignment—a single store instruction.

Following the flow of the program, we assign subscripts to variables in load
instructions, to match the corresponding stores. If the instruction v2 := x is
guaranteed to read the value of x written by the instruction x3 := v1, then we
replace v2 := x with v2 := x3 . If we cannot tell which version of x will be read,
we use a hypothetical merge function (also known as a selection function, and
traditionally represented by the Greek letter ϕ) to choose among the possible
alternatives. Fortunately, we won’t actually have to compute merge functions at
run time. Their only purpose is to help us identify possible code improvements;
we will drop them (and the subscripts) prior to target code generation.

In general, the translation to SSA form (and the identification of merge functions
in particular) requires the use of data flow analysis. We will describe the concept
of data flow in the context of global common subexpression elimination in Sec-
tion C 17.4.2. In the current subsection we will generate SSA code informally; data
flow formulations can be found in more advanced compiler texts [CT11, Sec. 9.3;
AK02, Sec. 4.4.4; App97, Sec. 19.1; Muc97, Sec. 8.11].

In the combinations subroutine (Figure C 17.4) we assign the subscript 1 toEXAMPLE 17.13
Conversion to SSA form the stores of t and i at the end of Block 1. We assign the subscript 2 to the stores of

t and i at the end of Block 2. Thus at the end of Block 1 t1 and i1 are live; at the end
of Block 2 t2 and i2 are live. What about Block 3? If control enters Block 3 from
Block 1, then t1 and i1 will be live, but if control enters Block 3 from Block 2, then
t2 and i2 will be live. We invent a merge function ϕ that returns its first argument
if control enters Block 3 from Block 1, and its second argument if control enters
Block 3 from Block 2. We then use this function to write values to new names t3
and i3 . Since Block 3 does not modify either t or i, we know that t3 and i3 will be
live at the end of the block. Moreover, since control always enters Block 2 from
Block 3, t3 and i3 will be live at the beginning of Block 2. The load of v13 in Block 2
is guaranteed to return t3 ; the loads of v17 in Block 2 and of v39 in Block 3 are
guaranteed to return i3 .

SSA form annotates the right-hand sides of loads with subscripts and merge
functions in such a way that at any given point in the program, if vi and v j were
given values by load instructions with symbolically identical right-hand sides, then
the loaded values are guaranteed to have been produced by (the same execution
of) the same prior store instruction. Because ours is a simple subroutine, only one
merge function is needed: it indicates whether control entered Block 3 from Block 1

PREPRINT

C 374 Chapter 17 Code Improvement

Block 1:
 sp := sp − 8
 v1 := r0 –– n
 n := v1
 v2 := r1 –– A
 A := v2
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 t1 := 1
 i1 := 1
 goto Block 3

Block 4:
 sp := sp + 8
 goto *lr

Block 2:
 v13 := t3
 v14 := n
 v16 := v14 + 1
 v17 := i3
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17
 v22 := A
 v25 := v17 << 2
 v26 := v22 + v25
 *v26 := v21
 v31 := v14 − v17
 v33 := v31 << 2
 v34 := v22 + v33
 *v34 := v21
 v38 := v17 + 1
 t2 := v21
 i2 := v38
 goto Block 3

Block 3:
 t3 := ϕ(t1, t2)
 i3 := ϕ(i1, i2)
 v39 := i3
 v40 := n
 v42 := v40 >> 1
 v43 := v39 <_ v42
 if v43 goto Block 2
 else goto Block 4

Figure 17.5 Control flow graph for the combinations subroutine, in static single assignment
(SSA) form. Changes from Figure C 17.4 are shown in boldface type.

or from Block 2. In a more complicated subroutine there could be additional merge
functions, for other blocks with more than one predecessor. SSA form for the
combinations subroutine appears in Figure C 17.5.

With flow-dependent values determined by merge functions, we are now in aEXAMPLE 17.14
Global value numbering position to perform global value numbering. As in local value numbering, the goal

is to merge any virtual registers that are guaranteed to hold symbolically equivalent
expressions.

In the local case we were able to perform a linear pass over the code, keeping a
dictionary that mapped loaded and computed expressions to the names of virtual

PREPRINT

17.4.2 Global Common Subexpression Elimination C 375

registers that contained them. This approach does not suffice in the global case,
because the code may have cycles. The general solution can be formulated using
data flow, or obtained with a simpler algorithm [Muc97, Sec. 12.4.2] that begins by
unifying all expressions with the same top-level operator, and then repeatedly sepa-
rates expressions whose operands are distinct, in a manner reminiscent of the DFA
minimization algorithm of Section 2.2.1. In contrast to our presentation of local
value numbering, where we performed code improvements such as eliminating
redundant loads and stores, we perform only global value numbering here, leaving
further code improvements to separate dataflow analyses that build on our results.
Again, we perform the analysis for our running example informally.

We can begin by adopting the results of local value numbering for Block 1; since
this is the first basic block and local redundancies have been removed, its virtual
register names have already been merged as much as possible. In Block 2, the
second instruction loads n into v14. Since we already used v1 for n in Block 1, we
can substitute the same name here. This substitution violates, for the first time, our
assumption that every virtual register is given a value by a single static instruction.
The ‘‘violation’’ is safe, however: both occurrences of n have the same subscript
(none at all, in this case), so we know that at any given point in the code, if v1 and
v14 have both been given values, then those values are the same. We can’t (yet)
eliminate the load in Block 2, because we don’t (yet) know that Block 1 will have
executed first. For consistency we replace v14 with v1 in the third instruction of
Block 2. Then, by similar reasoning, we replace v22 with v2 in the 8th, 10th, and
14th instructions.

In Block 3 we have more replacements. In the first real instruction (v39 := i3),
we recall that the same right-hand side is loaded into v17 in Block 2. We therefore
replace v39 with v17, in both the first and fourth instructions. Similarly, we replace
v40 with v1, in both the second and third instructions. There are no changes in
Block 4.

The result of global value numbering on our combinations subroutine appears
in Figure C 17.6. In this case the only common values identified were variables
loaded from memory. In a more complicated subroutine, we would also identify
known-to-be-identical computations performed in more than one block (though
we would not yet know which, if any, were redundant). As we did with loads, we
would rename left-hand sides so that all symbolically equivalent computations
place their results in the same virtual register.

Static single assignment form is useful for a variety of code improvements. In
our discussion here we use it only for global value numbering. We will drop it in
later figures.

17.4.2 Global Common Subexpression Elimination

We have seen an informal example of data flow analysis in the construction of static
single assignment form. We will now employ a more formal example for global
common subexpression elimination. As a result of global value numbering, we

PREPRINT

C 376 Chapter 17 Code Improvement

Block 1:
 sp := sp − 8
 v1 := r0 –– n
 n := v1
 v2 := r1 –– A
 A := v2
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 t1 := 1
 i1 := 1
 goto Block 3

Block 4:
 sp := sp + 8
 goto *lr

Block 3:
 t3 := ϕ(t1, t2)
 i3 := ϕ(i1, i2)
 v17 := i3
 v1 := n
 v42 := v1 >> 1
 v43 := v17 <– v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v13 := t3
 v1 := n
 v16 := v1 + 1
 v17 := i3
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17
 v2 := A
 v25 := v17 << 2
 v26 := v2 + v25
 *v26 := v21
 v31 := v1 − v17
 v33 := v31 << 2
 v34 := v2 + v33
 *v34 := v21
 v38 := v17 + 1
 t2 := v21
 i2 := v38
 goto Block 3

Figure 17.6 Control flow graph for the combinations subroutine after global value numbering.
Changes from Figure C 17.5 are shown in boldface type.

know that any common subexpression will have been placed into the same virtual
register wherever it is computed. We will therefore use virtual register names to
represent expressions in the discussion below.2 The goal of global common subex-
pression elimination is to identify places in which an instruction that computes

2 As presented here, there is a one–one correspondence among SSA names, global value numbers,
and (after global value numbering has been completed) virtual register names. Other texts and
papers sometimes distinguish among these concepts more carefully, and use them for different
purposes.

PREPRINT

17.4.2 Global Common Subexpression Elimination C 377

a value for a given virtual register can be eliminated, because the computation is
certain to already have occurred on every control path leading to the instruction.

Many instances of data flow analysis can be cast in the following framework:
(1) four sets for each basic block B, called InB , OutB , GenB , and KillB ; (2) values
for the Gen and Kill sets; (3) an equation relating the sets for any given block B;
(4) an equation relating the Out set of a given block to the In sets of its successors,
or relating the In set of the block to the Out sets of its predecessors; and (often)
(5) certain initial conditions. The goal of the analysis is to find a fixed point of the
equations: a consistent set of In and Out sets that satisfy both the equations and
the initial conditions. Some problems have a single fixed point. Others may have
more than one, in which case we usually want either the least or the greatest fixed
point (smallest or largest sets).

In the case of global common subexpression elimination, InB is the set of ex-EXAMPLE 17.15
Data flow equations for
available expressions

pressions (virtual registers) guaranteed to be available at the beginning of block B.
These available expressions will all have been set by predecessor blocks. OutB is
the set of expressions guaranteed to be available at the end of B. KillB is the set
of expressions killed in B: invalidated by assignment to one of the variables used
to calculate the expression, and not subsequently recalculated in B. GenB is the
set of expressions calculated in B and not subsequently killed in B. The data flow
equations for available expression analysis are3

OutB = GenB ∪ (InB ∖ KillB)

InB =
⋂

predecessors A of B

OutA

Our initial condition is In1 = ∅: no expressions are available at the beginning of
execution.

Available expression analysis is known as a forward data flow problem, because
information flows forward across branches: the In set of a block depends on the Out
sets of its predecessors. We shall see an example of a backward data flow problem
later in this section.

We calculate the desired fixed point of our equations in an inductive (iterative)EXAMPLE 17.16
Fixed point for available
expressions

fashion, much as we computed FIRST and FOLLOW sets in Section 2.3.3. Our
equation for InB uses intersection to insist that an expression be available on all
paths into B. In our iterative algorithm, this means that InB can only shrink with
subsequent iterations. Because we want to find as many available expressions
as possible, we therefore optimistically assume that all expressions are initially
available as inputs to all blocks other than the first; that is, InB ,B ̸=1 = {n, A, t, i, v1,
v2, v8, v9, v13, v16, v17, v18, v19, v21, v25, v26, v31, v33, v34, v38, v42, v43}.

Our Gen and Kill sets can be found in a single backward pass over each of the
basic blocks. In Block 3, for example, the last assignment defines a value for v43.

3 Set notation here is standard:
⋃

i S i indicates the union of all sets S i ;
⋂

i S i indicates the intersection
of all sets S i ; A ∖ B, pronounced ‘‘A minus B’’ indicates the set of all elements found in A but not
in B.

