
Notes for CSC 2/454, Aug. 31 and Sep. 7, 2022 
 
CSC 2/454 Programming Language Design and Implementation 
========================================================= 
Course Introduction 
 
Language Design and Language Implementation go together 
    an implementor has to understand the language 
    a language designer has to understand implementation issues 
    ** a good programmer has to understand both 
 
LOTS of programming languages 
    Wikipedia's list has 671 entries as of Aug. 2020 
        those are just the "notable" ones 
 
Why are there so many programming languages? 
    evolution -- we've learned better ways of doing things over time 
    diverse ideas about what is pleasant to use 
    orientation toward special purposes (SQL) 
    orientation toward special hardware (assembly, CUDA) 
    market factors: desire to control, or avoid what others control 
        (COBOL, PL/I, Ada, Swift, ...) 
 
What makes a language successful? 
    easy to learn (BASIC, Scheme, LOGO, Python) 
    "powerful" -- easy to express complicated things (if fluent) 
        (C++, Common Lisp, Haskell, Perl, APL) 
    easy to implement (BASIC, Forth) 
    possible to compile to very good (fast/small) code (C, Fortran) 
    exceptionally good at something important (PHP, Ruby on Rails, R, SQL) 
    backing of a powerful sponsor (COBOL, Ada, Visual Basic, C#, Swift) 
    wide dissemination at minimal cost (Pascal, Java, Python, Ruby) 
    market lock-in (Javascript) 
 
Why do we have programming languages? -- what is a language for? 

• abstraction of virtual machine -- way of specifying what you want the 
hardware to do without getting down into the bits 



o languages from the implementor's point of view 
• way of thinking -- way of expressing algorithms 

o languages from the user's point of view 
     
This course tries to balance coverage of these two angles.  We will 
    talk about language features for their own sake, and about how they 
    can be implemented. 
 
  * Knuth: Computer Programming is the art of explaining to another 
    human being what you want the computer to do. 
 
This course should help you 

• learn new languages more easily 
• pick the right language for the task at hand (given a choice) 
• choose among alternative ways to express things in a given language 
• understand what a compiler does to your code 

o for performance and (sometimes) correctness debugging 
• emulate useful features in languages that lack them 
• use language & compiler technology in your own projects 

o almost every complex system has an input language 
• prepare for 2/455 :-) 

     
Key to all of this is understanding the concepts behind language design -- 
thinking about languages NOT in terms of syntax but in terms of 

• naming & binding (early? late?) 
• data types and abstraction mechanisms 
• control flow 
• closures 
• concurrency 
• ... 

 
Units on 

• syntax 
• semantics 
• functional programming 
• names 
• scripting 



• control flow 
• type systems 
• concurrency 
• composite types 
• subroutines 
• objects 
• run-time systems 

 
• (see the web site) 

 
Traditional to group languages in terms of "paradigm" 
    imperative 
        von Neumann   (Fortran, Ada, Pascal, Basic, C, ...) 
        object-oriented  (Smalltalk, Eiffel, C++, Java, C#, Swift, OCaml, ...) 
        scripting   (perl, Python, PHP, Ruby, Javascript, Matlab, R, ...) 
    declarative 
        functional   (Scheme/Lisp, ML/OCaml/Haskell/F#) 
        logic, constraint-based (Prolog, OPS5, spreadsheet, XSLT) 
 
Not clear this ever really made sense: categories are not mutually exclusive, 
and have been getting less so over time. 
 
Today, probably best to talk about paradigms a language supports 
rather than "the" paradigm to which it belongs. 
 
We'll discuss all of this much more as the semester goes on.  For now: 
 
    Imperative languages emphasize computation by modifying variables. 
    This allows you to do unbounded amounts of work in loops. 
 
    Functional languages emphasize computation by creating, manipulating, 
    and invoking functions.  This allows you to do unbounded amounts of 
    work via recursion. 
 
    Object oriented languages emphasize structuring the code around 
    abstract data types and their operations (methods). 
 



    Scripting languages emphasize delayed decision making and programmer 
    flexibility. 
 
    Logic languages emphasize the search for values that satisfy certain 
    constraints.  We'll touch on them a few times this semester, but 
    they won't get as much emphasis as the others (sorry!) 
 
