
Notes for CSC 2/454, Oct. 5 and 12, 2022

==
Intro to Naming: Scope, lifetime, bindings, and storage management

A name is exactly what you think it is.
Most names are identifiers, though symbols (like ‘+’) can also be names.

A binding is an association between two things, such as a name and
the thing it names.

The scope of a binding is the part of the program (textually) in which
the binding is active.

Binding time is the point at which a binding is created or, more
generally, the point at which any implementation decision is made.
Examples include

 language design time
 program structure, possible types
 language implementation time
 I/O, arithmetic overflow, type equality (if unspecified in manual)
 program writing time
 algorithms, names
 compile time
 plan for data layout
 link time
 layout of whole program in memory
 load time
 choice of physical addresses
 run time
 value/variable bindings, sizes of strings
 subsumes
 program start-up time
 module entry time
 elaboration time (point at which a declaration is first “seen”)
 procedure entry time
 block entry time
 statement execution time

The terms static and dynamic are generally used to refer to things bound
before run time and at run time, respectively. Clearly “static” is a coarse
term. So is “dynamic.”

What gets bound when varies from language to language.

 It is difficult to overstate the importance of binding times in
 programming languages.

In general, early binding times are associated with greater efficiency.
Later binding times are associated with greater flexibility.
Languages with lots of early binding tend to be compiled.
Languages with lots of late binding tend to be interpreted.

Today I want to talk in particular about the binding of identifiers to
the things they name. I’ll use the name “item,” informally, for
anything that can have a name.

--
Scope and Lifetime

Fundamental to all programming languages is the ability to name things,
i.e., to refer to things using symbolic identifiers rather than values,
addresses, etc. Things we might name include
 constants
 variables
 functions
 parameters
 modules
 classes
 fields
 types
 exceptions
 labels
 threads
 ...

Anything that isn’t figured out until run time (values of variables and
parameters in particular) has to be represented by data (bits) in memory.
Some but not all data have names.

Dynamic storage in C, Ada 95, or Fortran 90, for example, is referenced
through pointers, not names. Similarly, dynamic storage in Java or C#
is referred to indirectly through references.

The lifetime of an item runs from when the space for it is allocated until it is
reclaimed. The lifetime of a binding runs from when the name is first associated
with the item until it is no longer associated with it (and never will be again). A
binding may not be active (usable) throughout its lifetime. It may be hidden by a
nested use of the same name, or it may be valid only when running a given
function or a method of a given class.

Typical timeline:
 creation of item
 creation of binding
 uses of name that is bound to item
 (temporary) deactivation (hiding) of binding
 reactivation of binding
 destruction of binding
 destruction of item

 If an item outlives its binding it’s garbage.
 If a binding outlives its item it’s a dangling reference.

The scope of a binding is the textual region of a program in which the binding is
active. In most but not all languages this scope is determined at compile time.

 That is, nothing has to happen at run time to activate and deactivate
 bindings; the compiler has already figured out what’s visible where.
 In such languages, scope is sometimes called lexical extent; lifetime is
 sometimes called dynamic extent.

(More on the rules that determine scope in the following lecture.)

In addition to talking about the “scope of a binding,” we sometimes use the word
‘scope’ as a noun all by itself, without an indirect object. A “scope” is a program
region of maximal size in which no bindings are destroyed.

In many, but not all languages, the scope of a binding is determined by a
declaration. From the perspective of formal semantics, the declaration can be
thought of as code that actively establishes visibility, even if the compiler is smart
enough to do all the work ahead of time.

Algol 68 introduced the term elaboration for the “execution” of declarations. It’s
a useful concept because some declarations do more than establish bindings, and
some of the extra stuff has to happen at run time. Elaboration can
 - allocate space
 - perform dynamic semantic checks (is the lower bound of this array <=
 the upper bound?) and perhaps raise an exception
 - start a thread
 - ...

And in some languages (e.g., Python & Ruby), declarations really are executed:

 class foo
 if A > B
 method bar() ...
 else
 method bar() ...