PREPRINT

C 378 Chapter 17 Code Improvement

We therefore know that v43 is in Gen3. Working backward, so are v42, v1, and v17.
As we notice each of these, we also consider their impact on Kill3. Virtual register
v43 does not appear on the right-hand side of any assignment in the program (it is
not part of the expression named by any virtual register), so giving it a value kills
nothing. Virtual register v42 is part of the expression named by v43, but since
v43 is given a value later in the block (is already in Gen3), the assignment to v42
does not force v43 into Kill3. Virtual register v1 is a different story. It is part of
the expressions named by v8, v16, v31, and v42. Since v42 is already in Gen3, we
do not add it to Kill3. We do, however, put v8, v16, and v31 in Kill3. In a similar
manner, the assignment to v17 forces v18, v21, v25, and v38 into Kill3. Note that
we do not have to worry about virtual registers that depend in turn on v8, v16,
v18, v21, v25, v31, or v38: our iterative data flow algorithm will take care of that;
all we need now is one level of dependence. Stores to program variables (e.g., at
the ends of Blocks 1 and 2) kill the corresponding virtual registers.

After completing a backward scan of all four blocks, we have the following Gen
and Kill sets:

Gen1 = {v1 , v2 , v8 , v9} Kill1 = {v13 , v16 , v17 , v26 , v31 , v34 , v42}
Gen2 = {v1 , v2 , v13 , v16 , v17 , v18 , v19 , Kill2 = {v8 , v9 , v13 , v17 , v42 , v43}

v21 , v25 , v26 , v31 , v33 , v34 , v38}
Gen3 = {v1 , v17 , v42 , v43} Kill3 = {v8 , v16 , v18 , v21 , v25 , v31 , v38}
Gen4 = ∅ Kill4 = ∅

Applying the first of our data flow equations (OutB = GenB ∪ (InB ∖ KillB)) to
all blocks, we obtain

Out1 = {v1 , v2 , v8 , v9}
Out2 = {v1 , v2 , v13 , v16 , v17 , v18 , v19 , v21 , v25 , v26 , v31 , v33 , v34 , v38}
Out3 = {v1 , v2 , v9 , v13 , v17 , v19 , v26 , v33 , v34 , v42 , v43}
Out4 = {v1 , v2 , v8 , v9 , v13 , v16 , v17 , v18 , v19 , v21 , v25 , v26 , v31 , v33 , v34 , v38 , v42 , v43}

If we now apply our second equation (InB =
⋂

A OutA) to all blocks, followed
by a second iteration of the first equation, we obtain

In1 = ∅ Out1 = {v1 , v2 , v8 , v9}
In2 = {v1 , v2 , v9 , v13 , v17 , v19 , Out2 = {v1 , v2 , v13 , v16 , v17 , v18 , v19 ,

v26 , v33 , v34 , v42 , v43} v21 , v25 , v26 , v31 , v33 , v34 , v38}
In3 = {v1 , v2} Out3 = {v1 , v2 , v17 , v42 , v43}
In4 = {v1 , v2 , v9 , v13 , v17 , v19 , Out4 = {v1 , v2 , v9 , v13 , v17 , v19 ,

v26 , v33 , v34 , v42 , v43} v26 , v33 , v34 , v42 , v43}

One more iteration of each equation yields the fixed point:

PREPRINT

17.4.2 Global Common Subexpression Elimination C 379

In1 = ∅ Out1 = {v1 , v2 , v8 , v9}
In2 = {v1 , v2 , v17 , v42 , v43} Out2 = {v1 , v2 , v13 , v16 , v17 , v18 , v19 ,

v21 , v25 , v26 , v31 , v33 , v34 , v38}
In3 = {v1 , v2} Out3 = {v1 , v2 , v17 , v42 , v43}
In4 = {v1 , v2 , v17 , v42 , v43} Out4 = {v1 , v2 , v17 , v42 , v43}

We can now exploit what we have learned. Whenever a virtual register is in theEXAMPLE 17.17
Result of global common
subexpression elimination

In set of a block, we can drop any assignment of that register in the block. In our
example subroutine, we can drop the loads of v1, v2, and v17 in Block 2, and the
load of v1 in Block 3. In addition, whenever a virtual register corresponding to
a variable is in the In set of a block, we can replace a load of that variable with a
register–register move on each of the potential paths into the block. In our example,
we can replace the load of t in Block 2 and the load of i in Block 3 (the load of i in
Block 2 has already been eliminated). To compensate, we must load v13 and v17
with the constant 1 at the end of Block 1, and move v21 into v13 and v38 into v17
at the end of Block 2. The final result appears in Figure C 17.7.

(The careful reader may note that v21 and v38 are not strictly necessary: if
we computed new values directly into v13 and v17, we could eliminate the two
register–register moves. This observation, while correct, need not be made at this
time; it can wait until we perform induction variable optimizations and register
allocation, to be described in Sections C 17.5.2 and C 17.8, respectively.)

Splitting Control Flow Edges

If the block (call it A) in which a variable is written has more than one successor,EXAMPLE 17.18
Edge splitting
transformations

only one of which (call it B) contains a redundant load, and if B has more than one
predecessor, then we need to create a new block on the arc between A and B to hold
the register–register move. This way the move will not be executed on code paths
that don’t need it. In a similar vein, if an expression is available from A but not from
B’s other predecessor, then we can move the load or computation of the expression
back into the predecessor that lacks it or, if that predecessor has more than one
successor, into a new block on the connecting arc. This move will eliminate a
redundancy on the path through A. These ‘‘edge splitting’’ transformations are
illustrated in Figure C 17.8. In general, a load or computation is said to be partially
redundant if it is a repetition of an earlier load or store on some paths through the
flow graph, but not on others. No edge splits are required in the combinations
example.

Common subexpression elimination can have a complicated effect on register
pressure. If we realize that the expression v10 + v20 has been calculated into, say,
register v30 earlier in the program, and we exploit this knowledge to replace a later
recalculation of the expression with a direct use of v30, then we may expand v30’s
live range—the span of instructions over which its value is needed. At the same
time, if v10 and v20 are not used for other purposes in the intervening region of
the program, we may shrink the range over which they are live. In a subroutine
with a high level of register pressure, a good compiler may sometimes perform the

PREPRINT

C 380 Chapter 17 Code Improvement

Block 1:
 sp := sp − 8
 v1 := r0 –– n
 n := v1
 v2 := r1 –– A
 A := v2
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 t := 1
 i := 1
 v13 := 1
 v17 := 1
 goto Block 3

Block 4:
 sp := sp + 8
 goto *lr

Block 3:
 v42 := v1 >> 1
 v43 := v17 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v16 := v1 + 1
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17
 v25 := v17 << 2
 v26 := v2 + v25
 *v26 := v21
 v31 := v1 − v17
 v33 := v31 << 2
 v34 := v2 + v33
 *v34 := v21
 v38 := v17 + 1
 t := v21
 i := v38
 v13 := v21
 v17 := v38
 goto Block 3

Figure 17.7 Control flow graph for the combinations subroutine after performing global
common subexpression elimination. Note the absence of the many load instructions of Fig-
ure C 17.6. Compensating register–register moves are shown in boldface type.

inverse of common subexpression elimination (known as forward substitution) in
order to shrink live ranges.

Live Variable Analysis

Constant propagation and copy propagation, like common subexpression elimina-
tion, can be formulated as instances of data flow analysis. We skip these analyses
here; none of them yields improvements in our example. Instead, we turn our
attention to live variable analysis, which is very important in our example, and
in general in any subroutine in which global common subexpression analysis has
eliminated load instructions.

Live variable analysis is the backward flow problem mentioned above. It de-
termines which instructions produce values that will be needed in the future,
allowing us to eliminate dead (useless) instructions. In our example we will con-
cern ourselves only with values written to memory and with the elimination of
dead stores. When applied to values in virtual registers as well, live variable analysis

PREPRINT

17.4.2 Global Common Subexpression Elimination C 381

v1 := v2 + v3
a := v1

v7 := a
v7 := v4

v4 := v5 × v6
a := v4

v1 := v2 + v3

v1 := v2 + v3

v1 := v2 + v3
a := v1
v7 := v1

v4 := v5 × v6
a := v4

v1 := v2 + v3

v1 := v2 + v3

A

A
A

A

B

B
B

B

Figure 17.8 Splitting an edge of a control flow graph to eliminate a redundant load (top) or a partially redundant computation
(bottom).

can help to identify other dead instructions. (None of these arise this early in the
combinations example.)

For this instance of data flow analysis, InB is the set of variables that are live atEXAMPLE 17.19
Data flow equations for live
variables

the beginning of block B. OutB is the set of variables that are live at the end of the
block. GenB is the set of variables read in B without first being written in B. KillB
is the set of variables written in B without having been read first. The data flow
equations are

InB = GenB ∪ (OutB ∖ KillB)

OutB =
⋃

successors C of B

InC

Our initial condition is Out4 = ∅: no variables are live at the end of execution. (If
our subroutine wrote any nonlocal [e.g., global] variables, these would be initial
members of Out4.)

In comparison to the equations for available expression analysis, the roles of In
and Out have been reversed (that’s why it’s a backward problem), and the intersec-
tion operator in the second equation has been replaced by a union. Intersection
(‘‘all paths’’) problems require that information flow over all paths between blocks;
union (‘‘any path’’) problems require that it flow along some path. Further data
flow examples appear in Exercises C 17.7 and C 17.9.

In our example program, we haveEXAMPLE 17.20
Fixed point for live
variables

PREPRINT

C 382 Chapter 17 Code Improvement

Block 1:
 v1 := r0 –– n
 v2 := r1 –– A
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 v13 := 1
 v17 := 1
 goto Block 3

Block 4:
 goto *lr

Block 3:
 v42 := v1 >> 1
 v43 := v17 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v16 := v1 + 1
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17
 v25 := v17 << 2
 v26 := v2 + v25
 *v26 := v21
 v31 := v1 − v17
 v33 := v31 << 2
 v34 := v2 + v33
 *v34 := v21
 v38 := v17 + 1
 v13 := v21
 v17 := v38
 goto Block 3

Figure 17.9 Control flow graph for the combinations subroutine after performing live
variable analysis. Starting with Figure C 17.7, the compiler has eliminated all stores to n, A, t,
and i. It has also dropped the changes to the stack pointer that used to appear in the subroutine
prologue and epilogue: we don’t need space for local variables anymore.

Gen1 = ∅ Kill1 = {n , A , t , i}
Gen2 = ∅ Kill2 = {t , i}
Gen3 = ∅ Kill3 = ∅
Gen4 = ∅ Kill4 = ∅

Our use of union means that Out sets can only grow with each iteration, so we
begin with OutB = ∅ for all blocks B (not just B4). One iteration of our data flow
equations gives us InB = GenB and OutB = ∅ for all blocks B. But since GenB = ∅
for all B, this is our fixed point! Common subexpression elimination has left us
with a situation in which none of our parameters or local variables is live; all of
the stores of A, n, t, and i can be eliminated. Moreover, now that computation
works entirely in registers, we don’t even need a stack frame: we can eliminate the
updates of the stack pointer in the subroutine prologue and epilogue, leaving us
with the code in Figure C 17.9.