So: paradigms sort of give us a Venn diagram: 
    Haskell 
    C 
    OCaml 
    C++ 
    Ruby 
    Scala 
    Perl 
    eLisp 
 
 
 
 
Imperative languages have historically dominated -- usually, today, with 
object oriented features. 
    bulk of our attention in this course 
 
BUT 
    one unit and lots of scattered attention to functional languages 
    lots of functional features making their way into 
        mostly-imperative languages -- Scala, Swift, Ruby, Python, ... 
            lambda expressions 
            functions as arguments and return values 
            list comprehensions 
            continuations 
 
The imperative and functional paradigms tend to encourage different ways 
of thinking about algorithms.  I'll be talking about this a lot, and 
encouraging you to think in both ways (because neither is better) 
 



Consider insertion sort.  In no particular languages: 
 
imperative sort(A): 
    for i in len(A)-2 downto 0 
        v = A[i] 
        for j in i+1 to len(A)-1 
            // A[j..len(A)-1] is sorted 
            if A[j] > v break 
            A[j-1] = A[j] 
        A[j-1] = v 
 
functional sort(A): 
    if len(A) < 2 return A 
    else 
        let v be A[0] and R be A[1..] 
        return insert(v, sort(R)) 
    where insert(v, S): 
        if len(S) == 0 return { v } 
        else 
            let w be S[0] and T be S[1..] 
            if v < w return v . S 
            else return w . insert(v, T) 
 
These implement the same algorithm.  They are likely to compile to 
nearly identical machine code.  But 

a) The functional version has no assignments. 
b) The imperative version has a more obvious implementation. 
c) when I wrote these in C and Scheme, I had to fix two bugs in the C version, 

but the Scheme one ran the first time. 
 

Will probably draw examples from about 40 languages this semester 
Will do projects in 6 or 8 of them 
By the time we're done, you should be able to pick up a new language in 
    a weekend (though becoming an expert will still take time) 
  



======================================== 
Course Administration 
 
Tried ”flipping" the course last year; didn’t work well. 
Going back to a traditional organization this year. 
 
NAVIGATION: 
 
All course materials will be online; no handouts. 
Combination of open web and Blackboard; latter only for non-public stuff. 
The course home page is 
    http://www.cs.rochester.edu/courses/254/fall2022/ 
 
Log in and browse.  Pay particular attention to the course description, 
schedule, policies, and grading standards. 
Log into Blackboard as well (links are on the course home page). 
 
The TAs and I will post announcements to Blackboard.  Everyone should 
check both the announcements and the discussion board every day. 
 
Lecture notes are available on the web site. 
 
The hub of the course is the schedule page: 
    http://www.cs.rochester.edu/courses/254/fall2022/schedule.shtml 
It will guide you through all requirements. 
 
 
PREREQUISITES: CSC 173 and 252, or equivalent. 
 
If you have not had 252 (it's a new pre-req), you can get by, but read 
chapter 5 (on the web) on your own. 
 
Most of the students in the class are undergrads, but about 10% are grad 
students, who take it as 454 instead of 254.  Grad students will be 
expected to do some extra work, and will be graded on a separate curve. 
 
The text for the course is Programming Language Pragmatics, 4th 



edition.  Previous editions will not suffice.  So-called "supplemental" 
sections (some of which I'll be assigning) are available online at 
Elsevier's web site (again, with a link from the course home page). 
 
 
CLASS MEETINGS (mandatory) 
 
Monday and Wednesday, 10:25-11:40 US Eastern time.  I’ll be taking attendance. 
 
 
WORKSHOPS 
 
Required for 254; recommended for 454.  UG TAs the leaders. 
 
Ignore what you signed up for at registration; we'll assign based on 
forms that you’re about to fill out. 
 
 
PROGRAMMING PROJECTS: 
 
5 planned: 
 
(1) familiarization assignment (combinatorial search) 
    in several different languages. 
(2) syntax error recovery (recursive descent review; C++) 
(3) simple translation (tree traversal, OCaml) 
(4) concurrency (probably in Java) 
(5) disassembler (scoping, scripting) 
 
These will be similar BUT NOT THE SAME as assignments I've used in the past. 
 
Expect to work hard. 
Comparable amount of code to 173 but MUCH more difficult. 
About two weeks per project NEEDED. 
 