In most languages with subroutines, we open a new scope on subroutine entry.
We create bindings for new local variables, deactivate bindings for global
variables that will be hidden by local ones (the globals are said to have a “hole” in
their scope), and then make references to variables. On subroutine exit, we
destroy bindings for local variables and reactivate bindings for nonlocal variables
that were deactivated.

The referencing environment of a statement or expression is the set of active
bindings. A referencing environment corresponds to a collection of scopes that
are examined (in order) to find a binding. Scope rules determine that collection
and its order.

--
Storage Management -- for items with various lifetimes.

 Static allocation for
 code
 globals
 own/static variables
 explicit constants (strings, sets, other aggregates)
 some scalars may be global;
 others may simply be embedded in instructions

 Central stack (chap. 9) for
 parameters
 local variables
 temporaries
 bookkeeping information
 Why a stack?
 allocate space for recursive routines
 reuse space
 minimize management overhead

 Heap (chap. 7) for
 dynamic allocation

Maintaining the run-time stack
 Contents of a stack frame
 bookkeeping: return PC (dynamic link), saved registers, line
 number, static link, etc.
 arguments and returns
 local variables
 temporaries
 Maintenance of stack is responsibility of “calling sequence”
 and subroutine “prologue” and “epilogue” (more on this in Chap. 9)
 space is saved by putting as much in the prologue and epilogue
 as possible
 time may be saved by putting stuff in the caller instead, or
 by combining what’s known in both places (interprocedural
 optimization)

 Local variables and arguments are assigned fixed offsets from
 the stack pointer or frame pointer at compile time

Access to non-local variables is usually implemented using static links.
 Each frame has a pointer to the frame of the (correct instance of)
 the routine inside which it was declared. In the absence of formal
 subroutines, “correct” means closest to the top of the stack.

 You access a variable in a scope k levels out by following
 k static links and then using the known offset within the
 frame thus found.

NB: many languages allow you to declare nested scopes within the body
of a subroutine. (OCaml, for example, does this all the time.)
Declarations in these nested scopes hide outer variables with the same
name, just as declarations at the tops of subroutines do. These nested
scopes are generally considered to be a good idea, esp. since the
implementation can roll space management into that of the surrounding
routine: then the run-time overhead is zero.

Next lecture: static and lexical scope rules, which determine the
scopes of bindings.

Then: deep and shallow binding rules, which (somewhat confusingly)
associate referencing environments with functions that are passed as
parameters or return values, or stored in variables.

==
Scope rules -- static and dynamic

With static (lexical) scope rules, a scope is defined in terms of the
physical (lexical) structure of the program. The determination of
scopes can be made by the compiler. All bindings for identifiers can be
resolved by examining the program. Most programming languages today
employ static scope rules.

Typically, we choose the closest enclosing binding, as originally
proposed in Algol 60. An identifier is known in the scope in which it
is declared and in each enclosed scope, unless a new binding for the
identifier appears in an enclosed scope. To resolve a reference to an
identifier, we examine the local scope and statically enclosing scopes
until a binding is found. There are important variants on this; see
“declaration order” below. Note that subroutines are permitted to nest
in many languages, though not in C and its descendants.

A slightly newer example of static scope rules (1980s) is the import/export
strategies of modular languages such as Modula-2. Within a module, the block
structure of ALGOL 60 is assumed. However, an identifier declared within a
module may be referenced in the enclosing scope only if it is exported. Similarly,
an identifier outside a module may be referenced within the module only if it is
imported.

The exact rules to control visibility of names across module boundaries vary from
language to language. Some languages (e.g., Modula-2) require explicit export
from the defining module and explicit import into the using module. Some
languages (e.g., C++, with its namespace mechanism) require only explicit import:
everything in the namespace is implicitly exported.

Modules that require explicit import are said to be closed scopes. Subroutines
and nested blocks in most languages are said to be open scopes: identifiers that
are not redeclared are automatically inherited from the enclosing scope.

Classes in object-oriented languages are a generalization of modules.
These have even more sophisticated (static) scope rules. In particular,
methods of a class can generally access members of the class regardless
of whether they are nested inside a common lexical (textual) construct.