Aliases must be treated in a conservative fashion in both common subexpression
elimination and live variable analysis. If a store instruction might modify variable

PREPRINT

17.5 Loop Improvement I C 383

x, then for purposes of common subexpression elimination we must consider the
store as killing any expression that depends on x. If a load instruction might access
x, and x is not written earlier in the block containing the load, then x must be
considered live at the beginning of the block. In our example we have assumed that
the compiler is able to verify that, as a reference parameter, array A cannot alias
either value parameter n or local variables t and i.

3CHECK YOUR UNDERSTANDING

10. What is static single assignment (SSA) form? Why is SSA form needed for global
value numbering, but not for local value numbering?

11. What are merge functions in the context of SSA form?

12. Give three distinct examples of data flow analysis. Explain the difference be-
tween forward and backward flow. Explain the difference between all-paths
and any-path flow.

13. Explain the role of the In, Out, Gen, and Kill sets common to many examples
of data flow analysis.

14. What is a partially redundant computation? Why might an algorithm to elimi-
nate partial redundancies need to split an edge in a control flow graph?

15. What is an available expression?

16. What is forward substitution?

17. What is live variable analysis? What purpose does it serve?

18. Describe at least three instances in which code improvement algorithms must
consider the possibility of aliases.

17.5 Loop Improvement I

Because programs tend to spend most of their time in loops, code improvements
that improve the speed of loops are particularly important. In this section we
consider two classes of loop improvements: those that move invariant compu-
tations out of the body of a loop and into its header, and those that reduce the
amount of time spent maintaining induction variables. In Section C 17.7 we will
consider transformations that improve instruction scheduling by restructuring a
loop body to include portions of more than one iteration of the original loop, and
that manipulate multiply nested loops to improve cache performance or increase
opportunities for parallelization.

PREPRINT

C 384 Chapter 17 Code Improvement

17.5.1 Loop Invariants

A loop invariant is an instruction (i.e., a load or calculation) in a loop whose result
is guaranteed to be the same in every iteration.4 If a loop is executed n times and
we are able to move an invariant instruction out of the body and into the header
(saving its result in a register for use within the body), then we will eliminate n− 1
calculations from the program, a potentially significant savings.

In order to tell whether an instruction is invariant, we need to identify the bodies
of loops, and we need to track the locations at which operand values are defined.
The first task—identifying loops—is easy in a language that relies exclusively on
structured control flow: we simply save appropriate markers when linearizing the
syntax tree. In a language with goto statements we may need to construct (recover)
the loops from a less structured control flow graph.

Tracking the locations at which an operand may have been defined amounts to
the problem of reaching definitions. Formally, we say an instruction that assigns
a value v into a location (variable or register) l reaches a point p in the code if
v may still be in l at p. Like the conversion to static single assignment form,EXAMPLE 17.21

Data flow equations for
reaching definitions

considered informally in Section C 17.4.1, the problem of reaching definitions can
be structured as a set of forward, any-path data flow equations. We let GenB be the
set of final assignments in block B (those that are not overwritten later in B). For
each assignment in B we also place in KillB all other assignments (in any block) to
the same location. Then we have

OutB = GenB ∪ (InB ∖ KillB)

InB =
⋃

predecessors C of B

OutC

Our initial condition is that In1 = ∅: no definitions in the function reach its entry
point. Given InB (the set of reaching definitions at the beginning of the block),
we can determine the reaching definitions of all values used within B by a simple
linear perusal of the code. Because our union operator will iteratively grow the sets
of reaching definitions, we begin our computation with InB = ∅ for all blocks B
(not just B1).

DESIGN & IMPLEMENTATION

17.5 Loop invariants
Many loop invariants arise from address calculations, especially for arrays. Like
the common subexpressions discussed in Sidebar C 17.3, they are often not
explicit in the program source, and thus cannot be hoisted out of loops by
handwritten optimization.

4 Note that this use of the term is unrelated to the notion of loop invariants in axiomatic semantics
(discussed under ‘‘Assertions’’ in Section 4.4).

PREPRINT

17.5.2 Induction Variables C 385

Given reaching definitions, we define an instruction to be a loop invariant if each
of its operands (1) is a constant, (2) has reaching definitions that all lie outside the
loop, or (3) has a single reaching definition, even if that definition is an instruction
d located inside the loop, so long as d is itself a loop invariant. (If there is more
than one reaching definition for a particular variable, then we cannot be sure of
invariance unless we know that all definitions will assign the same value, something
that most compilers do not attempt to infer.) As in previous analyses, we begin
with the obvious cases and proceed inductively until we reach a fixed point.

In our combinations example, visual inspection of the code reveals two loopEXAMPLE 17.22
Result of hoisting loop
invariants

invariants: the assignment to v16 in Block 2 and the assignment to v42 in Block 3.
Moving these invariants out of the loop (and dropping the dead stores and stack
pointer updates of Figure C 17.7) yields the code of Figure C 17.10.

In the new version of the code, v16 and v42 will be calculated even if the loop
is executed zero times. In general this precalculation may not be a good idea. If an
invariant calculation is expensive and the loop is not in fact executed, then we may
have made the program slower. Worse, if an invariant calculation may produce a
run-time error (e.g., divide by zero), we may have made the program incorrect.
A safe and efficient general solution is to insert an initial test for zero iterations
before any invariant calculations; we consider this option in Exercise C 17.4. In the
specific case of the combinations subroutine, our more naive transformation is
both safe and (in the common case) efficient.

17.5.2 Induction Variables

An induction variable (or register) is one that takes on a simple progression of values
in successive iterations of a loop. We will confine our attention here to arithmetic
progressions; more elaborate examples appear in Exercises C 17.11 and C 17.12.
Induction variables commonly appear as loop indices, subscript computations,
or variables incremented or decremented explicitly within the body of the loop.
Induction variables are important for two main reasons:

They commonly provide opportunities for strength reduction, most notably by
replacing multiplication with addition. For example, if i is a loop index variable,EXAMPLE 17.23

Induction variable strength
reduction

DESIGN & IMPLEMENTATION

17.6 Control flow analysis
Most of the loops in a modern language, with structured control flow, correspond
directly to explicit constructs in the syntax tree. A few may be implicit; examples
include the loops required to initialize or copy large records or subroutine
parameters, or to capture tail recursion. For older languages, the recovery of
structure depends on a technique known as control flow analysis. A detailed
treatment can be found in standard compiler texts [AK02, Sec. 4.5; App97,
Sec. 18.1; Muc97, Chap. 7]; we do not discuss it further here.

PREPRINT

C 386 Chapter 17 Code Improvement

Block 1:
 v1 := r0 –– n
 v2 := r1 –– A
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 v13 := 1 –– t
 v17 := 1 –– i
 v16 := v1 + 1
 v42 := v1 >> 1
 goto Block 3

Block 4:
 goto *lr

Block 3:
 v43 := v17 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v18 := v16 − v17
 v19 := v13 × v18
 v21 := v19 div v17
 v25 := v17 << 2
 v26 := v2 + v25
 *v26 := v21
 v31 := v1 − v17
 v33 := v31 << 2
 v34 := v2 + v33
 *v34 := v21
 v38 := v17 + 1
 v13 := v21
 v17 := v38
 goto Block 3

Figure 17.10 Control flow graph for the combinations subroutine after moving the invariant
calculations of v16 and v42 (shown in boldface type) out of the loop. We have also dropped
the dead stores of Figure C 17.7, and have eliminated the stack space for t and i, which now
reside entirely in registers.

then expressions of the form t := k × i + c for i > a can be replaced by t i := t i−1
+ k, where ta = k × a + c.
They are commonly redundant: instead of keeping several induction variables
in registers across all iterations of the loop, we can often keep a smaller number
and calculate the remainder from those when needed (assuming the calcula-
tions are sufficiently inexpensive). The result is often a reduction in register
pressure with no increase—and sometimes a decrease—in computation cost.
In particular, after strength-reducing other induction variables, we can oftenEXAMPLE 17.24

Induction variable
elimination

eliminate the loop index variable itself, with an appropriate change to the end
test (see Figure C 17.11 for an example).

The algorithms required to identify, strength-reduce, and possibly eliminate
induction variables are more or less straightforward, but fairly tedious [AK02,
Sec. 4.5; App97, Sec. 18.3; Muc97, Chap. 14]; we do not present the details here.
Similar algorithms can be used to eliminate array and subrange bounds checks in
many applications.

PREPRINT

17.5.2 Induction Variables C 387

A : array [1..n] of record
key : integer
// other stuff

for i in 1..n
A[i].key := 0

(a)

v1 := 1
v2 := n
v3 := sizeof(record)
v5 := &A

L: ∗v5 := 0
v5 := v5 + v3
v1 := v1 + 1
v7 := v1 ≤ v2
if v7 goto L

(c)

v1 := 1
v2 := n
v3 := sizeof(record)
v4 := &A − v3

L: v5 := v1 × v3
v6 := v4 + v5
∗v6 := 0
v1 := v1 + 1
v7 := v1 ≤ v2
if v7 goto L

(b)

v2 := &A + (n−1) × sizeof(record)
–– may take >1 instructions

v3 := sizeof(record)
v5 := &A

L: ∗v5 := 0
v5 := v5 + v3
v7 := v5 ≤ v2
if v7 goto L

(d)

Figure 17.11 Code improvement of induction variables. High-level pseudocode source is
shown in (a). Target code prior to induction variable optimizations is shown in (b). In (c) we have
performed strength reduction on v5, the array index, and eliminated v4, at which point v5 no
longer depends on v1 (i). In (d) we have modified the end test to use v5 instead of v1, and have
eliminated v1.

For our combinations example, the code resulting from induction variable op-EXAMPLE 17.25
Result of induction variable
optimization

timizations appears in Figure C 17.12. Two induction variables—the array pointers
v26 and v34—have undergone strength reduction, eliminating the need for v25,
v31, and v33. Similarly v18 has been made independent of v17, eliminating the
need for v16. A fifth induction variable—v38—has been eliminated by replacing
its single use (the right-hand side of a register–register move) with the addition that
computed it. We assume that a repeat of local redundancy elimination in Block 1
has allowed the initialization of v34 to capitalize on the value known to reside in
v9.

For presentation purposes, we have also calculated the division operation di-
rectly into v13, allowing us to eliminate v21 and its later assignment into v13. A
real compiler would probably not make this change until the register allocation
phase of compilation, when it would verify that the previous value in v13 is dead
at the time of the division (v21 is not an induction variable; its progression of
values is not sufficiently simple). Making the change now eliminates the last redun-

PREPRINT

C 388 Chapter 17 Code Improvement

Block 1:
 v1 := r0 –– n
 v2 := r1 –– A
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 v13 := 1 –– t
 v17 := 1 –– i
 v42 := v1 >> 1
 v26 := v2 + 4
 v34 := v9 − 4
 v18 := v1
 goto Block 3

Block 4:
 goto *lr

Block 3:
 v43 := v17 <_ v42
 if v43 goto Block 2
 else goto Block 4

Block 2:
 v19 := v13 × v18
 v13 := v19 div v17
 *v26 := v13
 *v34 := v13
 v17 := v17 + 1
 v26 := v26 + 4
 v34 := v34 − 4
 v18 := v18 − 1
 goto Block 3

Figure 17.12 Control flow graph for the combinations subroutine after optimizing induction
variables. Registers v26 and v34 have undergone strength reduction, allowing v25, v31, and v33
to be eliminated. Registers v38 and v21 have been merged into v17 and v13. The update to
v18 has also been simplified, allowing v16 to be eliminated.

dant instruction in the block, and allows us to discuss instruction scheduling in
comparative isolation from other issues.

