CSC 252: Computer Organization
Spring 2023: Lecture 6

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester



Announcement

* Programming Assignment 1 is due tonight

e Details: https://www.cs.rochester.edu/courses/252/
spring2023/labs/assignment.html

* You have 3 slip days



https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment1.html

Announcement

* Programming assignment 2 is out. It’s in x86 assembly
language. Details at: https://www.cs.rochester.edu/
courses/252/spring2023/labs/assignment2.html.
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https://www.cs.rochester.edu/courses/252/spring2023/labs/assignment2.html
https://www.cs.rochester.edu/courses/252/spring2023/labs/assignment2.html
https://www.cs.rochester.edu/courses/252/spring2023/labs/assignment2.html

Announcement

* You might still have three slip days.
e Read the instructions before getting started!!!
e You get 1/4 point off for every wrong answer

* Maxed out at 10
e TAs are best positioned to answer your questions about
programming assignments!!!
* Programming assignments do NOT repeat the lecture

materials. They ask you to synthesize what you have learned
from the lectures and work out something new.

* Logics and arithmetics problem set: https://
www.cs.rochester.edu/courses/252/spring2023/
handouts.html.

- Not to be turned in.



https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
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Intel x86 ISA Evolution (Milestones)

* Evolutionary design: Added more features as time goes on

Date

1974
1978
1980
1985
1997
1999
2001
2004
2008

Feature Notable :
Implementation

8-bit ISA 8080

16-bit ISA (Basis for IBM PC & DOS) 8086

Add Floating Point instructions 8087

32-bit ISA (Refer to as IA32) 386

Add Multi-Media eXtension (MMX) Pentium/MMX

Add Streaming SIMD Extension (SSE) Pentium IlI

Intel’s first attempt at 64-bit ISA (IA64, failed) ltanium
Implement AMD’s 64-bit ISA (x86-64, AMD64) Pentium 4E
Add Advanced Vector Extension (AVE) Core i7 Sandy Bridge



Our Coverage

e |[A32
e The traditional x86
o 2nd edition of the textbook

e X86-64
* The standard
o CSUG machine
 3rd edition of the textbook
« Our focus
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Moore’s Law

* More instructions require more transistors to implement

e Gordon Moore in 1965 predicted that the number of
transistors doubles every year

e |In 1975 he revised the prediction to doubling every 2 years

* Today’s widely-known Moore’s Law: number of transistors
double about every 18 months

* Moore never used the number 18...
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Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?

* Because transistors are becoming smaller
» ~1.4x smaller each dimension(1.42 ~ 2)
e Moore’s Law is:
* A law of physics? No
 Alaw of math? No
* A law of economy? Yes



Moore’s Law

dl'S TECHNICA

TECH —

Transistors will stop shrinking in 2021,
- but Moore’s law will live on

Final semiconductor industry roadmap says the future is 3D packaging and cooling.

The first problem has been known about for a long while. Basically, starting at around the 65nm
node in 2006, the economic gains from moving to smaller transistors have been slowly dribbling
away. Previously, moving to a smaller node meant you could cram tons more chips onto a single
silicon wafer, at a reasonably small price increase. With recent nodes like 22 or 14nm, though,

there are so many additional steps required that it costs a lot more to manufacture a completed

wafer—not to mention additional costs for things like package-on-package (PoP) and through-
silicon vias (TSV) packaging.
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Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?
* Because transistors are becoming smaller
* ~1.4x smaller each dimension(1.42 ~ 2)

e Moore’s Law is:

* A law of physics? No
e A law of math? No
* A law of economy? Yes

* A law of psychology? Yes



Today: Compute and Control Instructions

e What’s in an ISA?

10



Byte-Oriented Memory Organization

QQ. QQ.