Note that the bindings created in a subroutine are destroyed at
subroutine exit. Modules and classes give you limited scope without the
limited lifetime. Bindings to variables declared in a module are
inactive outside the module, not destroyed. The same sort of effect can
be achieved in some languages with ‘own’ (Algol term) or ‘static’ (C term)
variables.

--
Declaration Order

Two key subtleties of static scoping:
 - Does the scope of a binding include the portion of “the scope”
 before the declaration?
 - Does a name have to be declared before use?

Some languages (e.g., Pascal, Modula-3, and C#) say the scope of an
identifier is its entire block, excluding sub-blocks in which the
identifier is redeclared. Within its block, the identifier must be
declared before it is used. Consider this in C#:

class C {
 const int A = 10;

 void foo() {
 const int B = A;
 // static semantic error
 const int A = 20;
 }

Language rules say the second declaration of A covers all of foo, so the
declaration of B refers to A before it is declared. Where should you report
the error? The mcs compiler complains at the second declaration of A:

 A local variable `N’ cannot be used before it is declared.
 Consider renaming the local variable when it hides the member `C.A’.

Or this in Pascal:

 const foo = 10;
 ...
 procedure P1;
 ...
 procedure P2;
 var A : integer;
 begin
 ...
 A := foo; {illegal, because of dec. below!}
 ...
 end {P2};
 ...
 procedure foo;

Clearly the programmer meant to use the outer foo.

Note that there can be arbitrary distance between the (illegal) use
and the inner declaration.

Ada, C, C++, Java, and others say scope extends from a declaration to
the end of the current block.

C++ and Java dispense with declare-before-use for members, but not
locals. Java dispenses with it for classes.
Modula-3 dispenses with it entirely.
Python dispenses with declarations: a variable is local iff written.

Modula-3 and Python share the Pascal/C# whose-scope rule, but don’t
require declare-before-use, so they don’t have the gotchas above.

In OCaml, let introduces a name into the expression that follows in (or into the
global scope, once you hit ;;). If you want the name visible within the definition
(for recursive functions), use let rec. If you need mutually recursive functions,
use let rec... and ...

Declarations v. definitions
 Former introduces a name; latter fully describes the named thing.

Declarations that are not definitions are useful for
 - getting around declare-before-use for recursive definitions
 C, C++, Ada, Scheme, ...
 - information hiding
 most OO and module-based languages

--
Dynamic Scope

The key idea in static scope rules is that bindings are defined by the
physical (lexical) structure of the program.

With dynamic scope rules, bindings depend on the history of program
execution. They cannot always be resolved by examining the source code.
To resolve a reference, we use the most recent, active binding
elaborated at run time.

Dynamic scope rules appear is several legacy languages -- early LISP dialects in
particular. It also appears in a few languages today -- shell languages in
particular. Such languages do not normally have type checking at compile time
because type determination isn’t always possible given dynamic scoping.

example: static vs dynamic scope rules (in no particular language)

 int a
 proc first:
 a := 1
 proc second:
 int a
 first()

 a := 2; second(); write(a)

If static scope rules are in effect, the program prints a 1. If dynamic scope rules
are in effect, the program prints a 2. Why the difference? At issue is whether the
assignment to the variable “a” in procedure “first” changes the variable “a”
declared in the main program or the variable “a” declared in procedure “second”.
Static scope rules require that the reference resolve to the closest surrounding
compile-time binding, namely the global variable “a”. Dynamic scope rules, on
the other hand, require that we choose the most recent, active binding at run
time. At run time we create a binding for “a” when we enter the main program.
Then we create another binding for “a” when we enter procedure “second”. This
is the most recent, active binding when procedure “first” is executed. Thus, we
modify the variable local to procedure “second”, not the global variable.
However, we write the global variable because the variable “a” local to procedure
second is no longer active.

Alternative model of dynamic scope: instead of saying that a newly encountered
definition hides the existing definition, say it saves the current value for later
restoration, and creates a new value for the existing item (or makes it undefined
if the definition provides no value).