17.6 Instruction Scheduling

In the example compiler structure of Figure C 17.1, the next phase after loop opti-
mization is target code generation. As noted in Chapter 15, this phase linearizes the
control flow graph and replaces the instructions of the medium-level intermediate
form with target machine instructions. The replacements are often driven by an
automatically generated pattern-matching algorithm. We will continue to employ
our pseudo-assembly ‘‘instruction set,’’ so linearization will be the only change we
see. Specifically, we will assume that the blocks of the program are concatenated in
the order suggested by their names. Control will ‘‘fall through’’ from Block 2 to
Block 3, and from Block 3 to Block 4 in the last iteration of the loop.

We will perform two rounds of instruction scheduling separated by register
allocation. Given our use of pseudo-assembly, we won’t consider peephole optimiza-
tion in any further detail. In Section C 17.7, however, we will consider additional
forms of code improvement for loops that could be applied prior to target code
generation. We delay discussion of these because the need for them will be clearer
after considering instruction scheduling.

PREPRINT

17.6 Instruction Scheduling C 389

On a pipelined machine—particularly one that always executes instructions
in program order—performance depends critically on the extent to which the
compiler is able to keep the pipeline full. As explained in Section C 5.5.1, delays
may result when an instruction (1) needs a functional unit still in use by an ear-
lier instruction, (2) needs data still being computed by an earlier instruction, or
(3) cannot even be selected for execution until the outcome or target of a branch
has been determined. In this section we consider cases (1) and (2), which can
be addressed by reordering instructions within a basic block. A good solution to
(3) requires branch prediction, generally with hardware assist. A compiler can
solve the subproblem of filling branch delays in a more or less straightforward
fashion [Muc97, Sec. 17.1.1].

If we examine the body of the loop in our combinations example, we findEXAMPLE 17.26
Remaining pipeline delays that the optimizations described thus far have transformed Block 2 from the 30

instruction sequence of Figure C 17.3 into the eight-instruction sequence of Fig-
ure C 17.12 (not counting the final gotos). Unfortunately, on a pipelined machine
without instruction reordering, this code is still distinctly suboptimal. In particu-
lar, the results of the second and third instructions are used immediately, but the
results of multiplies and divides are commonly not available for several cycles. If
we assume four-cycle delays, then our block will take 16 cycles to execute.

Dependence Analysis

To schedule instructions to make better use of the pipeline, we first arrange them
into a directed acyclic graph (DAG), in which each node represents an instruction,
and each arc represents a dependence,5 as described in Section C 5.5.1. Most arcs
will represent flow dependences, in which one instruction uses a value produced
by a previous instruction. A few will represent anti-dependences, in which a later
instruction overwrites a value read by a previous instruction. In our example,
these will correspond to updates of induction variables. If we were performing
instruction scheduling after architectural register allocation, then uses of the same
register for independent values could increase the number of anti-dependences,
and could also induce so-called output dependences, in which a later instruction
overwrites a value written by a previous instruction. Anti- and output dependences
can be hidden on many machines by hardware register renaming (Section C 5.4.3).

Because common subexpression analysis has eliminated all of the loads andEXAMPLE 17.27
Value dependence DAG stores of i, n, and t in the combinations subroutine, and because there are no

loads of elements of A (only stores), dependence analysis in our example will be
dealing solely with values in registers. In general we should need to deal with values
in memory as well, and to rely on alias analysis to determine when two instructions
might access the same location, and therefore share a dependence. On a target

5 What we are discussing here is a dependence DAG. It is related to, but distinct from, the expression
DAG mentioned in Section C 17.3. In particular, the dependence DAG is constructed after the
assignment of virtual registers to expressions, and its nodes represent instructions, rather than
variables and operators.

PREPRINT

C 390 Chapter 17 Code Improvement

Block 2: Scheduled:

Block 3:

1. v19 := v13 × v18
 —
 —
 —
 —
2. v13 := v19 div v17
 —
 —
 —
 —
3. *v26 := v13
4. *v34 := v13
5. v17 := v17 + 1
6. v26 := v26 + 4
7. v34 := v34 − 4
8. v18 := v18 − 1
 −− fall through to Block 3

v19 := v13 × v18
v18 := v18 − 1
—
—
—
v13 := v19 div v17
v17 := v17 + 1
—
—
—

*v26 := v13

*v34 := v13
v26 := v26 + 4
v34 := v34 − 4

 (same)
 v43 := v17 <_ v42
 if v43 goto Block 2
 −− else fall through to Block 4

1
1

3 2 2 8

4 565 43

8 77 6

Figure 17.13 Dependence DAG for Block 2 of Figure C 17.12, together with pseudocode for
the entire loop, both before (left) and after (right) instruction scheduling. Circled numbers in
the DAG correspond to instructions in the original version of the loop. Smaller adjacent numbers
give the schedule order in the new loop. Solid arcs indicate flow dependences; dashed arcs
indicate anti-dependences. Double arcs indicate pairs of instructions that must be separated by
four additional instructions in order to avoid pipeline delays on our hypothetical machine. Delays
are shown explicitly in Block 2. Unless we modify the array indexing code (Exercise C 17.20),
only two instructions can be moved.

machine with condition codes (i.e., most machines today—see Section C 5.3), we
should need to model these explicitly, tracking flow, anti-, and output dependences.

The dependence DAG for Block 2 of our combinations example appears in
Figure C 17.13. In this case the DAG turns out to be a tree. It was generated
by examining the code from top to bottom, linking each instruction i to each
subsequent instruction j such that j reads a register written by i (solid arcs) or
writes a register read by i (dashed arcs).

Any topological sort of a dependence DAG (i.e., any enumeration of the nodes
in which each node appears before its children) will represent a correct schedule.
Ideally we should like to choose a sort that minimizes overall delay. As with many
aspects of code improvement, this task is NP-hard, so practical techniques rely
upon heuristics.

To capture timing information, we define a function latency(i , j) that returns
the number of cycles that must elapse between the scheduling of instructions i

PREPRINT

17.6 Instruction Scheduling C 391

and j if j is to run after i in the same pipeline without stalling. (To maintain
machine independence, this portion of the code improver must be driven by
tables of machine characteristics; those characteristics must not be ‘‘hard-coded.’’)
Nontrivial latencies can result from data dependences or from conflicts for use of
some physical resource, such as an incompletely pipelined functional unit. We will
assume in our example that all units are fully pipelined, so all latencies are due to
data dependences.

We now traverse the DAG from the roots down to the leaves. At each step we
first determine the set of candidate nodes: those for which all parents have been
scheduled. For each candidate i we then use the latency function with respect to
already-scheduled nodes to determine the earliest time at which i could execute
without stalling. We also precalculate the maximum over all paths from i to a leaf
of the sums of the latencies on arcs; this gives us a lower bound on the time that will
be required to finish the basic block after i has been scheduled. In our examples
we will use the following three heuristics to choose among candidate nodes:

1. Favor nodes that can be started without stalling.
2. If there is a tie, favor nodes with the maximum delay to the end of the block.
3. If there is still a tie, favor the node that came first in the original source code

(this strategy leads to more intuitive assembly language, which can be helpful in
debugging).

Other possible scheduling heuristics include:

Favor nodes that have a large number of children in the DAG (this increases
flexibility for future iterations of the scheduling algorithm).
Favor nodes that are the final use of a register (this reduces register pressure).
If there are multiple pipelines, favor nodes that can use a pipeline that has not
received an instruction recently.

If our target machine has multiple pipelines, then we must keep track for each
instruction of the pipeline we think it will use, so we can distinguish between
candidates that can start in the current cycle and those that cannot start until the
next. (Imprecise machine models, cache misses, or other unpredictable delays may
cause our guess to be wrong some of the time.)

Unfortunately, our example DAG leaves very little room for choice. The onlyEXAMPLE 17.28
Result of instruction
scheduling

possible improvements are to move Instruction 8 into one of the multiply or divide
delay slots and Instruction 5 into one of the divide delay slots, reducing the total
cycle count of Block 2 from 16 to 14. If we assume (1) that our target machine
correctly predicts a backward branch at the bottom of the loop, and (2) that we can
replicate the first instruction of Block 2 into a nullifying delay slot of the branch,
then we incur no additional delays in Block 3 (except in the last iteration). The
overall duration of the loop is therefore 18 cycles per iteration before scheduling, 16
cycles per iteration after scheduling—an improvement of 11%. In Section C 17.7 we
will consider other versions of the block, in which rescheduling yields significantly
faster code.

PREPRINT

C 392 Chapter 17 Code Improvement

As noted near the end of Section C 17.1, we shall probably want to repeat instruc-
tion scheduling after global code improvement and register allocation. If there are
times when the number of virtual registers with useful values exceeds the number
of architectural registers on the target machine, then we shall need to generate code
to spill some values to memory and load them back in again later. Rescheduling
will be needed to handle any delays induced by the loads.

3CHECK YOUR UNDERSTANDING

19. What is a loop invariant? A reaching definition?

20. Why might it sometimes be unsafe to hoist an invariant out of a loop?

21. What are induction variables? What is strength reduction?

22. What is control flow analysis? Why is it less important than it used to be?

23. What is register pressure? Register spilling?

24. Is instruction scheduling a machine-independent code improvement tech-
nique? Explain.

25. Describe the creation and use of a dependence DAG. Explain the distinctions
among flow, anti-, and output dependences.

26. Explain the tension between instruction scheduling and register allocation.

27. List several heuristics that might be used to prioritize instructions to be sched-
uled.

17.7 Loop Improvement II

As noted in Section C 17.5, code improvements that improve the speed of loops
are particularly important, because loops are where most programs spend most
of their time. In this section we consider transformations that improve instruc-
tion scheduling by restructuring a loop body to include portions of more than
one iteration of the original loop, and that manipulate multiply nested loops to
improve cache performance or increase opportunities for parallelization. Extensive
coverage of loop transformations and dependence theory can be found in Allen
and Kennedy’s text [AK02].

17.7.1 Loop Unrolling and Software Pipelining

Loop unrolling is a transformation that embeds two or more iterations of a source-
level loop in a single iteration of a new, longer loop, allowing the scheduler to
intermingle the instructions of the original iterations. If we unroll two iterations ofEXAMPLE 17.29

Result of loop unrolling

PREPRINT

17.7.1 Loop Unrolling and Software Pipelining C 393

our combinations example we obtain the code of Figure C 17.14. We have used
separate names (here starting with the letter ‘t’) for registers written in the initial
half of the loop. This convention minimizes anti- and output dependences, giving
us more latitude in scheduling. In an attempt to minimize loop overhead, we have
also recognized that the array pointer induction variables (v26 and v34) need only
be updated once in each iteration of the loop, provided that we use displacement
addressing in the second set of store instructions. The new instructions added to
the end of Block 1 cover the case in which n div 2, the number of iterations of the
original loop, is not an even number.