Each project will begin with a pre-assignment ("trivia") whose goal is 
to force you to look at things early. 



Disproportionate share of final course grade (~10%) 
 
 
COMPUTING RESOURCES: 
 
Everyone (including grad students) will need a CSUG acct.  CS majors 
should have one already.  If you don't, contact one of the grad TAs. 
 
The Wegmans Hall majors lab and Hylan hall minors lab are available if you 
want a big screen.  Otherwise ssh should suffice.  Use the csug cycle servers 
(cycle1, cycle2, cycle3).  You will need VPN to access these from off campus. 
 
Feel free to use your own machine for development if you want, but code 
will be turned in and graded at CSUG.  Port and test early! 
 
 
QUIZZES and EXAMS: 
 
Quiz on Blackboard once per unit (~12 times this semester) 
    based on the textbook reading 
 
Midterm and cumulative final exams 
 
 
GRADING (tentative): 
 
Programming projects 
    10% "trivia" pre-assignments 
    33% main projects 
Exams 
    16% midterm 
    16% final 
Keeping up 
    10% weekly quizzes 
    10% workshop participation 
      5% lecture attendance 
 



 
NO LATE ASSIGNMENTS OF ANY KIND WILL BE ACCEPTED. 
EXCEPTIONS ONLY UNDER THE MOST DIRE OF CIRCUMSTANCES. 
TURN IN WHAT YOU HAVE; I'M GENEROUS WITH PARTIAL CREDIT. 
 
 
COLLABORATION AND ACADEMIC HONESTY: 
 
Exams are individual effort only; closed book. 
 
Quizzes are also individual effort, but open book. 
 
COLLABORATION ON IDEAS is encouraged, but you have to work through 
everything yourself.  You can explore anything you want with a friend on 
    explore whatever you want on a whiteboard, THEN ERASE IT 
    NO NOTES -- just memories 
 
COLLABORATION ON ARTIFACTS (copying) is EXPRESSLY FORBIDDEN, unless you 

• have permission 
• clearly indicate in your README file which parts were copied and from 

whom 
• don't expect points for the copied parts (but may get the satisfaction of 

being able to see the whole thing work) 
 
Encouraged to help others: won't hurt your grade. 
Everybody gets an A if they deserve it. 
 
*** SEE FULL DETAILS ON ACADEMIC HONESTY ON THE WEB PAGE *** 
 
Apparent violations will be referred to the Honesty Board. 
(I had a lot of these last year; let’s not do a repeat.) 
 
 
GETTING HELP 
 
This is a hard course.  Don't wait to seek help. 

• read the book and watch the lectures 



• attend lecture and workshops 
• talk to fellow students 
• go to TA office hours or send them mail 
• make an appt to talk to me 
• check out the CSUG and CCAS tutoring services 

 
 
FIRST ASSIGNMENT (for Wed. Sep. 7): 
 

1) Get a copy of the book if you haven't already. 
2) Finish reading (all of) chapter 1. 
3) Explore both the website and the Blackboard site for the course. 
4) Take quiz Q1 on Blackboard. 
5) Make sure your CSUG account is up and working. 
6) Complete "Initial Trivia assignment (T0)" on Blackboard. 
7) Turn in the workshop time slot preference survey. 
8) Check out the "Unix tools" assignment (A0) and work through it if it isn't all 

familiar material. 
 
That probably looks like a lot, but only #s 2 and (maybe) 8 will be time-consuming. 
 
There will be similar requirements in future weeks.  I won't be putting 
lists like this in future lecture notes; follow the schedule page on the 
web site. 
  



======================================== 
Compilation and Interpretation 
 
Consider our insertion sort in C: 
 
void sort(int A[]) { 
    for (int i = len(A)-2; i >= 0; i--) { 
        int v = A[i]; 
        int j; 
        for (j = i+1; j < len(A); j++) { 
            /* A[j..] is sorted */ 
            if (A[j] > v) break; 
            A[j-1] = A[j]; 
        } 
        A[j-1] = v; 
    } 
} 
 
275 characters of text in a .c file.  How do you execute that?  Not immediately 
obvious, certainly, and a lot less obvious if it's 275 million characters. 
 
