
Notes for CSC 254, 7 Dec. 2022
===============================
Run-time Systems

A library is preexisting code you can call.
A run-time system is a library that makes assumptions about how the
 compiler works
 - may use tables generated by the compiler
 - may examine or manipulate heap or stack layout
 - e.g., GC requires help finding root pointers and type descriptors;
 needs compiler to generate write barriers
A virtual machine is a run-time system that provides/specifies everything the
 program needs, including the instruction set

--
The Java Virtual Machine (JVM)

Recall how Java works
 compiler translates Java source to Java byte code (JBC)
 byte code runs on virtual machine
 virtual machine may execute code via interpretation,
 JIT compilation, or some combination of the two

The JVM’s machine architecture provides
 all & only Java’s built-in types
 (but invokedynamic was added to the JVM for Java 7, to support
 Java lambdas & dynamic languages)
 type safety
 definite assignment
 garbage collection
 threads
 global constant pool, per-thread stacks, heap, method (code) area
 [each stack frame contains
 array of locals & formals
 each slot 32 bits wide (longs and doubles take 2)
 can be reused for temporally disjoint data of different types
 expression evaluation stack
 (sized to accommodate largest expression in the method)]

 implicit references (“registers”) for the current program counter, frame,
 top of operand stack within frame, symbol table info in constant pool

The JVM also defines the format of .class files

At start-up, the JVM
 loads the given class file (which must have a main())
 verifies that it satisfies various invariants
 type safety
 no operand stack overflow or underflow
 all references to the constant pool and the locals array are
 within bounds
 all constant pool entries are well formed
 no inheritance from a final class
 definite assignment
 (several of these require data flow analysis)
 allocates and initializes static data
 links to library classes
 calls main() in a single thread

The Java Byte Code instruction set includes
 load-store
 back and forth between local variable array and operand stack
 arithmetic
 all done implicitly on the operand stack
 type conversion
 object management
 new, field and array element access, reflection
 push, pop, dup, swap
 branches, switch
 specify targets as indices in the instruction array of the
 current method
 static and virtual method calls
 specify target symbolically by name (index in constant pool)
 throw exception
 monitor enter, exit (wait, notify, and notifyAll are method calls)

The Common Language Infrastructure (CLI) is similar to the JVM but more general
(The Common Language Runtime [CLR] is Microsoft’s implementation)
 explicit support for multiple programming languages
 (Microsoft supports C#, F#, Visual Basic, Managed C++, and JScript)
 richer common type system (CTS)
 richer calling mechanisms (including tail recursion)
 multiple pointer and reference types
 support for unsafe code
 etc.
 Common Intermediate Language (CIL) is the JBC analogue
 JIT-centric: several tradeoffs made against interpretation
 type information in objects, not opcodes
 separate spaces for arguments and locals
 built-in support for generics

--
Lazy binding of machine code

JIT
 tradeoff between load time and optimization quality
 HotSpot has “client” and “server” modes
 faster than you might think (heavy lifting done by javac)
 incremental compilation
 compilation of hot methods in parallel with interpretation
 caching of machine code across runs
 dynamic inlining

Binary translation
 FX!32 (x86 –> Alpha)
 Apple Rosetta (PowerPC –> x86), Rosetta2 (x86 –> ARM)
 challenges:
 where are the function boundaries?
 what are types of data in memory?
 what locations are targets of branches?
 self-modifying code
 dynamically generated code
 introspection

Binary rewriting
 trace scheduling
 HP Dynamo (PA-RISC) & DynamoRIO (x86), late 1990s
 instrumentation
 statistics gathering
 simulate new architectures
 insert dynamic semantic checks
 sandboxing (a.k.a. software fault isolation -- SFI)
 Pin, Valgrind tools
 trace-based

(Interestingly, some processors cache traces like these in hardware.)
To learn more about language tools, take 2/455!