Again assuming that the branch in Block 3 can be scheduled without delays, the
total time for our unrolled loop (prior to scheduling) is 32 cycles, or 16 cycles per
iteration of the original loop. After scheduling, this number is reduced to 12 cycles
per iteration of the original loop. Unfortunately, eight cycles (four per original
iteration) are still being lost to stalls.

If we unroll the loop three times instead of two (see Exercise C 17.21), we canEXAMPLE 17.30
Result of software
pipelining

bring the cost (with rescheduling) down to 11.3 cycles per original iteration, but
this is not much of an improvement. The basic problem is illustrated in the top half
of Figure C 17.15. In the original version of the loop, the two store instructions
cannot begin until after the divide delay. If we unroll the loop, then instructions
of the internal iterations can be intermingled, but six cycles of ‘‘shut-down’’ cost
(four delay slots and two stores) are still needed after the final divide.

A software-pipelined version of our combinations subroutine appears sche-
matically in the bottom half of Figure C 17.15, and as a control flow graph in
Figure C 17.16. The idea is to build a loop whose body comprises portions of
several consecutive iterations of the original loop, with no internal start-up or
shut-down cost. In our example, each iteration of the software-pipelined loop
contributes to three separate iterations of the original loop. Within each new
iteration (shown between vertical bars) nothing needs to wait for the divide to
complete. To avoid delays, we have altered the code in several ways. First, because
each iteration of the new loop contributes to several iterations of the original loop,
we must ensure that there are enough iterations to run the new loop at least once
(this is the purpose of the test in the new Block 1). Second, we have preceded and
followed the loop with code to ‘‘prime’’ and ‘‘flush’’ the ‘‘pipeline’’: to execute the
early portions of the first iteration and the final portions of the last few. As we did
when unrolling the loop, we use a separate name (t13 in this case) for any register
written in the new ‘‘pipeline flushing’’ code. Third, to minimize the amount of
priming required we have initialized v26 and v34 one slot before their original
positions, so that the first iteration of the pipelined loop can ‘‘update’’ them as part
of a ‘‘zero-th’’ original iteration. Finally, we have dropped the initialization of v13
in Block 1: our priming code has left that register dead at the end of the block.
(Live variable analysis on virtual registers could have been used to discover this
fact.)

Both the original and pipelined versions of the loop carry five nonconstant values
across the boundary between iterations, but one of these has changed identity:
whereas the original loop carried the result of the divide around to the next multiply

PREPRINT

C 394 Chapter 17 Code Improvement

32 51 81

79 98 43 46 1413

1211 1010 7

1413 1211

6

5 2

… –– code from Block 1, figure 16.11
v44 := v42 & 01
if !v44 goto Block 3
–– else fall through to Block 1a

*v26 := 1

*v34 := 1
v17 := 2
v26 := v26 + 4
v34 := v34 − 4
v18 := v18 − 1
goto Block 3

t19 := v13 × v18
—
—
—
—
t13 := t19 div v17
—
—
—
—
*v26 := t13

*v34 := t13
t17 := v17 + 1
v26 := v26 + 8
v34 := v34 − 8
t18 := v18 − 1
v19 := t13 × t18
—
—
—
—
v13 := v19 div t17
—
—
—
—
*(v26−4) := v13

*(v34+4) := v13
v17 := t17 + 1
v18 := t18 − 1
–– fall through to Block 3

v43 := v17 <_ v42
if v43 goto Block 2
–– else fall through to Block 4

1.

2.

3.
4.
5.
6.
7.
8.
9.

10.

11.
12.
13.
14.

Block 1:

Block 1a:

Block 2:

Block 3:

Scheduled:
t19 := v13 × v18
t18 := v18 − 1
t17 := v17 + 1
v18 := t18 − 1
—
t13 := t19 div v17
v17 := t17 + 1
—
—
—
v19 := t13 × t18

*v26 := t13

*v34 := t13
v26 := v26 + 8
v34 := v34 − 8
v13 := v19 div t17
—
—
—
—

*(v26−4) := v13

*(v34+4) := v13

 (same)

Figure 17.14 Dependence DAG for Block 2 of the combinations subroutine after unrolling
two iterations of the body of the loop. Also shown is linearized pseudocode for the entire loop,
both before (left) and after (right) instruction scheduling. New instructions added to the end of
Block 1 cover the case in which the number of iterations of the original loop is not a multiple of
two.

PREPRINT

17.7.1 Loop Unrolling and Software Pipelining C 395

v13

v17

v18

v26

v34

v13

v17

v18

v26
v34

mul div

sub

mul v19 mul divdiv

sto

sto

sto

sto

sto

sto

add

add

add

add

sub

sub

add

sub

sub

mul div

sto

sto

add

add

sub

sub

mul div

sub

sto

sto
add

add

sub

Figure 17.15 Software pipelining. The top diagram illustrates the execution of the original (nonpipelined) loop. In the bottom
diagram, each iteration of the original loop has been spread across three iterations of the pipelined loop. Iterations of the original
loop are enclosed in a dashed-line box; iterations of the pipelined loop are separated by solid vertical lines. In the bottom
diagram we have also shown the code to prime the pipeline prior to the first iteration, and to flush it after the last.

in register v13, the pipelined loop carries the result of the multiply forward to the
divide in register v19. In more complicated loops it may be necessary to carry two
or even three versions of a single register (corresponding to two or more iterations
of the original loop) across the boundary between iterations of the pipelined loop.
We must invent new virtual registers (similar to the new t13 and to the t registers
in the unrolled version of the combinations example) to hold the extra values. In
such a case software pipelining has the side effect of increasing register pressure.

Each of the instructions in the loop of the pipelined version of the combina-
tions subroutine can proceed without delay. The total number of cycles per
iteration has been reduced to 10. We can do even better if we combine loop
unrolling and software pipelining. For example, by embedding two multiply–divide
pairs in each iteration (drawn, with their accompanying instructions, from four
iterations of the original loop, rather than just three), we can update the array

PREPRINT

C 396 Chapter 17 Code Improvement

Block 1:
 v1 := r0 –– n
 v2 := r1 –– A
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 v17 := 1 –– i1
 v42 := v1 >> 1
 v26 := v2
 v34 := v9
 v18 := v1 –– (n+1−i1)
 v19 := v1
 –– t1 = t0 × (n+1−i1)
 v44 := v42 = 0
 if v44 goto Block 4
 else goto Block 3

Block 4:
 goto *lr

Block 4a:
 t13 := v19 div v17
 *(v26+4) := t13
 *(v34−4) := t13
 goto Block 4

Block 2 (no delays!):
 v13 := v19 div v17
 v17 := v17 + 1
 v18 := v18 − 1
 v26 := v26 + 4
 v34 := v34 − 4
 v19 := v13 × v18
 *v26 := v13
 *v34 := v13
 goto Block 3

Block 3:
 v43 := v17 < v42
 if v43 goto Block 2
 else goto Block 4a

Figure 17.16 Control flow graph for the combinations subroutine after software pipelining.
The additional code and test at the end of Block 1, the change to the test in Block 3 (< instead
of ≤), and the new block (4a) make sure that there are enough iterations to accommodate the
pipeline, prime it with the beginnings of the initial iteration, and flush the end of the final iteration.
Suffixes on variable names in the comments in Block 1 refer to loop iterations: t1 is the value of
t in the first iteration of the loop; t0 is a ‘‘zero-th’’ value used to prime the pipeline.

pointers and check the termination condition half as often, for a net of only eight
cycles per iteration of the original loop (see Exercise C 17.22).

To summarize, loop unrolling serves to reduce loop overhead, and can also
increase opportunities for instruction scheduling. Software pipelining does a better
job of facilitating scheduling, but does not address loop overhead. A reasonable
code improvement strategy is to unroll loops until the per-iteration overhead falls
below some acceptable threshold of the total work, then employ software pipelining
if necessary to eliminate scheduling delays.

17.7.2 Loop Reordering

The code improvement techniques that we have considered thus far have served
two principal purposes: to eliminate redundant or unnecessary instructions, and to

PREPRINT

17.7.2 Loop Reordering C 397

minimize stalls on a pipelined machine. Two other goals have become increasingly
important over the years. First, as improvements in processor speed have out-
stripped improvements in memory latency, it has become increasingly important
to minimize cache misses. Second, for parallel machines, it has become important
to identify sections of code that can execute concurrently. As with other optimiza-
tions, the largest benefits come from changing the behavior of loops. We touch on
some of the issues here; suggestions for further reading can be found at the end of
the chapter.

Cache Optimizations

Probably the simplest example of cache optimization can be seen in code thatEXAMPLE 17.31
Loop interchange traverses a multidimensional matrix (array):

for i := 1 to n
for j := 1 to n

A[i, j] := 0

If A is laid out in row-major order, and if each cache line contains m elements of
A, then this code will suffer n2/m cache misses. On the other hand, if A is laid
out in column-major order, and if the cache is too small to hold n lines of A, then
the code will suffer n2 misses, fetching the entire array from memory m times.
The difference can have an enormous impact on performance. A loop-reordering
compiler can improve this code by interchanging the nested loops:

for j := 1 to n
for i := 1 to n

A[i, j] := 0

In more complicated examples, interchanging loops may improve locality of
reference in one array but worsen it in others. Consider this code to transpose aEXAMPLE 17.32

Loop tiling (blocking) two-dimensional matrix:

for j := 1 to n
for i := 1 to n

A[i, j] := B[j, i]

If A and B are laid out the same way in memory, one of them will be accessed
along cache lines, but the other will be accessed across them. In this case we may
improve locality of reference by tiling or blocking the loops:

for it := 1 to n by b
for jt := 1 to n by b

for i := it to min(it + b − 1, n)
for j := jt to min(jt + b − 1, n)

A[i, j] := B[j, i]

PREPRINT

C 398 Chapter 17 Code Improvement

Figure 17.17 Tiling (blocking) of a matrix operation. As long as one tile of A and one tile of B
can fit in the cache simultaneously, only one access in m will cause a cache miss (where m is the
number of elements per cache line).

Here the min calculations cover the possibility that b does not divide n evenly. They
can be dropped if n is known to be a multiple of b. Alternatively, if we are willing
to replicate the code inside the innermost loop, then we can generate different code
for the final iteration of each loop (Exercise C 17.25).

The new code iterates over b × b blocks of A and B, one in row-major order,
the other in column-major order, as shown in Figure C 17.17. If we choose b
to be a multiple of m such that the cache can hold two b × b blocks of data
simultaneously, then both A and B will suffer only one cache miss per m array
elements, fetching everything from memory exactly once.6 Tiling is useful in a
wide variety of algorithms on multidimensional arrays. Exercise C 17.23 considers
matrix multiplication.