But suppose it's a tree data structure in memory: 



Hopefully most of you believe that (given some time) you could write a 
program that would take any such tree and "execute" it.  That's what an 
INTERPRETER does: 
    translate the source program into a data structure that makes its 
        meaning more obvious 
    walk the data structure (in this case, a tree) and do "the obvious" 
 
Most scripting languages (Perl, Python, Ruby, Javascript) are 
implemented in roughly this fashion. 
 

 
** The interpreter stays around at execution time. 
Comparatively simple.  Very flexible.  But generally kind of slow. 
 
 
At the other extreme (as in, say, Fortran or C) we can translate a 
program to machine language ahead of time.  That's what a COMPILER does: 
    translate the source program into a data structure that makes its 
        meaning more obvious (the same as in an interpreter!) 
    walk the data structure and generate machine code to do “the obvious” 
 

     
 
 
 



A common intermediate is to employ a non-machine-language intermediate 
form and to separate the creation of the internal form from the 
"execution" part.  Java does this: 
 

 
 
The former option (final step is interpreter) was common in early Java 
implementations.  Most now do the second option: "just-in-time" (JIT) 
compilation.  Advantages 
 
  - Intermediate program (Java byte code) is significantly smaller than 
    textual source: good for shipping over the web. 
 
  - JIT compilation is faster than source-to-machine translation, 
    because the intermediate program has lots of semantic information 
    built in (doesn't have to be figured out again). 



 
  - Intermediate program is completely portable and self-contained: 
    "run anywhere" on VIRTUAL MACHINE. 
 
SO: 
Compilation & interpretation are more shades of gray than distinct 
alternatives. 
 
In some systems, you'll see "pre-processing" prior to compilation or 
interpretation.  The key difference between pre-processing and 
compilation is that compilation entails semantic understanding of 
what is being processed; pre-processing does not 
 
    A compiler produces either error messages or output that will pass 
    through further steps -- more compilation, assembly, interpretation, 
    execution -- without syntactic or static semantic errors. 
    
    A pre-processor will often let errors through.  A compiler hides 
    further steps; a pre-processor does not. 
 
How you view all this also depends on how deep you look. 
    consider a microcoded processor (interpretation) 
    or micro-ops on a modern x86 (JIT translation) 
     
many compiled languages have interpreted pieces 
    printf in C 
 
most compiled languages use "virtual instructions" -- 
library routines that are called automatically by the compiler: 
    math 
    I/O 
    string manipulation 
    set and map operations 
 
some compilers produce nothing but virtual instructions 
    e.g. Pascal P-code, Java byte code, Microsoft CIL 
 



what makes compilation hard? -- late binding 
    names to objects -- scope rules 
    types to objects/names -- type rules 
    programs to code -- dynamic classes in Java, new functions 
        at run time in Scheme 
 
why interpret? 
    necessary for late binding, which may increase programmer productivity 
    small code size 
    good diagnostics 
    no (or reduced) compilation step -- fast startup from source code 
    (possibly) enhanced portability 
    automatic inclusion of the latest libraries 
 
commonly interpreted languages 
    Scheme 
    Prolog 
    Shell 
    most scripting languages (Python, Ruby, PHP, JavaScript) 
Compilers exist for some of these, but they aren't pure: 
selective compilation of compilable pieces and extra-sophisticated 
pre-processing of remaining source.  Interpretation (or dynamic 
compilation) of parts of code, at least, is still necessary. 
 
unconventional compilers 
    text formatters 
    silicon compilers 
    database query language processors 
    XSLT 
  



======================================== 
PHASES OF COMPILATION 
 
Compilers among the oldest and best understood complex programs 
    date to late 1950s 
    embody several lovely formalisms 
 
Phase = large-scale step in the compilation process. 
 
 
character stream 
                                     scanner (lexical analysis) 
token stream 
                                     parser (syntax analysis) 
parse tree 
(concrete syntax tree) 
                                     semantic analysis and 
                                     intermediate code generation        FE 
abstract syntax tree (AST) or                                          -------- 
other intermediate form (IF) 
                                     machine-independent                  ME 
                                     code improvement 
                                     (may actually be many phases) 
modified intermediate form                                            -------- 
                                     target code generation               BE 
target language 
(e.g., assembly) 
                                     machine-specific optimization 
                                     (may also be multiple phases) 
better target code                 
 
------ 
symbol table 
 
 
Pass = set of phases that finish before the next pass starts. 
Typically implemented as a separate program. 



    historically, reduced the compiler's memory footprint 
    today, serve to support compiler families 
    N + M +1 separately developed passes instead of N * M +1 
        (+1 for the "middle end" [the big part]) 
 
Phases within a pass may not be clearly differentiated. 
    Most compilers, for example, do not build an explicit parse tree. 
 