* Data in computers are stored in “memory”
« Conceptually, envision it as a very large array of bytes: byte-addressable
* Each byte has an address

« An address is like an index into that array
« A pointer variable is a variable that stores an address

11



How Does Pointer Work in C?7??

char a = 4;
char b = 3;
char* c;
cC = &a;
b += (*c);
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How Does Pointer Work in C?7??

char a = 4;
char b = 3;
char* c;

—p = &A;
b += (*c);

e The content of a pointer
variable is memory address.

e The ‘&’ operator (address-of
operator) returns the memory
address of a variable.
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How Does Pointer Work in C?7??

char a = 4;
char b = 3;
char* c;
cC = &a;

—p b += (*c) ;

e The content of a pointer

variable is memory address.
e The ‘&’ operator (address-of

operator) returns the memory
address of a variable.

C Memory Memory
Variable Content Address

a 0Ox10
b Ox11
C Ox16

12



How Does Pointer Work in C?7??

char a = 4;

char b = 3;
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Programmer’s
Perspective
of a Computer

CPU

Memory
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Assembly Code’s View of Computer: ISA

Assembly ot

Programmer’s
Perspective
of a Computer

* (Byte Addressable) Memory

» Code: instructions
e Data

» Stack to support function call

Instruction is the fundamental
unit of work.

All instructions are encoded as
bits (just like data!)

Memory
Code
Data
Stack
Code
(Instructions) LELE

0x78
Oxfe
Oxe3
0x05
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Assembly ot

Programmer’s
Perspective
of a Computer

* (Byte Addressable) Memory
» Code: instructions
e Data
» Stack to support function call

Memory

Code
Data
Stack

Code
(Instructions)

Data | Stack

0x53
0x48
0x89
0xd3

13



Assembly Code’s View of Computer: ISA

Assembly CPU Register Memory
Programmer’s File %O?e
. dla
Perspective Stack
of a Computer

* (Byte Addressable) Memory

» Code: instructions
e Data

« Stack to support function call

* Register file
* Faster memory (e.g., 0.5 ns vs. 15 ng)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data



x86-64 Integer Register File

% 8 Bytes >

srax %r8

srbx %r9

srcx %rl0
srdx srll
srsi %rl2
srdi %rl3
srsp srl4
srbp %rl5




x86-64 Integer Register File

* | ower-half of each register can be independently
addressed (until 1 bytes)
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x86-64 Integer Register File

* | ower-half of each register can be independently
addressed (until 1 bytes)

< 8 Bytes >

C Data Type | Size (Bytes) 2 Bytes —
— es

char 1 3:_1 B—

short 2
int 4
long 8
Pointer 8
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x86-64 Integer Register File

* | ower-half of each register can be independently
addressed (until 1 bytes)

< 8 Bytes >

C Data Type | Size (Bytes) 2 Bytes —
— es

char 1 3:_1 B—

short

int

2
. Floating point data is

long 8 stored in a separate set of
8

Pointer register file

15
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* (Byte Addressable) Memory

» Code: instructions
e Data

« Stack to support function call
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* Faster memory (e.g., 0.5 ns vs. 15 ng)
o Small memory (e.g., 128 Bvs. 16 GB)
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Assembly Code’s View of Computer: ISA

Assembly CPU Register Addresses | Memory
Programmer’s || PC File Data %O?e
Perspective < > Stgcak
of a Computer < Instructions
* (Byte Addressable) Memory e PC: Program counter
» Code: instructions » A special register containing address
e Data of next instruction

» Stack to support function call » Called "RIP” in x86-64
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Assembly Code’s View of Computer: ISA

Assembly GRD Register Addresses . Memory
Programmer’s PC File Data %O?e
Perspective < > Stgcak
ALU '
of a Computer < Instructions
* (Byte Addressable) Memory e PC: Program counter
» Code: instructions » A special register containing address
e Data of next instruction

« Called “RIP” in x86-64

* Arithmetic logic unit (ALU)
« \Where computation happens

« Stack to support function call

* Register file
* Faster memory (e.g., 0.5 ns vs. 15 ng)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data
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Assembly Code’s View of Computer: ISA

Assembly GRD Register Addresses . Memory
Programmer’s PC File Data ([3)0?9
: » ' ala
-erspective ALU | | Condition Tt ciructions Stack
Of d Computer Codes <
* (Byte Addressable) Memory e PC: Program counter
» Code: instructions » A special register containing address
e Data of next instruction