Two other transformations that may sometimes improve cache locality are loop
distribution (also called fission or splitting), and its inverse, loop fusion (also known
as jamming). Distribution splits a single loop into multiple loops, each of which
contains some fraction of the statements of the original loop. Fusion takes separate
loops and combines them.

Consider, for example, the following code to reorganize a pair of arrays:EXAMPLE 17.33
Loop distribution

for i := 0 to n−1
A[i] := B[M[i]];
C[i] := D[M[i]];

6 Although A is being written, not read, the hardware will fetch each line of A from memory on
the first write to the line, so that the single modified element can be updated within the cache.
The hardware has no way to know that the entire line will be modified before it is written back to
memory.

PREPRINT

17.7.2 Loop Reordering C 399

Here M defines a mapping from locations in B or D to locations in A or C. If either
B or D, but not both, can fit into the cache at once, then we may get faster code
through distribution:

for i := 1 to n
A[i] := B[M[i]];

for i := 1 to n
C[i] := D[M[i]];

On the other hand, in the following code, separate loops may lead to poorer locality:EXAMPLE 17.34
Loop fusion

for i := 1 to n
A[i] := A[i] + c

for i := 1 to n
if A[i] < 0 then A[i] := 0

If A is too large to fit in the cache in its entirety, then these loops will fetch the
entire array from memory twice. If we fuse them, however, we need only fetch A
once:

for i := 1 to n
A[i] := A[i] + c
if A[i] < 0 then A[i] := 0

If two loops do not have identical bounds, it may still be possible to fuse them if
we transform induction variables or peel some constant number of iterations off of
one of the loops.

Loop distribution may serve to facilitate other transformations (e.g., loop inter-EXAMPLE 17.35
Obtaining a perfect loop
nest

change) by transforming an ‘‘imperfect’’ loop nest into a ‘‘perfect’’ one:

for i := 1 to n
A[i] := A[i] + c
for j := 1 to n

B[i, j] := B[i, j] × A[i]

This nest is called imperfect because the outer loop contains more than just the
inner loop. Distribution yields two outermost loops:

for i := 1 to n
A[i] := A[i] + c

for i := 1 to n
for j := 1 to n

B[i, j] := B[i, j] × A[i]

The nested loops are now perfect, and can be interchanged if desired.
In keeping with our earlier discussions of loop optimizations, we note that

loop distribution can reduce register pressure, while loop fusion can reduce loop
overhead.

PREPRINT

C 400 Chapter 17 Code Improvement

Loop Dependences

When reordering loops, we must be extremely careful to respect all data depen-
dences. Of particular concern are so-called loop-carried dependences, which con-
strain the orders in which iterations can occur. Consider, for example, the following:EXAMPLE 17.36

Loop-carried dependences
for i := 2 to n

for j := 1 to n−1
A[i, j] := A[i, j] − A[i−1, j+1]

Here the calculation of A[i, j] in iteration (i , j) depends on the value of A[i−1, j+1],
which was calculated in iteration (i−1, j+1). This dependence is often represented
by a diagram of the iteration space:

1 2 3

j

2

3i

4

. .
 .

. . .

The i and j dimensions in this diagram represent loop indices, not array subscripts.
The arcs represent the loop-carried flow dependence.

If we wish to interchange the i and j loops of this code (e.g., to improve cache
locality), we find that we cannot do it, because of the dependence: we would end
up trying to write A[i, j] before we had written A[i−1, j+1].

To analyze loop-carried dependences, high-performance optimizing compilers
use symbolic mathematics to characterize the sets of index values that may cause
the subscript expressions in different array references to evaluate to the same
value. Compilers differ somewhat in the sophistication of this analysis. Most
can handle linear combinations of loop indices. None, of course, can handle all
expressions, since equivalence of general formulae is undecidable. When unable
to fully characterize subscripts, a compiler must conservatively assume the worst,
and rule out transformations whose safety cannot be proven.

In many cases a loop with a fully characterized dependence that precludes a
desired transformation can be modified in a way that eliminates the dependence.
In Example C 17.36 above, we can reverse the order of the j loop without violatingEXAMPLE 17.37

Loop reversal and
interchange

the dependence:

for i := 2 to n
for j := n−1 to 1 by−1

A[i, j] := A[i, j] − A[i−1, j+1]

PREPRINT

17.7.2 Loop Reordering C 401

This change transforms the iteration space:

n – 1 n – 2

j

n – 3

2

3i

4

. .
 .

. . .

And now the loops can safely be interchanged:

for j := n−1 to 1 by−1
for i := 2 to n

A[i, j] := A[i, j] − A[i−1, j+1]

Another transformation that sometimes serves to eliminate a dependence isEXAMPLE 17.38
Loop skewing known as loop skewing. In essence, it reshapes a rectangular iteration space into a

parallelogram, by adding the outer loop index to the inner one, and then subtracting
from the appropriate subscripts:

for i := 2 to n
for j := i+1 to i+n−1

A[i, j−i] := A[i, j−i] − A[i−1, j+1−i]

A moment’s consideration will reveal that this code accesses the exact same ele-
ments as before, in the exact same order. Its iteration space, however, looks like this:

3 4

j

5 6 7

2

3i

4

. .
 .

. . .

Now the loops can safely be interchanged. The transformation is complicated by
the need to accommodate the sloping sides of the iteration space. To avoid using
min and max functions, we can divide the space into two triangular sections, each
of which has its own loop nest:

PREPRINT

C 402 Chapter 17 Code Improvement

for j := 3 to n+1
for i := 2 to j−1

A[i, j− i] := A[i, j− i] − A[i−1, j+1− i]
for j := n+2 to 2×n−1

for i := j−n+1 to n
A[i, j− i] := A[i, j− i] − A[i−1, j+1− i]

Skewing has led to more complicated code than did reversal of the j loop, but it
could be used in the presence of other dependences that would eliminate reversal
as an option.

Several other loop transformations, including distribution, can also be used
in certain cases to eliminate loop-carried dependences, allowing us to apply tech-
niques that improve cache locality or (as discussed immediately below) enable
us to execute code in parallel on a vector or multicore machine. Of course, no
set of transformations can eliminate all dependences; some code simply can’t be
improved.

Parallelization

Loop iterations (at least in nonrecursive programs) constitute the principal source
of operations that can execute in parallel. Ideally, one needs to find independent loop
iterations: ones with no loop-carried dependences. (In some cases, iterations can
also profitably be executed in parallel even if they have dependences, so long as they
synchronize their operations appropriately.) In Example 13.8 and Section 13.4.6 we
considered loop constructs that allow the programmer to specify parallel execution.
Even in languages without such special constructs, a compiler can often parallelize
code by identifying—or creating—loops with as few loop-carried dependences as
possible. The transformations described above are valuable tools in this endeavor.

Given a parallelizable loop, the compiler must consider several other issues
in order to ensure good performance. One of the most important of these is the
granularity of parallelism. For a very simple example, consider the problem of ‘‘zero-EXAMPLE 17.39

Coarse-grain parallelization ing out’’ a two-dimensional array, here indexed from 0 to n−1 in each dimension,
and laid out in row-major order:

for i := 0 to n−1
for j := 0 to n−1

A[i, j] := 0

On a machine comprising several general-purpose processor cores, we would
probably parallelize the outer loop:

–– on processor core pid:
for i := (n/p × pid) to (n/p × (pid + 1) − 1)

for j := 1 to n
A[i, j] := 0

Here we have given each core a band of rows to initialize. We have assumed that
cores are numbered from 0 to p−1, and that p divides n evenly.

PREPRINT

17.8 Register Allocation C 403

The strategy on a vector machine is very different. Such a machine includes
a collection of v-element vector registers, and instructions to load, store, and
compute on vector data. The vector instructions are deeply pipelined, allowing the
machine to exploit a high degree of fine-grain parallelism. To satisfy the hardware,EXAMPLE 17.40

Strip mining the compiler needs to parallelize inner loops:

for i := 0 to n−1
for j := 0 to n−1 by v

A[i, j:j+v−1] := 0 –– vector operation

Here the notation A[i, j:j+v−1] represents a v-element slice of A. The constant v
should be set to the length of a vector register (which we again assume divides n
evenly). The code transformation that extracts v-element operations from longer
loops is known as strip mining. It is essentially a one-dimensional form of tiling.

Other issues of importance in parallelizing compilers include communication
and load balance. Just as locality of reference reduces communication between the
cache and main memory on a single-core machine, locality in parallel programs
reduces communication among cores and between the cores and memory. Opti-
mizations similar to those employed to reduce the number of cache misses on a
single-core machine can be used to reduce communication traffic on a multicore
machine.

Load balance refers to the division of labor among processor cores. If we divide
the work of a program among 16 cores, we shall obtain a speedup of close to 16 only
if each core takes the same amount of time to do its work. If we accidentally assign
5% of the work to each of 15 cores and 25% of the work to the 16th, we are likely to
see a speedup of no more than 4×. For simple loops it is often possible to predict
performance accurately enough to divide the work among cores at compile time.
For more complex loops, in which different iterations perform different amounts
of work or have different cache behavior, it is often better to generate self-scheduled
code, which divides the work up at run time. In its simplest form, self scheduling
creates a ‘‘bag of tasks,’’ as described in Section 13.2. Each task consists of a set of
loop iterations. The number of such tasks is chosen to be significantly larger than
the number of cores. When finished with a given task, a core goes back to the bag
to get another.

17.8 Register Allocation

In a simple compiler with no global optimizations, register allocation can be per-
formed independently in every basic block. To avoid the obvious inefficiency
of storing frequently accessed variables to memory at the end of many blocks,
and reading them back in again in others, simple compilers usually apply a set of
heuristics to identify such variables and allocate them to registers over the life of a
subroutine. Obvious candidates for a dedicated register include loop indices and
scalar local variables and parameters.

PREPRINT

C 404 Chapter 17 Code Improvement

It has been known since the early 1970s that register allocation is equivalent
to the NP-hard problem of graph coloring. Following the work of Chaitin et al.
[CAC+81], heuristic (nonoptimal) implementations of graph coloring have become
a common approach to register allocation in aggressive optimizing compilers. We
describe the basic idea here; for more detail see Cooper and Torczon’s text [CT11,
Chap. 13].

The first step is to identify virtual registers that cannot share an architectural
register, because they contain values that are live concurrently. To accomplish
this step we use reaching definitions data flow analysis (Section C 17.5.1). For theEXAMPLE 17.41

Live ranges of virtual
registers

software-pipelined version of our combinations subroutine (Figure C 17.16), we
can chart the live ranges of the virtual registers as shown in Figure C 17.18. Note
that the live range of v19 spans the backward branch at the end of Block 2; though
typographically disconnected it is contiguous in time.

Given these live ranges, we construct a register interference graph. The nodes
of this graph represent virtual registers. Registers vi and v j are connected by
an arc if they are simultaneously live. The interference graph corresponding toEXAMPLE 17.42

Register coloring Figure C 17.18 appears in Figure C 17.19. The problem of mapping virtual registers
onto the smallest possible number of architectural registers now amounts to finding
a minimal coloring of this graph: an assignment of ‘‘colors’’ to nodes such that no
arc connects two nodes of the same color.