 
---------------------------------------- 
Automatic tools 
leverage the formalisms on which the compilation process is based 
 
scanner -- definitely handy during language development but may be hand-re-

written for production use 
parser -- big conceptual & organizational win but may also be abandoned (e.g., in 

gcc) to produce better error messages 
attribute evaluator -- not used all that much in practice, but can be conceptually 

useful, and has been applied to syntax-directed editors, incremental 
compilation, and language research 

data-flow engine -- very useful in the middle end: captures incremental discovery 
of code properties -- e.g., which registers contain values that might be 
needed after a subroutine call, and ought to be saved on the stack 

affine math framework -- great for loop optimizations, characterization of 
possible values array indices 

code generator -- great for portability; fairly widely used 
 
 
---------------------------------------- 
More on the various phases: 
 
All phases rely on the SYMBOL TABLE 
  - keeps track of all the identifiers and what compiler knows about them 
  - may be retained (in some form) for later use -- 
        by debugger, garbage collector, reflection mechanism, etc. 
 
-------- 



 
SCANNING divides the program into "tokens" 
    smallest meaningful pieces of a program 
    saves time by reducing the number of pieces the parser has to process 
        (and scanning is faster than parsing) 
 
Also typically 
    removes comments 
    saves text of strings, identifiers, numbers in the symbol table 
    evaluates numeric constants (maybe) 
    tags tokens with file/line/column, for good diagnostics in later phases 
 
Consider an (extremely simple) language to describe the input to a 
hand-held calculator.  Tokens for such a language might include: 
 
    id      = letter ( letter | digit ) * 
                [ except "read" and "write" ] 
    literal = digit digit * 
    ":=", "+", "-", "*", "/", "(", ")" 
    $$ [end of input] 
 
(These are regular expressions.) 
 
-------- 
 
PARSING discovers the "context free" structure of the program. 
That's the structure (set of rules) that can be described with a 
context free grammar (CFG). 
 
Continuing the calculator example, suppose 

• All variables are integers. 
• There are no declarations. 
• The only statements are assignments, input, and output. 
• Expressions get to use the four arithmetic operators and parentheses. 
• Operators are left associative, with the usual precedence. 
• There are no unary operators. 

 
Here's a grammar, in EBNF (extended Backus-Naur form): 



 
    pgm          →  stmt_list $$ 
    stmt_list   →  stmt_list  stmt | ε 
    stmt           →  id := expr  |  read  id  |  write  expr 
    expr           →  term  |  expr  add_op  term 
    term          →  factor  |  term  mult_op  factor 
    factor         →  ( expr )  |  id  |  literal 
    add_op     →  +  |  - 
    mult_op   →  *  |  / 
 
The initial, "augmenting" production is for the parser's convenience -- 
    $$ is generated by the scanner; it isn't part of the user's program. 
 
Note that there is an infinite number of grammars for any given language. 
This is just one. 
 
[ An aside: You may recall from 173 that the "extra" levels of this 
  grammar (expr v.  term v. factor), and the choice of ordering within 
  productions, serves to produce parse trees that make it easier to see 
  the precedence and associativity of operators; more on that in Chap 2. 
 
  Also: this grammar happens to belong to one of two main classes of 
  grammars that are easily parsed.  It's from a different class than the 
  one you may have worked with in CSC 173.  I'm using it because it's 
  arguably more intuitive.  More on this in the next lecture. ] 
 
Mini theory lesson: 
 
    Scanners and parsers are recognizers for regular and context-free 
    “languages,” respectively. 
      - useful for describing the language 
 
    Regular expressions and context-free grammars are generators for 
    regular and context-free languages, respectively. 
      - useful for telling if a given string is in the language 
 



    Scanner and parser generators like lex and yacc, or antlr, transform a 
    generator (RE, CFG) into a recognizer (scanner, parser). 
 