« Called “RIP” in x86-64
* Arithmetic logic unit (ALU)
« \Where computation happens

e Condition codes

» Store status information about most
recent arithmetic or logical operation

o Used for conditional branch

« Stack to support function call

* Register file
* Faster memory (e.g., 0.5 ns vs. 15 ng)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data
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Assembly Program Instructions

Assembly CPU Register Addresses . Memory
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. < Data > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap
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e Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx
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Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC ile Data code
_ < > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap

e Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx
* C constructs: +, -, >>, etc.

e Data Movement Instruction: Transfer data between memory and register
e movqg %eax, (%ebx)

e Control Instruction: Alter the sequence of instructions (by changing PC)
e jmp, call
« C constructs: if-else, do-while, function call, etc.

17



Turning C into Object Code
C Code (sum.c)

long plus(long x, long y);

void sumstore(long x, long vy,
long *dest)
{
long t = plus(x, y):;
*dest = t;

18



Turning C into Object Code

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y)

sumstore:
void sumstore(long x, long vy, ig:gq ;igﬁ 2 rbx
G CREEE T T
{ movq $rax, (%rbx)

long t = plus(x, y); Q
*dest = t; i:iq L2
}

18



Turning C into Object Code

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y)

sumstore:
void sumstore(long x, long vy, ig:gq ;igﬁ 2 rbx
G CREEE T T
{
mov Srax $rbx
long t = plus(x, y); popg %rbx, !
*dest = t; e
}

Obtain (on CSUG machine) with command
gcc -O0g -S sum.c -O0 sum.s

18



Turning C into Object Code

Generated x86-64 Assembly

sumstore:
pushqg srbx
movq $rdx, S%rbx
call plus
movq $rax, (%rbx)

PoPg $rbx
ret

19



Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore:

pushqg srbx I\/Iemory

movq $rdx, %rbx 0x53

call plus 0x48

movq $rax, (%rbx) 0x89

PoPg $rbx 0xd3

ret Oxe8
0x£f2
Oxff
Oxff
Oxff
0x48
0x89
0x03
0x5b

0xc3



Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore: Address Memory

pushqg srbx

WEWE] GEREL, e 0x0400595  0x53

call plus 0x48

movq $rax, (%rbx) 0x89

pPopq $rbx 0xd3

2L Oxe8
O0xf2
Oxff
Oxff
Oxff
0x48
0x89
0x03
0x5b

0xc3



Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore: Address Memory

pushqg $rbx

movq %rdx, %rbx 0x0400595 0x53

call plus 0x48

movq $rax, (%rbx) 0x89

pPopq $rbx 0xd3

ret Oxe8

Oxf2

Obtain (on CSUG machine) with command X

xff

gcc —C sum.s -O sum.o Oxff

0x48

0x89

0x03

0x5b

0xc3



Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore: Address I\/Iemory
pushqgq srbx

movq %rdx, %rbx 0x0400595 0x53
call plus 0x48
movq $rax, (%rbx) 0x89
popdq $rbx 0xd3
ret Oxe8
O0x£f2
Obtain (on CSUG machine) with command e
xff
gcc —C sum.sS -O sSum.o Oxff
0x48
- Total of 14 bytes 0x89
- Instructions have variable 0x03
lengths: e.qg., 1, 3, or 5 bytes 8§Z§

- Code starts at memory address
0x0400595



Instruction Processing Sequence

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

Fetch Instruction
(According to PC)
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Instruction Processing Sequence

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

Fetch Instruction
(According to PC)

0x4801d8
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Instruction Processing Sequence

Assembly CPU Register Addresses . Memory
Programmer’s PC ile code
P . < Data > Data
erspeciive ALU Condition Instructions ek
of a Computer Codes <

Fetch Instruction __J Decode
(According to PC) Instruction

addq %rax, (%rbx)
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Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction
(According to PC)

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

Data

>

Decode
Instruction

Instructions
<

Fetch
Operands

Memory

Code
Data
Stack
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Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction
(According to PC)

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

Data

>

Decode
Instruction

Fetch
Operands

Instructions
<

Memory

Code
Data
Stack

Execute
Instruction

20



Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction
(According to PC)