The two ways of thinking correspond closely to the two standard
implementations (A-list v. central reference table). Perl encourages you to use
this alternative (central reference table) way of thinking.

(Slightly) more modern instances of dynamic scope:
Tcl, Perl 5 (programmer chooses), Unix environment variables.

Why dynamic scope?
 - simple implementation for interpreted languages
 probably why Lisp did it; not clear they thought about it carefully
 - implicit “parameters” to subroutines
 but better alternatives exist: e.g., static variables that can be modified
 by auxiliary routines, or default and optional parameters.
 - lack of static structure (e.g. Unix environment variables)

Why not?
 confusing
What to use instead?
 static variables
 default parameters

==
Binding Rules

Recall that the referencing environment of a statement at run time is
the set of active bindings. A referencing environment corresponds to a
collection of scopes that are examined (in order) to find a binding.

Scope rules determine that collection and its order.

Binding rules determine which instance of a scope should be used to
resolve references when calling a subroutine that was passed as a
parameter, returned from a function, or stored in a variable.

That is, they govern the binding of referencing environments to
formal subroutines.

With shallow binding, the nonlocal referencing environment of a
subroutine is the referencing environment in force at the time it (the
subroutine) is called. Original Lisp worked this way by default.

With deep binding, the nonlocal referencing environment of a
subroutine is the referencing environment in force when creating a
reference to the subroutine at run time -- when passing it to or

returning it from some other subroutine, or when storing a reference
to it in a pointer.

[Aside: “subroutine” v “function” v “procedure” v “method
 Subroutine is the general term.
 A function is a subroutine that returns a value.
 A procedure is a subroutine that does not return a value
 (it is executed solely for its side effects).
 A method is a subroutine that belongs to a class, with special scope
 rules and usually dynamic choice among subclass instances.
 I am sometimes sloppy about using these; bear with me.]

For subroutines passed as parameters, this environment captured by deep
binding is the same as would be extant if the procedure were actually called at
the point where the reference was created. When the reference is passed or
saved, this referencing environment is passed or saved as well. When the
subroutine is eventually called (through the reference), this saved referencing
environment is restored. The original Lisp made this behavior available when
desired; it’s the default in most modern languages.

A subroutine reference together with its bundled referencing environment
is called a subroutine closure. There are several possible implementations;
the simplest is code address plus a copy of the static link.

--
First and second-class subroutines

first: can pass, return, store
second: can pass, but not return or store

Why not return or store?
Limited v. unlimited extent.

Example: (* OCaml *)
 let plus_n n = fun k -> n + k;;
 let plus_3 = plus_n 3;;
 let apply_to_2 f = f 2;;

 apply_to_2 plus3 => 5

Here the n inside plus_n needs to have a lifetime that extends beyond
the call inside plus_3.

Note 1: The difference between deep and shallow binding is not apparent
unless you pass subroutines as parameters, return them from functions, or
store references to them in variables. Binding rules are therefore
irrelevant in languages that lack formal subroutines: you don’t need
closures if you don’t have formal subroutines.

Note 2: To the best of my knowledge, no language with static (lexical)
scope rules has used shallow binding: it’s possible to figure out
what that combination would do, but it really doesn’t make sense. Some
languages with dynamic scope rules (e.g., Snobol) offered only shallow
binding; others (eg. early Lisp) offered both. Hence, the issues
are separable.

Note 3: In a language with lexical scope, the difference (if anybody
cared) would only be noticeable for non-local references, that is,
references which are neither local nor global. Binding rules would have
no relevance to (lexical) local/global references since all local
references are always bound to the currently executing instance and
there is only one instance of the main program containing the global
variables. Binding rules are therefore irrelevant in languages such as
C, which lack nested subroutines, or Modula-2, which allow only
outermost subroutines to be passed as parameters, and would also be
irrelevant in a language with nested subroutines but no recursion (I’m
not aware of any like that).
So closures are trivial with static scope and no nested subroutines.