    [ For those who've had CSC 280 or its equivalent, scanning is 
    recognition of a regular language, e.g. via DFA; parsing is recognition 
    of a context-free language, e.g. via PDA.  If you don't know what that 
    means, don't worry; we'll get to it. ] 
 
 
Using our grammar for the calculator language, consider the following 
input program to print the sum and average of two numbers: 
 
    read A 
    read B 
    sum := A + B 
    write sum 
    write sum / 2 
    $$ 
 
50 characters in this program (including the spaces and line feeds) 
Scanner turns them into 16 tokens (including the extra $$) and passes 
    these on to the parser 
The parser will discover the structure of the program and 
build a PARSE TREE: 
 
    P  →  SL $$                                 read A 
    SL →  SL S | ε                              read B 
    S  →  id := E | read id | write E      sum := A + B 
    E  →  T | E ao T                            write sum 
    T  →  F | T mo F                            write sum / 2 
    F  →  ( E ) | id | lit                      $$ 
    ao →  + | - 
    mo →  * | / 



 

 
SEMANTIC ANALYSIS is the discovery of "meaning" in the program. 
[ More accurately, it maps the program to something like math or a 
formally specified abstract machine, to which humans already assign 
meaning. ] 
 
The semantic analyzer enforces all the rules that can be enforced at 
compile time (before the program runs), but which the couldn't be 
expressed in the CFG.  These are STATIC semantics. 
 
Other rules (e.g. array subscript out of bounds) can't (in general) be 
enforced until run time.  Those are DYNAMIC semantics -- enforced (if at all) 
by code that the compiler adds to your program, to execute at run time. 
 
Examples of (typically) static semantic rules 



• identifiers must be declared before use 
• operands need to have matching types 
• subroutines need to be passed the right number and types of parameters 
• functions must contain return statements 
• labels on the arms of a switch (case) statement must be disjoint 
• and so on 

 
Semantic analysis for the calculator language is essentially 
non-existent -- little that CAN go wrong. 
Since there are no branches in our control flow, however, we can check 
to make sure no variable is used before it is given a value, and maybe 
warn programmers if a variable is given a value that is never used. 
 
[ This is not possible in a more general language, unless you impose 
  restrictions on merging code paths, as Java and C# do.  A good 
  compiler may catch some errors, even if it can't catch all of them. ] 
 
 
    read A      read A      read A 
    write B        read B         read B 
                    write A        C := A + B 
                                   C := 5 
 
-------- 
 
Semantics analysis is often done together with INTERMEDIATE CODE 
GENERATION, in a single phase. 
 
A parse tree reflects the structure of a program according to a CFG. 
    Sometimes called a "concrete syntax tree" 
    Typically has lots of extraneous detail -- 
        e.g., expr, term, and factor in our calculator example 
 
Before enforcing semantic rules, we typically want to create a more 
convenient structure -- the ABSTRACT SYNTAX TREE (AST). 
 
For brevity, I'll say "parse tree" instead of "concrete syntax tree" 
and "syntax tree" instead of "abstract syntax tree" or AST. 



 
 
In practice, construction of the AST is often interleaved with parsing, 
so we don't actually have to build the parse tree. 
 
 
The semantic analyzer typically works by walking the AST and labeling 
(ANNOTATING) nodes.  Labels might include 
  - pointers into the symbol table 
  - types of expressions 
  - accumulated error messages 
  - many others 
 
The syntax tree for our sum-and-average program might look like this: 

 
If we traverse this tree left-to-right (given the calculator's simple 
linear control flow), we can keep track in the symbol table of which 
variables have been given a value, and which values have been used. 
 

• When we see an identifier, we look it up in the symbol table. 



• If it isn't there already, we add it. 
• For each symbol, we keep track of whether it has (a) no value, (b) an 

unused value, or (c) a used value. 
• For unused values, we may also keep track of whether an error message 

has been generated (to avoid redundant messages). 
• Initially, every variable has no value. 
• Whenever we give a symbol a value we check to see if it already has an 

unused value. 
o If so, we print a warning message. 
o In either case, we note that it now has an unused value. 

• Whenever we try to use a symbol's value we check to see if it currently has 
no value. 

o If so (and perhaps if we haven't already complained), we print an 
error message. 

o Otherwise, we note that it now has a used value. 
• At the end of the program, we scan the whole symbol table to see if 

anything has an unused value.  If so, we print a warning message. 
 