CPU Register Addresses Memory
. >
PC File Code
Data Data
ALU Condition Instructions SIS
Codes <
Decode Fetch __ Execute
Instruction Operands Instruction
v
Update
Condition

Codes

20



Instruction Processing Sequence

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

Fetch Instruction — Decode __ Fetch __ Execute __ Store
(According to PC) Instruction Operands Instruction Results

\ 4
Update
Condition
Codes

20



Instruction Processing Sequence

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

Fetch Instruction — Decode __ Fetch __ Execute __ Store

(According to PC) Instruction Operands Instruction Results
v
Update
Condition
Codes y
Adjust

PC

20



Instruction Processing Sequence

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

Fetch Instruction — Decode __ Fetch __ Execute __ Store

(According to PC) Instruction Operands Instruction Results
4 ;
\ 4
Update
Condition
Codes y
Adjust

PC

20



Today: Compute and Control Instructions

* Move operations (and addressing modes)
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Data Movement in Processors

Assembly
Programmer’s
Perspective
of a Computer

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

<

Data

>

Instructions
<

e |nitially all data is in the memory

Memory

Code
Data
Stack
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Data Movement in Processors

Assembly
Programmer’s
Perspective
of a Computer

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

Data

>

e |nitially all data is in the memory
e But memory is slow: e.g., 15 ns for each access

Instructions
<

Memory

Code
Data
Stack

22



Data Movement in Processors

Assembly GRD Register Addresses > Memory
Programmer’s PC File Code
. < Data > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

e |nitially all data is in the memory
e But memory is slow: e.g., 15 ns for each access
¢ |dea: move the frequently used data to a faster memory
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Data Movement in Processors

Assembly
Programmer’s
Perspective
of a Computer

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

Data

>

e |nitially all data is in the memory
e But memory is slow: e.g., 15 ns for each access

¢ |dea: move the frequently used data to a faster memory

Instructions
<

Memory

Code
Data
Stack

e Register file is faster (but much smaller) memory: e.g., 0.5 ns
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Data Movement in Processors

Register
File

Addresses

Assembly oL

Programmer’s PC
Perspective

of a Computer || AV

Condition
Codes

Data

>

e |nitially all data is in the memory
e But memory is slow: e.g., 15 ns for each access

¢ |dea: move the frequently used data to a faster memory

Instructions
<

Memory

Code
Data
Stack

e Register file is faster (but much smaller) memory: e.g., 0.5 ns
¢ [here are other kinds of faster memory that we will talk about later
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Data Movement in Processors

Register
File

Addresses

Assembly oL

Programmer’s PC
Perspective

of a Computer || AV

Condition
Codes

Data

>

e |nitially all data is in the memory
e But memory is slow: e.g., 15 ns for each access

¢ |dea: move the frequently used data to a faster memory

Instructions
<

Memory

Code
Data
Stack

e Register file is faster (but much smaller) memory: e.g., 0.5 ns
¢ [here are other kinds of faster memory that we will talk about later
e Key: register file is programmer visible, i.e., you could use

instructions to explicitly move data between memory and register file.
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Data Movement Instruction Example

movq srdx, (%rdi)

e Semantics:

e Move (really, copy) data in register $rdx to memory location
whose address is the value stored in $rdi

e Pointer dereferencing
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Data Movement Instruction Example

movq $rdx, (%rdi)
address

e Semantics:

e Move (really, copy) data in register $rdx to memory location
whose address is the value stored in $rdi

e Pointer dereferencing
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Data Movement Instruction Example

data at the address

!

movq %rdx,l(%rdi)
address

e Semantics:

e Move (really, copy) data in register $rdx to memory location
whose address is the value stored in $rdi

e Pointer dereferencing
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Data Movement Instruction Example

data at the address

!

| P = a;
: assuming:
movq %rdx,[ ($rdil) p isin $rdi
| T a isin $rdx

address

e Semantics:
e Move (really, copy) data in register $rdx to memory location

whose address is the value stored in $rdi
e Pointer dereferencing
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