In our example, we can find one of several optimal solutions by inspection. The
six registers in the center of the figure constitute a clique (a completely connected
subgraph); each must be mapped to a separate architectural register. Moreover
there are three cases—registers v1 and v19, v2 and v26, and v9 and v34—in which
one register is copied into the other somewhere in the code, but the two are never
simultaneously live. If we use a common architectural register in each of these cases
then we can eliminate the copy instructions; this optimization is known as live
range coalescing. Registers v13, v43, and v44 are connected to every member of the
clique, but not to each other; they can share a seventh architectural register. Register
v8 is connected to v1, v2, and v9, but not to anything else; we have arbitrarily
chosen to have both it and t13 share with the three registers on the right.

Final code for the combinations subroutine appears in Figure C 17.20. WeEXAMPLE 17.43
Optimized combinations
subroutine

have left v1/v19 and v2/v26 in r0 and r1, the registers in which their initial values
were passed. Because our subroutine is a leaf, these registers are never needed
for other arguments. Following Arm conventions (Section C 5.4.5), we have used
registers r2 through r6 as additional temporary registers. Of these, r4 through r6
are callee-saves, so we have pushed their old values in the prologue and popped
them in the epilogue.

We have glossed over two important issues. First, on almost any real machine,
architectural registers are not uniform. Integer registers cannot be used for floating-
point operations. Caller-saves registers should not be used for variables whose
values are needed across subroutine calls. Registers that are overwritten by special
instructions (e.g., byte string search on a CISC machine) should not be used to
hold values that are needed across such instructions. To handle constraints of
this type, the register interference graph is usually extended to contain nodes for

PREPRINT

17.8 Register Allocation C 405

Block 1:
 v1 := r0
 v2 := r1
 *v2 := 1
 v8 := v1 << 2
 v9 := v2 + v8
 *v9 := 1
 v17 := 1
 v42 := v1 >> 1
 v26 := v2
 v34 := v9
 v18 := v1
 v19 := v1
 v44 := v42 = 0
 if v44 goto Block 4
 goto Block 3
Block 2:
 v13 := v19 div v17
 v17 := v17 + 1
 v18 := v18 − 1
 v26 := v26 + 4
 v34 := v34 − 4
 v19 := v13 × v18
 *v26 := v13
 *v34 := v13
Block 3:
 v43 := v17 < v42
 if v43 goto Block 2
Block 4a:
 t13 := v19 div v17
 *(v26+4) := t13
 *(v34−4) := t13
Block 4:
 goto *lr

v1 v2 v8 v9 v13 t13 v17 v18 v19 v26 v34 v42 v43 v44

Figure 17.18 Live ranges for virtual registers in the software-pipelined version of the
combinations subroutine (Figure C 17.16).

both virtual and architectural registers. Arcs are then drawn from each virtual
register to the architectural registers to which it should not be mapped. Each
architectural register is also connected to every other, to force them all to have
separate colors. After coloring the resulting graph, we assign each virtual register to
the architectural register of the same color. On Arm (for which we are supposedly
generating code), v43 and v44 must actually be mapped to the condition codes in
the processor status register (psr). The astute reader may have noticed that we did

PREPRINT

C 406 Chapter 17 Code Improvement

v1
r0

v8
r6

v9
r4

v2
r1

t13
r6

v17
r2

v18

v13
r6

v43
r6

v44
r6

r3

v19
r0

v26
r1

v34
r4

v42
r5

Figure 17.19 Register interference graph for the software pipelined version of the combina-
tions subroutine. Using architectural register names, we have indicated one of several possible
seven-colorings.

Block 1:
push { r4, r5, r6 }
∗r1 := 1
r6 := r0 << 2
r4 := r1 + r6
∗r4 := 1
r2 := 1
r5 := r0 >> 1
r3 := r0
cc := r5 = 0
if cc goto Block 4
goto Block 3

Block 2:
r6 := r0 div r2
r2 := r2 + 1
r3 := r3 − 1

r1 := r1 + 4
r4 := r4 − 4
r0 := r6 × r3
∗r1 := r6
∗r4 := r6

Block 3:
cc := r2 < r5
if cc goto Block 2

Block 4a:
r6 := r0 div r2
∗(r1+4) := r6
∗(r4−4) := r6

Block 4:
pop { r4, r5, r6 }
goto ∗lr

Figure 17.20 Final code for the combinations subroutine, after assigning architectural
registers and eliminating useless copy instructions.

so in Figure C 17.20. In our particular example, the change has no impact on the
number of colors required for the remaining virtual registers.

The second issue we’ve ignored is what happens when there aren’t enough
architectural registers to go around. In this case it will not be possible to color the
interference graph. Using a variety of heuristics (which we do not cover here), the
compiler chooses virtual registers whose live ranges can be split into two or more

PREPRINT

17.9 Summary and Concluding Remarks C 407

subranges. A value that is live at the end of a subrange may be spilled (stored) to
memory, and reloaded at the beginning of the subsequent subrange. Alternatively,
it may be rematerialized by repeating the calculation that produced it (assuming
the necessary operands are still available). Which is cheaper will depend on the
cost of loads and stores and the complexity of the generating calculation.

It is easy to prove that with a sufficient number of range splits it is possible
to color any graph, given at least three colors. The trick is to find a set of splits
that keeps the cost of spills and rematerialization low. Once register allocation is
complete, as noted in Sections C 17.1 and C 17.6, we shall want to repeat instruction
scheduling, in order to fill any newly created load delays.

3CHECK YOUR UNDERSTANDING

28. What is the difference between loop unrolling and software pipelining? Explain
why the latter may increase register pressure.

29. What is the purpose of loop interchange? Loop tiling (blocking)?

30. What are the potential benefits of loop distribution? Loop fusion? What is loop
peeling?

31. What does it mean for loops to be perfectly nested? Why are perfect loop nests
important?

32. What is a loop-carried dependence? Describe three loop transformations that
may serve in some cases to eliminate such a dependence.

33. Describe the fundamental difference between the parallelization strategy for
multicore machines and the parallelization strategy for vector machines.

34. What is self scheduling? When is it desirable?

35. What is the live range of a register? Why might it not be a contiguous range of
instructions?

36. What is a register interference graph? What is its significance? Why do produc-
tion compilers depend on heuristics (rather than precise solutions) for register
allocation?

37. List three reasons why it might not be possible to treat architectural registers
uniformly for purposes of register allocation.

17.9 Summary and Concluding Remarks

This chapter has addressed the subject of code improvement (‘‘optimization’’).
We considered several of the most important optimization techniques, including
peephole optimization; local and global (procedure-level) redundancy elimination

PREPRINT

C 408 Chapter 17 Code Improvement

(constant folding, constant propagation, copy propagation, common subexpres-
sion elimination); loop improvement (invariant hoisting, strength reduction or
elimination of induction variables, unrolling and software pipelining, reordering
for cache improvement or parallelization); instruction scheduling; and register
allocation. Many others techniques, too numerous to mention, can be found in the
literature or in production use.

To facilitate code improvement, we introduced several new data structures and
program representations, including dependence DAGs (for instruction scheduling),
static single-assignment (SSA) form (for many purposes, including global common
subexpression elimination via value numbering), and the register interference graph
(for architectural register allocation). For many global optimizations we made use of
data flow analysis. Specifically, we employed it to identify available expressions (for
global common subexpression elimination), to identify live variables (to eliminate
useless stores), and to calculate reaching definitions (to identify loop invariants;
also useful for finding live ranges of virtual registers). We also noted that it can be
used for global constant propagation, copy propagation, conversion to SSA form,
and a host of other purposes.

An obvious question for both the writers and users of compilers is: among
the many possible code improvement techniques, which produce the most ‘‘bang
for the buck’’? For modern machines, particularly those with in-order pipelines,
instruction scheduling and register allocation are definitely on the list. Significant
additional benefits accrue from some sort of global register allocation, if only to
avoid repeated loads and stores of loop indices and other heavily used local vari-
ables and parameters. Beyond these basic techniques, which mainly amount to
making good use of the hardware, the most significant benefits in von Neumann
programs come from optimizing references to arrays, particularly within loops.
Most production-quality compilers (1) perform at least enough common subex-
pression analysis to identify redundant address calculations for arrays, (2) hoist
invariant calculations out of loops, and (3) perform strength reduction on induction
variables, eliminating them if possible.

As we noted in the introduction to the chapter, code improvement remains
an extremely active area of research. Much of this research addresses language
features and computational models for which traditional optimization techniques
have not been particularly effective. Examples include alias analysis for pointers
in C, static resolution of virtual method calls in object-oriented languages (to
permit inlining and interprocedural optimization), streamlined communication
in message-passing languages, and a variety of issues for functional and logic
languages. In some cases, new programming paradigms can change the goals
of code improvement. For just-in-time compilation of Java or C# programs, for
example, the speed of the code improver may be as important as the speed of the
code it produces. In other cases, new sources of information (e.g., feedback from
run-time profiling) create new opportunities for improvement. Finally, advances
in processor architecture (multiple pipelines, very wide instruction words, out-of-
order execution, architecturally visible caches, speculative instructions) continue to
create new challenges; processor design and compiler design are deeply interrelated.

PREPRINT

17.10 Exercises C 409

17.10 Exercises

17.1 In Section C 17.2 we suggested replacing the instruction r1 := r2 / 2 with
the instruction r1 := r2 >> 1, and noted that the replacement may not be
correct for negative numbers. Explain the problem. You will want to learn
the difference between logical and arithmetic shift operations (see almost
any assembly language manual). You will also want to consider the issue of
rounding.

17.2 Prove that the division operation in the loop of the combinations subrou-
tine (Example C 17.10) always produces a remainder of zero. Explain the
need for the parentheses around the numerator.

17.3 Certain code improvements can sometimes be performed by the program-
mer, in the source-language program. Examples include introducing addi-
tional variables to hold common subexpressions (so that they need not be
recomputed), moving invariant computations out of loops, and applying
strength reduction to induction variables or to multiplications by powers of
two. Describe several optimizations that cannot reasonably be performed
by the programmer, and explain why some that could be performed by the
programmer might best be left to the compiler.

17.4 In Section 6.5.1, we suggested that the loop

// before
for (i = low; i <= high; i++) {

// during
}
// after

be translated as

–– before
i := low
goto test

top:
–– during
i +:= 1

test:
if i ≤ high goto top
–– after

And indeed this is the translation we have used for the combinations
subroutine. The following is an alternative translation:

–– before
i := low
if i > high goto bottom

PREPRINT

C 410 Chapter 17 Code Improvement

top:
–– during
i +:= 1
if i ≤ high goto top

bottom:
–– after

Explain why this translation might be preferable to the one we used. (Hints:
Consider the number of branches, the migration of loop invariants, and
opportunities to fill delay slots.)