Example of why deep binding matters for static scope (in OCaml): Scan a list.
Return the sum of element k and first negative element (if any) prior to k.

 let foo l k =
 let rec helper l f i b =
 match l with
 | [] -> raise (Failure “list too short”)
 | h :: t ->
 if i = k then f h
 else if (b && h < 0) then helper t ((+) h) (i + 1) false
 else helper t f (i + 1) b in
 helper l (fun x -> x) 0 true;;

 This captures the “right” h in foo [1; -3; 2; -4; 5] 4;;

Note that the OCaml implementation doesn’t use a straightforward
application of static links, because of tail recursion optimization.
The equivalent code in Python would:

 def f(l, k):
 def helper (l, f, i, b):
 if l == []:
 return “list too short”
 elif i == k:
 return f(l[0])
 elif b and l[0] < 0:
 h = l[0]
 return helper(l[1:], (lambda x: h + x), i+1, False)
 else:
 return helper(l[1:], f, i+1, b)

 return helper(l, (lambda x: x), 0, True)

 l = [1, -3, 2, -4, 5]
 print(f(l, 4))

We’ll return to implementation techniques for scope and binding rules
in chapter 9.

NB: object-oriented languages without first-class subroutines can get some
of the same effect using object closures: create an object whose fields
hold values that would have been in the referencing environment of a
subroutine closure; pass the object to somebody; let them invoke one of
its methods. The operator() mechanism of C++ makes this look like
ordinary subroutine invocation.

--
Lambda expressions

Function aggregates -- in-line built-up values of functional type.
Familiar to users of functional languages.
Increasingly common in imperative languages as well.
Require unlimited extent to really work well, as in Ruby, C#, and Scala.
Can still be useful without it, though, as in Java 8 and C++’11.

Here a C++ example:

 auto plusx(int x) {
 return [x](int y){ return x + y; };
 }

 This captures x by value. Capturing by reference [&x] would
 not work here, due to limited extent.

==
Other concepts related to naming

Aliases: using more than one name for the same thing
Problems:
 potentially confusing
 inhibit code improvement (e.g., promotion to registers)

What are aliases good for?
 * linked data structures
 x space saving -- modern data allocation methods are better
 x multiple representations -- unions are better

Aliases sometime arise in parameter passing as an unfortunate side effect.
Euclid scope rules are designed to prevent this.

Overloading: using the same name for multiple things

Some overloading happens in almost all languages
 integer + v. real +
 built in I/O operations in some languages
 function return in Pascal
Some languages get into overloading in a big way
 Ada
 C++
 overload norm;
 int norm (int a) { return a > 0 ? a : -a;)
 complex norm (complex c) { // ...

overloading is also known as “ad hoc polymorphism.”

--
(True) Polymorphism

Means, literally, “having many forms.”
In practice, it means “applicable to many types.”
There are several different variants.

Simplest is ad hoc polymorphism, which really doesn’t deserve the name.

Subtype polymorphism in OO languages allows code to do “the right thing”
to parameters of different types in the same type hierarchy
 by calling the virtual function appropriate to the concrete type of
 the actual parameter

Explicit parametric polymorphism (generics)
 You specify type parameters when you declare or use the generic.

 Templates in C++ are an example of this:

 typedef set<string>::const_iterator string_handle_t;
 set<string> string_map;
 ...
 pair<string_handle_t, bool> p =
string_map.insert(ident);

 Here pair.first is the string we inserted;
 pair.second is true iff it wasn’t there before

 Implemented via macro expansion in C++ v1; built-in in Standard C++.

 Similar mechanisms in Clu, Ada, Java, C#, Scala, ...

 May be implemented with
 - a single copy of the code that always manipulates references
 - a separate copy of the code for every (set of similar) type(s)

Implicit (true) parametric polymorphism
 You don’t have to specify the type(s) for which code works;

 the language implementation figures it out and won’t let you
 perform operations on items that don’t support them.
 Functional languages generally support true parametric
 polymorphism, either in the runtime system (Lisp and its
 descendants) or in the compiler (ML and its descendants,
 inc. Haskell).

More on polymorphism in Chapter 7.