Again, most compilers for "real" languages would not track values this 
way: conditions, loops, and subroutines preclude it.  They would do 
things like type checking. 
 
-------- 
 
The Scanner, Parser, and Semantic Analyzer together are the FRONT END of 
the compiler -- the language-dependent part.  The same front end would 
be used by an interpreter. 
 
Next is the "middle end" -- MACHINE-INDEPENDENT CODE IMPROVEMENT 
    a.k.a. OPTIMIZATION 
Usually comprises multiple phases -- often dozens of them. 
Each takes an intermediate-code program and produces another that does 
the same thing faster, or in less space. 
 
Such phases are often optional: they increase compilation time, but 
produce better code. 
 



Code improvement is the bulk of a modern compiler, but we won't have 
time for much coverage this semester. 
Take 2/455 to learn more, or read Chap 17 on the PLP CS. 
 
Optimization phases often proceed through several progressively "lower" 
(more machine-like) intermediate forms. 
LLVM, gcc, and many other compiers have three main levels 
    (each of which may have many sub-levels) 
 
    high level -- abstract syntax tree 
    medium level -- often some sort of CONTROL FLOW GRAPH with 
        idealized assembly code within straight-line BASIC BLOCKS 
    low level -- typically the assembly code of the target machine, 
        or something very close 
 
The typical phase traverses the current IF, adding annotations and 
perhaps producing a "lower" IF. 
 
(An interpreter, of course, uses a traversal to "run" your program.) 
 
Annotations created in the middle end might include 
    which recently computed values are still "live" 
        (may be needed later in the program) 
    which functions may call a given function 
    which variables a pointer may refer to 
    which variables are changed in the body of a loop 
    how many times a loop is likely to run 
    which expessions are evaluated in a given body of code 
        (useful for finding redundancies) 
    what ranges of values might be held in a given variable 
    which values can actually be determined at compile time 
    and many many more 
 
All of these can help the compiler create a revised IF that is likely to 
produce a faster or smaller program. 
 
-------- 



 
The back end of the compiler starts with TARGET CODE GENERATION. 
This phase typically produces assembly language or (sometimes) machine 
language.  It is driven by one or more additional traversals of the IF 
produced by the middle end. 
 
Among other things, the target code generator must decide how to use the 
resources of the target machine. 
    layout of memory 
    registers to reserve for special purposes 
    calling conventions and layout of the stack 
    etc. 
 
Annotations in this step might include 
    sizes of variables 
    locations of variables in memory (absolute, or offset in stack frame) 
    names and locations of temporary variables created to hold intermediate 
        results of complicated computations 
    which variables are temporarily held in which registers 
    statistics on the range of case statement labels 
        (to drive a look-up strategy) 
 
 
In our calculator example, the simple sum-and-average program might be 
translated into the following (very naive!) code for the x86: 
 
        .data 
    A:              .long   0 
    B:              .long   0 
    sum:            .long   0 
        .text 
    __start: 
         call    input 
         movl    %eax, A 
         call    input 
         movl    %eax, B 
         movl    A, %eax 
         movl    B, %ebx 
         addl    %ebx, %eax 
         movl    %eax, C 



         movl    C, %eax 
         push    %eax 
         call    output_int 
         addl    $4, %esp 
         movl    C, %eax 
         movl    $2, %ebx 
         cltd 
         idivl   %ebx 
         push    %eax 
         call    output_int 
         addl    $4, %esp 
         leave 
         ret 
 
This is obviously not the best code for our program. 
You can see where it came from, though. 
 
At the very least, a real compiler would want to track which values are 
in registers so it can avoid all the redundant loads and stores. 
 
-------- 
 
The final phase is MACHINE-SPECIFIC CODE IMPROVEMENT.  This serves 
mainly to take advantage of special features of the hardware and to 
identify idioms that can be replaced with something simpler. 
    As a very simple example, consider multiplication by 0 or 1. 
    It's often easier to fix such things in the optimizer than to 
        generate the better version in the first place. 
 
The calculator language is too simple to really illustrate this. 
 
 
Some remaining units this semester will focus on compiler (and 
interpreter) implementation.  These will be interleaved with units that 
focus on language design.  Framework presented here will hopefully 
provide useful context. 