17.5 Beginning with the translation of the previous exercise, reapply the code
improvements discussed in this chapter to the combinations subroutine.

17.6 Give an example in which the numbered heuristics listed under ‘‘Depen-
dence Analysis’’ in Section C 17.6 do not lead to an optimal code schedule.

17.7 Show that forward data flow analysis can be used to verify that a variable
is assigned a value on every possible control path leading to a use of that
variable (this is the notion of definite assignment, described in Section 6.1.3).

17.8 In Sidebar 16.3, we noted two additional properties (other than definite
assignment) that a Java Virtual Machine must verify in order to protect itself
from potentially erroneous bytecode. On every possible path to a given
statement S (a) every variable read in S must have the same type (which
must of course be consistent with operations in S), and (b) the operand stack
must have the same current depth, and must not overflow or underflow
in S. Describe how data flow analysis can be used to verify these properties.

17.9 Show that very busy expressions (those that are guaranteed to be calculated
on every future code path) can be detected via backward, all-paths data flow
analysis. Suggest a space-saving code improvement for such expressions.

17.10 Explain how to gather information during local value numbering that will
allow us to identify the sets of variables and registers that contributed to
the value of each virtual register. (If the value of register vi depends on
the value of register v j or of variable x, then during available expression
analysis we say that v i ∈ KillB if B contains an assignment to v j or x and
does not contain a subsequent assignment to vi .)

17.11 Show how to strength-reduce the expression i2 within a loop, where i is the
loop index variable. You may assume that the loop step size is one.

17.12 Division is often much more expensive than addition and subtraction. Show
how to replace expressions of the form i div c on the inside of a for loop
with additions and/or subtractions, where i is the loop index variable and c
is an integer constant. You may assume that the loop step size is one.

17.13 Consider the following high-level pseudocode:

PREPRINT

17.10 Exercises C 411

read(n)
for i in 1 . . 100

B[i] := n × i
if n > 0

A[i] := B[i]

The condition n > 0 is loop invariant. Can we move it out of the loop? If so,
explain how. If not, explain why.

17.14 Should live variable analysis be performed before or after loop invariant
elimination (or should it be done twice, before and after)? Justify your
answer.

17.15 Starting with the naive gcd code of Figure 1.7, show the result of local
redundancy elimination (via value numbering) and instruction scheduling.

17.16 Continuing the previous exercise, draw the program’s control flow graph
and show the result of global value numbering. Next, use data flow analysis
to drive any appropriate global optimizations. Then draw and color the
register conflict graph in order to perform global register allocation. Finally,
perform a final pass of instruction scheduling. How does your code compare
to the version in Example 1.2?

17.17 In Section C 17.6, we noted that hardware register renaming can often hide
anti- and output dependences. Will it help in Figure C 17.13? Explain.

17.18 Consider the following code:

v2 := ∗v1
v1 := v1 + 20
v3 := ∗v1
—
v4 := v2 + v3

Show how to shorten the time required for this code by moving the update
of v1 forward into the delay slot of the second load. (Assume that v1 is
still live at the end.) Describe the conditions that must hold for this type
of transformation to be applied, and the alterations that must be made to
individual instructions to maintain correctness.

17.19 Consider the following code:

v5 := v2 × v36
—
—
—
—
v6 := v5 + v1
v1 := v1 + 20

Show how to shorten the time required for this code by moving the update
of v1 backward into a delay slot of the multiply. Describe the conditions that

PREPRINT

C 412 Chapter 17 Code Improvement

must hold for this type of transformation to be applied, and the alterations
that must be made to individual instructions to maintain correctness.

17.20 In the spirit of the previous two exercises, show how to shorten the main
loop of the combinations subroutine (prior to unrolling or pipelining)
by moving the updates of v26 and v34 backward into delay slots. What
percentage impact does this change make in the performance of the loop?

17.21 Using the code in Figures C 17.12 and C 17.14 as a guide, unroll the loop of
the combinations subroutine three times. Construct a dependence DAG
for the new Block 2. Finally, schedule the block. How many cycles does
your code consume per iteration of the original (unrolled) loop? How does
it compare to the software pipelined version of the loop (Figure C 17.16)?

17.22 Write a version of the combinations subroutine whose loop is both un-
rolled and software pipelined. In other words, build the loop body from
the instructions between the left-most and right-most vertical bars of Fig-
ure C 17.15, rather than from the instructions between adjacent bars. You
should update the array pointers only once per iteration. How many cycles
does your code consume per iteration of the original loop? How messy is
the code to ‘‘prime’’ and ‘‘flush’’ the pipeline, and to check for sufficient
numbers of iterations?

17.23 Consider the following code for matrix multiplication:

for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {

C[i][j] = 0;
}

}
for (i = 0; i < n; i++) {

for (j = 0; j < n; j++) {
for (k = 0; k < n; k++) {

C[i][j] += A[i][k] * B[k][j];
}

}
}

Describe the access patterns for matrices A, B, and C. If the matrices are
large, how many times will each cache line be fetched from memory? Tile
the inner two loops. Describe the effect on the number of cache misses.

17.24 Consider the following simple instance of Gaussian elimination:

for (i = 0; i < n-1; i++) {
for (j = i+1; j < n; j++) {

for (k = n-1; k >= i; k--) {
A[j][k] -= A[i][k] * A[j][i] / A[i][i];

}
}

}

PREPRINT

17.11 Explorations C 413

(Gaussian elimination serves to triangularize a matrix. It is a key step in the
solution of systems of linear equations.) What are the loop invariants in this
code? What are the loop-carried dependences? Discuss how to optimize
the code. Be sure to consider locality-improving loop transformations.

17.25 Modify the tiled matrix transpose of Example C 17.32 to eliminate the min
calculations in the bounds of the inner loops. Perform the same modifica-
tion on your answer to Exercise C 17.23.

17.11 Explorations

17.26 Investigate the back-end structure of your favorite compiler. What levels of
optimization are available? What techniques are employed at each level?
What is the default level? Does the compiler generate assembly language or
object code?

Experiment with optimization in several program fragments. Instruct the
compiler to generate assembly language, or use a disassembler or debugger
to examine the generated object code. Evaluate the quality of this code at
various levels of optimization.

If your compiler employs a separate assembler, compare the assembler
input to its disassembled output. What optimizations, if any, are performed
by the assembler?

17.27 As a general rule, a compiler can apply a program transformation only if it
preserves the correctness of the code. In some circumstances, however, the
correctness of a transformation may depend on information that will not be
known until run time. In this case, a compiler may generate two (or more)
versions of some body of code, together with a run-time check that chooses
which version to use, or customizes a general, parameterized version.

Learn about the ‘‘inspector-executor’’ compilation paradigm pioneered
by Saltz et al. [SMC91]. How general is this technique? Under what circum-
stances can the performance benefits be expected to outweigh the cost of
the run-time check and the potential increase in code size?

17.28 Static compiler analysis can be used to check for patterns of information
flow that are likely (though not certain) to constitute programming errors.
Investigate the work of Guyer et al. [GL05], which performs analysis remi-
niscent of taint mode (Exploration 16.21) at compile time. In a similar vein,
investigate the work of Yang et al. [YTEM04] and Chen et al. [CDW04],
which use static model checking to catch high-level errors. What do you
think of such efforts? How do they compare to taint mode or to proof-
carrying code (Exploration 16.22)? Can static analysis be useful if it has both
false negatives (errors it misses) and false positives (correct code it flags as
erroneous)?

17.29 In a somewhat gloomy parody of Moore’s Law, Todd Proebsting (an eminent
compiler researcher formerly at Microsoft Research and now on the faculty

PREPRINT

C 414 Chapter 17 Code Improvement

of the University of Arizona) once coined what he called Proebsting’s Law:
‘‘Compiler advances double computing power every 18 years.’’

Survey the history of compiler technology. What have been the major
innovations? Have there been important advances in areas other than speed?
Is Proebsting’s Law a fair assessment of the field?

17.12 Bibliographic Notes

Mainstream compiler textbooks (e.g., those of Cooper and Torczon [CT11], Grune
et al. [GBJ+12], or Aho et al. [ALSU07]) are an accessible source of information
on back-end compiler technology. Much of the presentation here was inspired
by Muchnick’s Advanced Compiler Design and Implementation, which contains
a wealth of detailed information and citations to related work [Muc97]. Much
of the leading-edge compiler research appears in the annual ACM Conference on
Programming Language Design and Implementation (PLDI). A compendium of ‘‘best
papers’’ from the first 20 years of this conference was published in 2004 [McK04].

Throughout our study of code improvement, we concentrated our attention
on the von Neumann family of languages. Analogous techniques for functional
[App91; Pey87; Pey92; WM95, Chap. 3; App97, Chap. 15; GBJ+12, Chap. 7]; object-
oriented [AH95; GDDC97; WM95, Chap. 5; App97, Chap. 14; GBJ+12, Chap. 6];
and logic languages [DRSS96; FSS83; Zho96; WM95, Chap. 4; GBJ+12, Chap. 8]
are an active topic of research, but are beyond the scope of this book. A key challenge
in functional languages is to identify repetitive patterns of calls (e.g., tail recursion),
for which loop-like optimizations can be performed. A key challenge in object-
oriented languages is to predict the targets of virtual subroutine calls statically, to
permit in-lining and interprocedural code improvement. The dominant challenge
in logic languages is to better direct the underlying process of goal-directed search.

Local value numbering is originally due to Cocke and Schwartz [CS69]; the
global algorithm described here is based on that of Alpern, Wegman, and Zadeck
[AWZ88]. Chaitin et al. [CAC+81] popularized the use of graph coloring for reg-
ister allocation. Cytron et al. [CFR+91] describe the generation and use of static
single-assignment form. Allen and Kennedy [AK02, Sec. 12.2] discuss the general
problem of alias analysis in C. Pointers have historically been the most difficult
part of this analysis; Smaragdakis and Balatsouras [SB15] provide a tutorial survey.
Instruction scheduling from basic-block dependence DAGs is described by Gib-
bons and Muchnick [GM86]. The general technique is known as list scheduling;
explanations appear in the texts of Muchnick [Muc97, Sec. 17.1.2] and Cooper and
Torczon [CT11, Sec. 12.3]. Massalin provides a delightful discussion of circum-
stances under which it may be desirable (and possible) to generate a truly optimal
program [Mas87]. Several projects have expanded on this idea; see for example
the work of Schkufza et al. [SSA13].

Sources of information on loop transformations and parallelization include
the text of Allen and Kennedy [AK02], the classic text of Wolfe [Wol96], and

PREPRINT

17.12 Bibliographic Notes C 415

the excellent survey of Bacon, Graham, and Sharp [BGS94]. Banerjee provides a
detailed discussion of loop dependence analysis [Ban97]. Rau and Fisher discuss
fine-grain instruction-level parallelism, of the sort exploitable by vector, wide-
instruction-word, or superscalar processors [RF93].

PREPRINT

C 416 Chapter 17 Code Improvement

PREPRINT

17.12 Bibliographic Notes C 417

PREPRINT

